

Chapman Lake

LAKE HABITAT ASSESSMENT, LAKE VEGETATION IDEX, SUBMERGED VEGETATION SURVEY AND WATER QUALITY

David Eilers and Natalie Abdo | USF Water Institute | May 27, 2020

Methods

STUDY AREA ANALYISIS

The watershed containing the Chapman Lake was analyzed using ESRI ArcGIS 10.6. Using this software with 2017 Hillsborough County aerial, 2014 Land Use/ Land Cover (LULC), Landscape Development Intensity (LDI) Index values were calculated for the 100 meter buffer surrounding the lake following the procedures of Reiss & Brown 2012 (Reiss & Brown. 2012. Landscape Development Intensity (LDI) Index User's Manual. H.T. Odum Center for Wetlands, University of Florida. March 2012). According to Reiss and Brown "The LDI represents a human disturbance gradient for wetland systems. The LDI is an integrated measure of human activity, combining the effects from air and water pollutants, physical damage, changes in the suite of environmental conditions ... on the structure and processes of landscapes and ecosystems... Natural, undeveloped LU/LC classes have a LDI index value of one. In the Florida framework, the maximum LDI index score is approximately 42."

The LDI is calculated by multiplying each land use coefficient by the percentage of the area of interest occupied by that land use, and then summing the results. The Florida Department of Environmental Protection (DEP) uses the LDI as a tool to estimate potential land use impacts on streams, lakes, and wetlands. LDI values less than two (\leq 2) can be considered minimally disturbed."

LAKE BATHYMETRY AND MORPHOLOGICAL CHARACTERISTICS ASSESSMENT

The Bathymetric Map¹ provides the lake's morphologic parameters in various units. The bottom of the lake was mapped using a Lowrance Elite 7 Ti Wide Area Augmentation System (WAAS)² enabled Global Positioning System (GPS) with Totalscan transducer (bottom sounder) to determine the boat's position, and bottom depth in a single measurement. The result is an estimate of the lake's area, mean and maximum depths, and volume and the creation of a bottom contour map. Besides pointing out the deeper fishing holes in the lake, the morphologic data derived from this part of the assessment can be valuable to overall management of the lake vegetation as well as providing flood storage data for flood models.

¹ A bathymetric map is a map that accurately depicts all of the various depths of a water body. An accurate bathymetric map is important for effective herbicide application and can be an important tool when deciding which form of management is most appropriate for a water body. Lake volumes, hydraulic retention time and carrying capacity are important parts of lake management that require the use of a bathymetric map.

² WAAS is a form of differential GPS (DGPS) where data from 25 ground reference stations located in the United States receive GPS signals form GPS satellites in view and retransmit these data to a master control site and then to geostationary satellites. For more information, see end note 2.

LAKE VEGETATION INDEX ASSESSMENT

Hillsborough County requested the implementation of the Florida Department of Environmental Protection methods for Lake Vegetation Index (LVI 1000) (http://www.dep.state.fl.us/water/sas/sop/sops.htm) using forms FD 9000-03 (Physical/Chemical Characterization), FD 9000-06 (Lake Habitat Assessment) FD 9000-27 (LVI Field Sheet) and FD 9000-31 (Lake Observation Field Sheet).

The Lake Vegetation Index (LVI) is a rapid assessment protocol in which selected sections of a lake are assessed for the presence or absence of vegetation through visual observation and through the use of a submerged vegetation sampling tool called a Frodus. The assessment results provide a list of species presents and the dominant and where appropriate co-dominant species that are found in each segment. These results are then entered into a scoring table and a final LVI score is determined. LVI scores provide an estimate of the vegetative health of a lake. Our assessment team was trained and qualified by FDEP to conduct these assessment as an independent team and must prequalify each year prior to conducting additional assessments. The LVI method consists of dividing the lake into twelve pie-shaped segments (see diagram below) and selecting a set of four segments from the twelve to include in the LVI. The assessment team then travels across the segment and identifies all unique species of aquatic plant present in the segment. Additionally, a Frodus is thrown at several points on a single five-meter belt transect that is established in the center of the segment from a point along the shore to a point beyond the submerged vegetation zone. For scoring, the threshold score for impairment is 43.

