

Biological Assessments of

River Oaks Wastewater Treatment Plant and Northwest Regional Wastewater Treatment Plant

Hillsborough County
NPDES #FL0027821 (RO) and #FL0041670 (NW)
March 1996

July 1996

Biology Section Division of Administrative and Technical Services

Department of Environmental Protection Results of Fifth Year Inspections

Discharger: River Oaks and Northwest Regional WWTPs

County: Hillsborough

NPDES Number: FL0027821(RO) and FL0041670 (NW)

State Permit Expiration Date: 30 December 1996

Toxics Sampling Inspection (XSI)

Date Sampled: 4 March 1996

Results: Diazinon (0.094 μ g/L) was found in the Northwest Regional effluent at a concentration which is cause for concern, since levels of 0.1 μ g/L are acutely toxic to the midge, *Chironomus* sp. The metals detected in both effluents were within Class III water quality standards.

Compliance Biomonitoring Inspection (CBI)

Date Sampled: 4 March 1996

Results: Effluent samples from the River Oaks WWTP and the Northwest Regional WWTP were not acutely toxic to the invertebrate, Ceriodaphnia dubia, or to the fish, Cyprinella leedsi.

Impact Bioassessment Inspection (IBI)

Date Sampled: 4 March 1996

Results: Benthic macroinvertebrate communities were healthy at the reference site and at test site 1 (near the River Oaks discharge), but degraded at test site 2 (near the Northwest Regional discharge). The Stream Condition Index (SCI) score at the reference site (with 27 points) and at the test site 1 (with 29 points) placed these stations in the "excellent" category. The test site 2 SCI score (with 17 points) placed it into the "poor" category. Ammonia and diazinon in the Northwest Regional's effluent may have contributed to these observed effects. Phytoplankton communities in Channel A were characterized by low algal density and very low biomass (chlorophyll a ranged from 0.44 μ g/L to 0.67 μ g/L), indicating that no nuisance algal blooms were occurring. However, the decreases in taxa richness and diversity observed between the reference site and the two test sites suggest a moderate disturbance.

Water Quality Inspection (WQI)

Date Sampled: 4 March 1996

Results: Nutrients were low in the River Oaks effluent sample, and well within permit requirements, but were much higher in the Northwest Regional discharge. The total nitrogen of the Northwest Regional effluent (TKN of 4.3 mg/L plus nitrate-nitrite of 1.5 mg/L) was 5.8 mg/L, exceeding the facility's annual average total nitrogen limit of 3 mg/L. The Northwest Regional's effluent ammonia level (3.7 mg/L) was also elevated. The unionized ammonia fraction in the effluent was calculated to be 0.022 mg/L, a violation of Rule 62-302.530(3) FAC. The ammonia and nitrate-nitrite levels at test site 2 (near the Northwest Regional discharge) were higher than those found in 95% of other Florida streams. Algal growth potential (AGP) results demonstrated that there was nutrient enrichment present throughout Channel A. The AGP values at all three receiving water stations (21.5 mg dry wt/L at the reference site, 40.0 mg dry wt/L at test site 1, and 83.3 mg dry wt/L at test site 2) exceeded the 5 mg dry wt/L "problem threshold".

Introduction

Major characteristics of community structure of control and test sites.

The River Oaks Wastewater Treatment Plant and the Northwest Regional WWTP are both located in Hillsborough County, Florida, near Old Tampa Bay (see maps in Appendix). The outfalls for the two facilities are located within a mile of one another in Channel A, a channelized waterway with control structures installed for the prevention of tidal exchange. Both facilities were sampled during this study to determine their relative influences on receiving water conditions. Channel A is connected with Rocky Creek, and both channelized streams discharge through salinity barriers to Old Tampa Bay (see maps in Appendix).

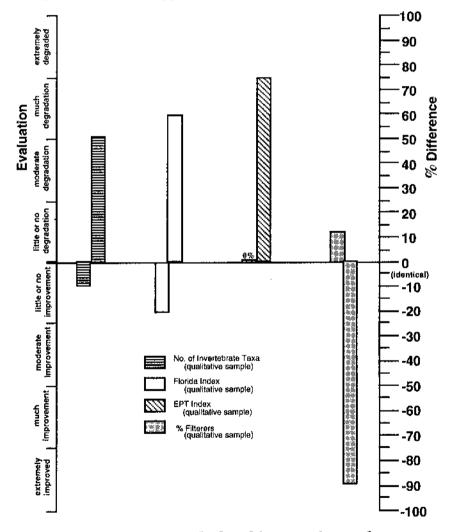
The River Oaks WWTP has a design capacity of 10 MGD, while the Northwest Regional WWTP's design capacity is 5 MGD. Three month average flow values were 7.0 MGD for River Oaks and 4.2 MGD for Northwest Regional. Both facilities are Type I Advanced Wastewater Treatment Plants. Wastewater at the River Oaks WWTP receives activated sludge treatment, with denitrification, aeration, multimedia filtration, chlorination, and de-chlorination. Treatment at the Northwest Regional WWTP consists of aeration in oxidation ditches, followed by denitrification in anoxic tanks, filtration, chlorination, and de-chlorination.