Four metrics are utilized in the Lake Vegetation Index Survey; Dominant Coefficient of Conservatism (CoC), Percent Florida Exotic Pest Plant Council Type 1 (% FLEPPC), Percent Native Taxa, Percent Sensitive Taxa.

The Dominant Coefficient of Conservatism (CoC) metric for the dominant or co-dominate species in each section. The CoC applies a score of o-10 to each species based on its ecological tolerances and fidelity to pre-settlement conditions. Species with higher scores show a high fidelity to native, undisturbed habitats and are typically sensitive to alterations. Available CoC scores can be obtained from LT 7000 from the Florida Department of Environmental Protection at: http://www.dep.state.fl.us/water/sas/sop/sops.htm.

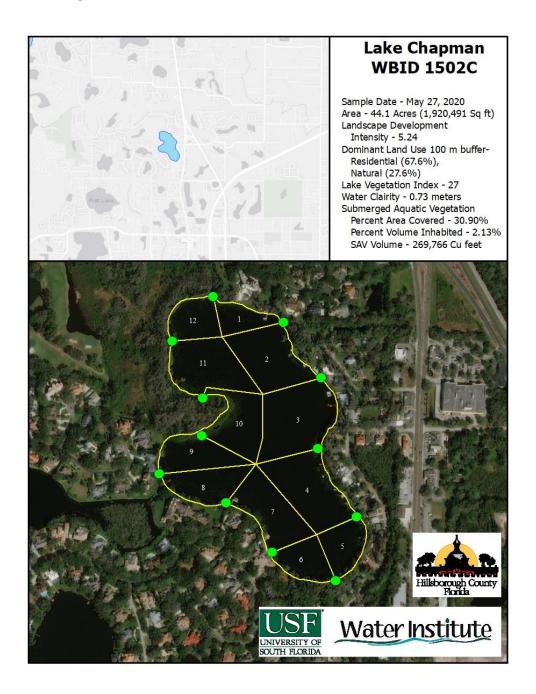
The percent FLEPPC (Florida Exotic Pest Plant Council) Category 1 invasive exotic taxa in a single sampling unit (pie slice) by dividing the number of FLEPPC Category I taxa by the total number of taxa in that sampling unit. Multiply result times 100. Refer to Appendix LVI 1000-1 to determine which plants are on the FLEPPC Category 1 list. Note that not all exotic taxa should be included in this metric, only those listed in Appendix LVI 1000-1 as Category 1 FLEPPC. If the FLEPPC updates their list of Category 1 exotics, those updates shall not be reflected in this calculation until they are included in Appendix LVI 1000-1.

The percent native taxa in a single sampling unit (pie slice) is calculated by dividing the number of native taxa by the total number of taxa in that sampling unit. Multiply result times 100. Nativity status is determined by the Plant Atlas from the Institute for Systematic Botany, and is listed in Appendix LVI 1000-1. For informational purposes, visit the website

<u>http://www.florida.plantatlas.usf.edu/.</u> Taxa that are native according to the Plant Atlas from the Institute for Systematic Botany but are not on the list in Appendix LVI 1000-1 may be included in this metric calculation, but inclusion of these additional taxa is not required.

The percent sensitive taxa in a single sampling unit by summing the number of taxa with a C of C (Coefficient of Conservatism) score >= 7 and then dividing by the total number of taxa in that sampling unit. Multiply result times 100. Refer to Appendix LVI 1000-1 for a list of C of C scores.

The collected bathymetric data is analyzed for submerged aquatic vegetation (SAV) calculations including the percentage of the surface area of the lake inhabited by SAV as well as an estimate of the percent volume of the lake inhabited by SAV. SAV is an important component to a lakes nutrient cycling as well as chlorophyll concentrations due to the SAV and phytoplankton competing for available nutrients in the water column. In addition SAV serves a vital role as habitat for many species of macroinvertebrates and fish as well as substrate for epiphytic algae.