Besides flow requirements, permit limits for both advanced wastewater treatment facilities (as annual averages) are identical: BOD (5 mg/L), TSS (5 mg/L), total nitrogen (3 mg/L), total phosphorus (1 mg/L), pH (6.0 to 8.5 SU), total residual chlorine (0.01 mg/L maximum at

	Refer- ence Site	Test Site 1	Test Site 2
Macroinvertebrate Qualitative			
Number of Taxa	53	. 58	25
Florida Index	10	12	4
Stream Condition Index (SCI)	27	29	17
EPT Index	4	4	1
% Contribution of Dominant Taxon	32.9	23.8	39,0
% Oligochaeta	2.2	6.8	18.6
% Trichoptera	0.24	0	0
% Ephemeroptera	2.2	3.3	0,6
% Diptera	32.2	39.5	38.7
% Amphipoda	32.9	23.8	39.0
% Gastropoda	20.2	19.2	1.4
% Pelecypoda	4.6	1.9	0
%Other	5.5	5.5	1.7
% Predators	10.7	9.5	1.7
% Above Surface Deposit Feeders	33.7	33.1	36.4
% Below Surface Deposit Feeders	1.0	6.4	18.6
% Suspension Feeders	6.5	5.7	12.3
% Scrapers	19.2	20.5	1.7
% Shredders	25.1	22.9	21.8
% Scavenger	0.2	0	0.1
% Plant piercer	0	0	0.6
Macroinvertebrate Hester-Dendy			
Number of Taxa	53	55	
Florida Index	18	20	
Shannon-Weaver Diversity	4.39	4.34	
EPT Index	8	5	
% Oligochaeta	1.9	0	
% Diptera	61.1	64.2	
% Ephemeroptera	2.5	5.0	
% Trichoptera	0.3	0	
% Amphipoda	19.9	19.6	
% Gastropoda	10.4	9.0	
% Other	3.9	2.1	
% Predators	17.0	9.2	
% Above Surface Deposit Feeders	39.4	44.6	
% Below Surface Deposit Feeders	1,9	0	
% Suspension Feeders	11.9	13.1	
% Scrapers	11.5	11.3	
% Shredders	12.8	20.6	-
% Other	0	0.7	
Phytoplankton Algae		Ų. <i>7</i>	
Number of Taxa	29	16	13
Shannon-Weaver Diversity	4.3	2.2	2.4
Algal Density (#/mL)	840	11020	3422
Chlorophyll a (µg/L)	0.50 U	0.67	0.44 UJ
	30	1.5	0.4
% Blue-green	41.3		
% Green		2.9	1.8
% Diatoms	16.3	19.3 72.6	43.7 46.2
% Other	10.0	•	l
Algal Growth Potential (mg dry wt/l)	21.5	40.0	83.3

discharge), and fecal coliform bacteria (must be non-detectable in 75% of samples) (see Facility Summary in Appendix for details).

Monthly Operating Report data indicate the River Oaks facility has consistently met Advanced Wastewater Treatment limits. During a recent DEP inspection (June 1996) of the Northwest Regional facility, it received an "unsatisfactory" rating due to exceedances of permit limits of total nitrogen and flow, as well as for chronic toxicity in four of the last six tests. Approximately 1.7 MGD of the Northwest Regional facility's flow is currently directed to a reuse system. In December, 1994, the River Oaks facility was chronically toxic to Ceriodaphnia dubia. In June, 1995, a raw sewage spill from this plant was blamed on abnormal rainfall. A previous bioassessment (DEP 1993) determined that both chlorinated effluents were acutely toxic. and had elevated concentrations of diazinon. However, no degradation in the receiving water communities was noted at that time.