WATER QUALITY ASSESSMENT

Physical water quality samples were taken using a Eureka Manta Sub-2 multiprobe pre and post calibrated on the day of the assessment. Measurements taken with this device include: depth, conductivity, pH, Dissolved Oxygen (mg/l and % Saturation) and salinity. Chemical water parameters were collected and preserved on ice by USF Water Institute staff and analyzed at the Environmental Protection Commission of Hillsborough County Laboratory. Analysis include; Chlorophyll (a, b, c, t and corrected), Alkalinity, Color, EColi, Enterococci, Ammonia, Nitrates/Nitrites, Total Phosphorous, Kjeldahl Nitrogen and Total Nitrogen. The results of the water quality sampling effort will be discussed in the framework of the FDEP Numeric Nutrient Criteria

Study Area

Chapman Lake is located in north-western Hillsborough County near Lutz, Florida. The Landscape Development Intensity Index of the 100 meter buffer around Chapman Lake is dominated by Residential (67.6%), Natural (27.6%) and Reservoirs (2.9%) land uses. The resulting LDI value for the 100 meter buffer around Chapman Lake is 5.24.

FIGURE 1: 2020 Chapman Lake ASSESSMENT STUDY AREA MAP

Lake Bathymetry and Morphological Characterization

At the time of the assessment, Chapman Lake was experiencing elevated water levels (49.52 feet above sea level NAVD 88) resulting in a 44.1 acre water body. Chapman Lake at the time of the assessment had a mean water depth of 6.6 feet and a maximum observed depth of 16.99 feet. The volume at this time was approximately 12,690,889 gallons. Figure 2 shows the resulting bathymetric contour map for Chapman Lake from data collected on May 27, 2020. The collected data has been overlain the 2020 Hillsborough County aerials.

Table 1: Morphological Calculations for Chapman Lake

Parameter	Feet	Meters	Acres	Acre-Ft	Gallons
Surface Area (sq)	1,920,491	178,418	44.1		
Mean Depth	6.6	2.01			
Maximum Depth	16.99	5.18			
Volume (cubic)	12,690,889	359,363		291.3	94,935,098
Gauge (NAVD 88)	49.52	15.09			

Figure 2: 2020 1-Foot Bathymetric Contour Map for Chapman Lake

Chapman Lake WBID 1502C

Contour Lines Expressed in

Lake Perimeter Ground Level DATA SOURCES:

EXPLANATION:

Survey Date: May 27, 2020 Water level was 49.52 ft NAVD 88 at the time of the assessment. Contours are expressed in absolute depth

LAKE MORPHOLOGY:

Perimeter 6,815 ft; Area 44.1 Acres; 1-Foot Intervals Mean Depth 6.6 ft;

Volume 291.3 Acre-ft, (94,935,098 gallons); Deepest point 16.99 ft

2020 aerial photography provided by ESRI.

Lake perimeter digitized from ESRI 2020 aerial imagery.

All contours generated by the USF Water Institute from survey data collected by USF Water Institute Lake and Stream Assessment Program.

DISCLAIMER:

This map is for illustrative purposes only, and should not be used for lake navigation.

125 250 500 Feet

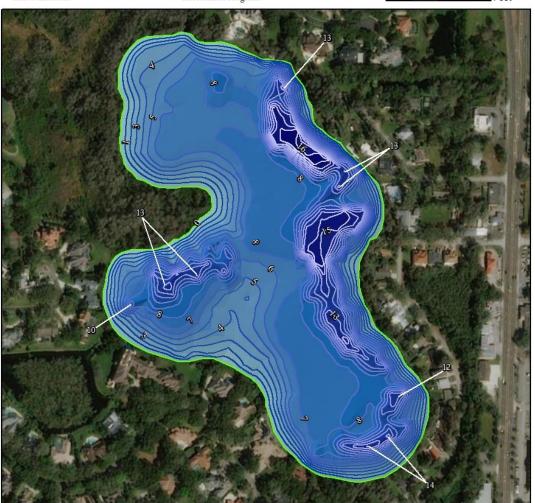


Figure 3 Overview photograph of Chapman Lake showing typical shoreline vegetation in a developed area.

Lake Habitat and Lake Vegetation Index Assessment

The lake assessment for Chapman Lake was conducted on May 27, 2020. The water in Chapman Lake was characterized as moderately tannic and moderately turbid with a color value of 20.4 PCU. The secchi disk depth was 0.73 meters in part due to the high tannins and turbidity. The vegetation quality of the plants in and buffering Chapman Lake are predominantly native species with moderate growths of non-native nuisance species such as *Urochloa mutica, Panicum repens and Eichhornia crassipes*. Some direct inputs of stormwater were noted through pipes and ditches to the lake, but most stormwater reaches the lake via sheet flow. The bottom substrate quality was dominated by sand with moderate coarse particulate organic matter near shore and some accumulation of muck. Approximately 67.6% of the surrounding land has been developed for residential housing including several docks and seawalls. Some homeowners have maintained a vegetated buffer zone along the shoreline.

Figure 4 Common vegetation of the undeveloped portion of Chapman Lake.

The Lake Vegetation Index identified 32 species of wetland vegetation growing in the four selected sections along Chapman Lake. The majority of these species (22) are native species. The remaining 10 species (Panicum repens, Alternanthera philoxeroides, Eichhornia crassipes, Schinus terebinthifolius, Urochloa mutica, Oxycaryum cubense, Colocasia esculenta, Salvinia minima, Melaleuca quinquenervia and Ludwigia peruviana) are non- native and invasive to this region. The vegetation community along Chapman Lake is dominated by a variety of emergent species including *Typha*, *Acer rubrum*, *Taxodium* and Panicum repens. The water's surface in Chapman Lake was dominated by *Nuphar* with moderate growths of *Eichhornia crassipes*. A total of 2 species of submerged aquatic vegetation were observed, Utricularia qibba and Vallisneria americana with Vallisneria being the dominant species. Submerged vegetation was limited in the lake due to the low water visibility and tanins blocking available light. By analyzing the collected sonar chart, submerged aquatic vegetation potentially covered approximately 30.9% of the surface area of Chapman Lake although this is likely an overestimation due to the amount of young Nuphar growing along the bottom of the lake which is difficult to differentiate on the sonar returns. This submerged vegetation inhabits an estimated 2.13% of the water volume in Chapman Lake. Figure 5 shows the results of the SAV analysis indicating the location and height of the SAV canopy.

The calculated LVI score for Chapman Lake was 27, below the impairment threshold of 43 indicating that the vegetation community is "Impaired". Figure 6 shows the map of Chapman Lake detailing the LVI regions used for the assessment (Regions 1, 4, 7, 10). Table 2 details the species list results of the Lake Vegetation Index. Table 3 details the scoring result for the Lake Vegetation Index.