Methods

The focus of this investigation was to determine the dischargers' effects on the receiving waters. A comparison of biological community health was made between a reference site (located in Channel A, upstream of the discharge from both facilities), and two test sites. Test site 1 was located in Channel A, 35 meters "downstream" from the River Oaks facility. Test site 2 was also located in Channel A, ap-

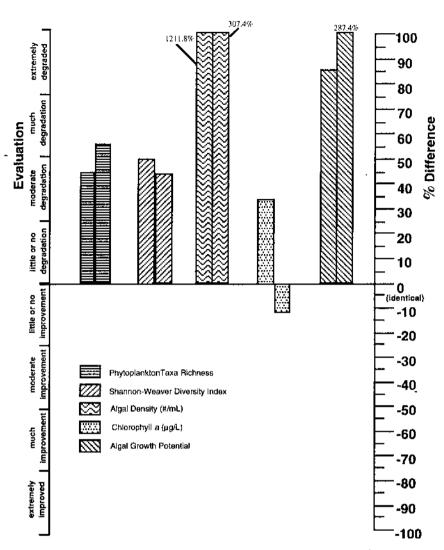
proximately one mile southwest of test site 1, 30 meters "downstream" from the Northwest Regional outfall (see maps in Appendix). The hydrology of the area is complicated by the presence of salinity control structures and by variable flow from upstream. Consequently, flow in Channel A, which is usually in a southwesterly direction, will sometimes switch to a northeasterly direction.

A habitat assessment was performed *in situ* to establish comparability between sites. Supplemen-

tal physical/chemical data were also collected on the effluent and study sites. Acute screening toxicity bioassays, using Ceriodaphnia dubia and Cyprinella leedsi as test organisms, were performed on effluent samples from both facilities (Weber 1991). The effluents were analyzed for metals and for organic constituents (base neutral and acid extractables, and pesticide extractables). Additionally, nutrient analyses were performed on both effluent samples, as well as water from the reference and test sites. Meth-

Effect of discharge on the benthic macroinvertebrate community.

The left bar for each parameter shows differences between the reference site and test site 1. The right bar shows differences between the reference site and test site 2.


ods used for all chemical analyses are on file at the Tallahassee DEP Chemistry Laboratory.

Benthic macroinvertebrate communities were evaluated at the study sites. Invertebrates were collected from multiple substrates (e.g., snags, leaf packs, vegetation) using discrete dip net sweeps. Invertebrates also were collected using Hester-Dendy multiplate samplers which were incubated for 28 days (Ross 1990). Unfortunately, Hester-Dendys were not recovered from the Northwest Regional site (test site 2). Phytoplankton was sampled at the reference and two test sites via sub-surface grab samples. Chlorophyll a was also determined for phytoplankton communities (Ross 1990). Periphyton racks were deployed at all three receiving water sites, but were not successfully recovered from the reference site. Algal Growth Potential tests, using Selenastrum capricornutum as the test organism, followed Miller et al. (1978).

Explanation of Measurements of Community Health

Several different measurements of macroinvertebrate and algal community health have been employed to determine the effects of a discharge. These are briefly discussed here.

Habitat Assessment: Seven attributes known to have potential effects on the stream biota were evaluated and scored, with 20 possible points for each factor. Based on the sum of these individual scores, overall habitat quality is assigned to one of four categories: Optimal (105-140 points); Subop-

Effect of discharge on the algal community.

The left bar for each parameter shows differences between the reference site and test site 1. The right bar shows differences between the reference site and test site 2.

timal (70-104 points); Marginal (35-69 points); and Poor (0-34 points).

Taxa richness: Stress tends to reduce the number of different types of organisms present in a system, although moderate nutrient enrichment may sometimes be correlated with increased algal taxa richness.

Shannon-Weaver diversity: This index is specified in the Florida Administrative Code as a measure of biological integrity. Low diversity scores are undesirable. They represent conditions where only a few organisms are abundant, to the exclusion of other taxa. Excessive numerical dominance of a single type of organism (a high % contribution of the dominant taxon) is a related measure which is also associated with disturbance.

Numbers of pollution sensitive taxa: Some organisms become rare or absent as the intensity or duration of disturbance increases. For example, the Florida Index assigns points to stream-dwelling macroinvertebrates based on their sensitivity to pollution (see Ross 1990). A site with a high Florida Index score is considered healthy. Species sensitivity data from other sources, such as Hudson *et al.* (1990), Lenat (1993), Chang *et al.* (1992), and Whitmore (1989), are used as appropriate.

Ephemeroptera/Plecoptera/Trichoptera Index: This index is the sum of the number of EPT taxa present. Higher EPT values are associated with healthier systems.

Community structure: Substantial shifts in proportions of major groups of organisms, compared to reference conditions, may indicate degradation. In marine systems, an increase in the % tubificid oligochaetes, a decrease in the % pelecypods, and a decrease in the number of polychaete taxa are all considered indicators of disturbance (Engel et al. 1994).