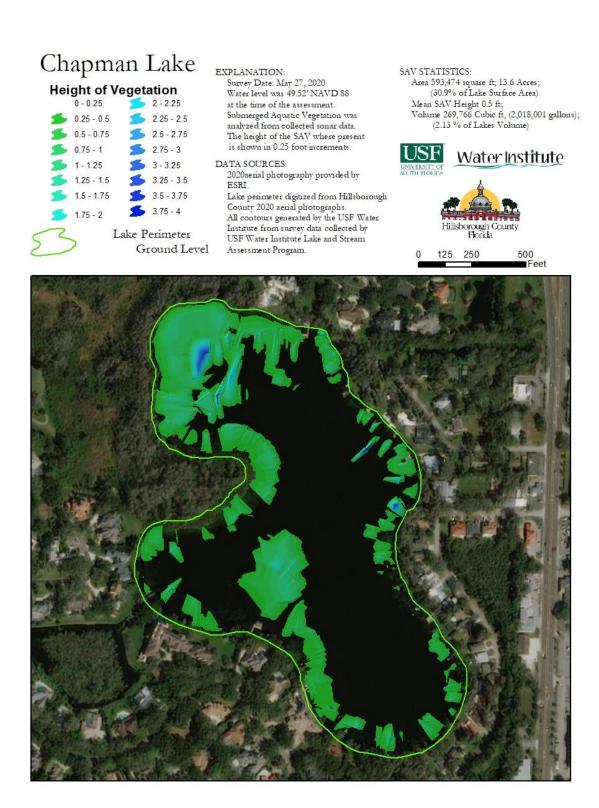


Figure 5 Chapman Lake Submerged Aquatic Vegetation Assessment Results

Figure 6: Lake Vegetation Index region map for Chapman Lake

Table 2: Lake Vegetation Index results for Chapman Lake May 27, 2020

CDECIEC	CofC		R	egion	
SPECIES	ColC	1	4	7	10
Alternanthera					
philoxeroides	0.00	1	1	1	1
Eichhornia crassipes	0.00	1	1	1	1
Nuphar	3.50	D	D	D	D
Taxodium	7.00	1	1	1	1
Acer rubrum	4.65	1		1	1
Boehmeria cylindrica	5.00	1	1		1
Hydrocotyle	2.00	1	1		1
Ludwigia octovalvis	2.00		1	1	1
Ludwigia peruviana	0.00	1		1	1
Panicum repens	0.00	1		1	1
Typha	1.00	1	1		1
Urochloa mutica	0.00	1	1	1	
Blechnum serrulatum	5.50	1		1	
Colocasia esculenta	0.00	1	1		
Melaleuca quinquenervia	0.00	1			1
Mikania scandens	1.95	1		1	
Myrica cerifera	2.00	1			1
Salvinia minima	0.00	1			1
Bacopa monnieri	3.50				1
Diodia virginiana	3.00	1			
Eclipta prostrata	2.00				1
Ludwigia leptocarpa	3.00				1
Magnolia virginiana	7.00			1	
Micranthemum					
glomeratum	5.85			1	
Najas guadalupensis	5.07			1	
Oxycaryum cubense	0.50				1
Persicaria hydropiperoides	2.50			1	
Quercus laurifolia	4.00	1			
Salix caroliniana	2.95				1
Schinus terebinthifolius	0.00	1			
Utricularia gibba	6.37			1	
Vallisneria americana	7.00			1	

Table 3: Scoring Summary for the Lake Vegetation Index

LVI Score Summary		Region			
LVI Score Summary	1	4	7	10	
Total # of taxa in sampling unit	20	10	17	19	
% Native taxa in sampling unit	55	60	70.59	63.16	
% FLEPPC CAT 1 taxa in sampling unit	40	30	23.53	26.32	
% Sensitive taxa in sample unit	5	10	17.65	5.26	
Dominant CoC in sample unit	3.5	3.5	3.5	3.5	

Native Score ((x-62.5)/37.5) or ((x-66.67)/25.89)=	0	0	0.151342	0
Invasive FLEPPC 1 Score (1 - (x/30))=	0	0	0.215686	0.122807
Sensitive Score (x/(27.78 or 20)) =	0.25	0.5	0.882353	0.263158
Dominant CoC Score (x/(7.91 or 7)) =	0.5	0.5	0.5	0.5
Raw Score Total = N+I+S+D =	0.75	1	1.749381	0.885965
Division Factor = (3 D=0 or 4) =	4	4	4	4
Average LVI dividend = Raw /DF	0.1875	0.25	0.437345	0.221491
South				
LVI Score for sampling unit =	18.75	25	43.73452	22.14912

Total LVI SCORE =

Water Quality Assessment

Limited long-term water quality data is available for Chapman Lake. The available data was collected by USGS, SWFWMD, FDEP, Hillsborough County and University of Florida LAKEWATCH program (1992-2017), however this dataset is incomplete with recent years having sparse data. There were no samples available for 2018 and 2019. Table 4 provides a summary of the Physical/Chemical conditions recorded at the middle of the Chapman Lake.

Depth (m)	Temp °C	рН	DO (mg/L)	DO (%sat)	Cond (unho/cm)	Salinity (ppt)	Secchi Depth (m)
0.13	31.6	8.69	10	134.6	356.9	0.17	0.73
0.73	30.53	8.58	9.45	124.9	355.7	0.17	
1.37	30.3	8.13	8.19	107.9	356.3	0.17	
Period of Record	24.8	7.33	5.79	69.75	272.3	0.09	1.41

Table 4: Chapman Lake Water Quality (Field)

The chemical water quality analysis for Chapman Lake is shown in Table 5 for the sample taken on June 1, 2020. Table 6 includes this data in the numeric nutrient criteria framework using the data from this assessment as well as the available LAKEWATCH geometric mean values for the period of record since complete data for the past three years for required parameters are not available. Based on available data, Chapman Lake would be classified as a colored alkaline lake with a color value > 40 PCU and an Alkalinity value > 20 mg/L (alternatively a conductivity > 100 μ mho/cm).

Total Phosphorous values were equal with the nutrient threshold for clear alkaline lakes in the west central region with insufficient data developed by FDEP of 0.05 mg/l with a value of 0.05 mg/l for the 2020 samples and below the threshold for the period of record with a value of 0.035 mg/l. If sampling were to be sufficient (previous three years of quarterly sampling) the threshold could be as high as 0.16 mg/L, which would potentially change the impairment classification based on Total Phosphorous.

Total Nitrogen values were below the nutrient threshold for colored alkaline lakes with insufficient data developed by FDEP of 1.27 mg/l with a value of 1.065 mg/l for the POR data. The Total Nitrogen value for the 2020 data was 1.124 mg/l. If sampling were to be sufficient (previous three years of quarterly sampling) the threshold could be as high as 2.23 mg/L, which would potentially change the impairment classification based on Total Nitrogen.

Chlorophyll-a corrected values are below the nutrient threshold for clear alkaline lakes developed by FDEP of 20.0 μ g/l with a value of 16.9 μ g/l for the period of record and below the threshold (16.2 μ g/l) for the 2020 data.

Bacteria testing showed low levels of E. Coli (1.6 colonies/100ml) and Enterococci (10.7 colonies/100ml) below the rules set forth in FDEP 62-302.530

(https://www.flrules.org/gateway/RuleNo.asp?title=SURFACE%2oWATER%2oQUALITY%2oSTANDARDS&ID=62-302.500) "Most Probable Number (MPN) or Membrane Filter (MF) counts shall not exceed a monthly average of 200, nor exceed 400 in 10% of the samples, nor exceed 800 on any one day. Monthly averages shall be expressed as geometric means based on a minimum of 10 samples taken over a 30 day period."

Table 5: Chapman Lake Water Quality Results from 6/1/2020 (Laboratory)

Parameter	Chapman Lake (Center)	POR Mean Value	Units
Alkalinity		50.2	mg/LCaCO3
E Coli	1.6		#/100ml
Nitrates/Nitrites			mg/L
Enterococci	10.7	22.3	#/100 ml
Chlorophyll a	20.1	10.4	ug/L
Chlorophyll b	1.3	1.4	ug/L
Chlorophyll c	1.7	1.2	ug/L
Chlorophyll t	21.2		ug/L
Chlorophylla Corr	16.9	16.18	ug/L
Chlorophyll-pheo	4.0		ug/L
Ammonia	0.063*	0.014	mg/L (* denotes MDL)
Kjeldahl Nitrogen	1.124	1.113	mg/L
Total Nitrogen	1.124	1.065	mg/L
Total Phosphorus	0.050*	0.035	mg/L (* denotes MDL)
Color(345)F.45		43.9	Pt/Co

Table 6: Numeric Nutrient Criteria Framework

Parameter	Value
Geometric Mean (Geomean) Color (pcu)	43.9
Number of Samples	49
Geometric Mean Alkalinity (mg/L CACO ₃)	50.2
Number of Samples	35
Lake Type	Colored
Chlorophyll a Criteria (ug/L)	20
Insufficient for Geomean Criteria then P mg/L	0.05
Insuffcient for Geomean Criteria then N mg/L	1.27
Geomean Chla Corrected ug/L	16.9
Geomean TP mg/L	0.05
Geomean TN mg/L	1.124
Number of Samples	4
Potential Impaired Chlorophyll a	Not Impaired
Potential Impaired TP	Not Impaired
Potential Impaired TN	Not Impaired

Conclusion

The results of the assessment of Chapman Lake shows a healthy lake based on Total Nitrogen and Total Phosphorous concentrations according to the FDEP numeric nutrient criteria using the 2020 samples taken during this assessment and limited long term water quality record. The sampling data was insufficient to calculate proper FDEP Numeric Nutrient Criteria values. Consistent Long term sampling would be necessary to determine actual NNC values with a minimum of three samples per year for the previous three years. The most recent year of data for Total Phosphorous is equal to the nutrient threshold, however this is also the minimum detection limit of the method for Total Phosphorous used by the Hillsborough County Public Utilities Lab. The Chlorophyll-a corrected and Total Nitrogen values were below the impairment thresholds. Chapman Lake showed impairment in the vegetation communities according to the Lake Vegetation Index with low overall species (31), high occurrences of non-native, invasive species (10) and few sensitive plant species with an overall LVI score of 27, below the threshold of 43. The assessment also revealed some submerged aquatic vegetation community comprising 3 species and potentially occupying 30.9% of the surface area and 2.13% of the volume of Chapman Lake, although this value is skewed by the abundance of young *Nuphar* growing along the bottom of Chapman Lake.