Algal biomass: High algal biomass (algal density or chlorophyll a) implies nutrient stress. A decreased diatom to blue-green algae ratio (calculated by dividing the number of individuals in the Bacillariophyta by the number of individuals in the Bacillariophyta + Cyanophyta) is often indicative of nutrient enriched conditions in flowing streams.

Trophic composition/feeding guilds: Disturbance can shift the feeding strategies of invertebrates. In Florida for example, pollution may be responsible for reducing the numbers of filter-feeders (FDEP 1994) and shredders (EA Engineering 1994).

The Stream condition Index for Florida (SCI) is a composite macro-invertebrate metric (Barbour *et al.* 1996). The SCI assigns points to a variety of parameters, depending on how closely each parameter approaches an expected reference

condition (see SCI calculation table in Appendix).

For graphical purposes, the percent differences between the reference and test sites involving the number of taxa, the diversity index, the Florida Index, the EPT Index, the diatom to blue-green algae ratio, and the % filter-feeders are measured as the reference site minus test site divided by the reference site. The percent differences between sites involving algal density, chlorophyll a, and algal growth potential are measured as the test site minus reference site divided by the reference site.

The following personnel were involved in this investigation: Lisa Carter and Andrea Grainger (DEP Southwest District) and Lyn Burton-Hupp, Russel Frydenborg, Joy Jackson, Kathleen Lurding, Elizabeth Miller, Urania Quintana, Bart Richard, Todd Space, and Lisa Tamburello (Tallahassee Biology Laboratory). The report was reviewed by the Point Source Studies Review Committee, consisting of Wayne Magley, Jan Mandrup-Poulsen, and Michael Tanski, as well as District representatives.

Results and Discussion

As might be expected from a man-made canal system, habitat quality was similarly depressed at all three receiving water sites, with habitat scores of 29 at the reference site, 38 at test site 1, and 28 at test site 2 (Appendix). All three sites received low scores for water velocity, degree of artificial channelization, silt deposition, bank stability,

and riparian buffer zone width. Viable in-stream substrates consisted of submerged and emergent macrophytes, predominantly Nuphar sp. (spatterdock), Ruppia maratima (widgeon grass), Myriophyllum sp. (water milfoil), Salvinia rotundifolia (water spangles), and Lemna sp. (duckweed). Periphyton, another potential habitat, was commonly observed growing upon submerged surfaces.

The pH at the study sites (7.3) SU at the reference site and at test site 1, 7.4 SU at test site 2) was near neutral. Specific conductance increased from 283 umhos/cm at the reference site to 585 µmhos/cm at test site 1, and to 724 µmhos/cm at test site 2. The increased conductivity at test site 2 coincided with the elevated specific conductance of the Northwest Regional facility's effluent, which was 810 µmhos/cm. Dissolved oxygen was adequate to support aquatic life at all three sites, ranging from 8.5 mg/L at the reference site to 7.1 mg/L at test site 2. Water temperature ranged from 18.4° C at the reference site to 20.1° C at test site 2.

Effluent samples from the River Oaks Wastewater Treatment Plant and the Northwest Regional WWTP were not acutely toxic to the invertebrate, Ceriodaphnia dubia, or to the fish, Cyprinella leedsi (Appendix).

Diazinon (0.094 μg/L) was found in the Northwest Regional effluent at a concentration which is cause for concern, since levels of 0.1 μg/L are acutely toxic to the midge, *Chironomus* sp. (AQUIRE 1991). Atrazine was detected in the Northwest Regional effluent (at 0.32 μg/L) and in the River Oaks effluent (at 0.15 μg/L).

These concentrations of atrazine were below chronically toxic levels.

The metals aluminum (106 μ g/L), iron (26 μ g/L), and zinc (24 μ g/L) were found in the River Oaks effluent. Iron (52 μ g/L) and zinc (24 μ g/L) were detected in the Northwest Regional effluent sample. All of these values complied with Class III water quality standards,

Nutrients were very low in the River Oaks effluent sample, and well within the permit requirements (see Chemistry Summary Table in Appendix). Consequently, only minor increases in nutrient concentrations were observed between the reference site and test site 1, except for nitrate-nitrite, which increased from 0.2 mg/L to 0.46 mg/L. At the time of sampling, only 0.072 mg/L of nitrate-nitrite was found in the River Oaks effluent, suggesting that it was not responsible for the increase. Other nearby agricultural activities observed during sampling (dairy farming, etc.) may have also contributed nitrate-nitrite to the system.

Nutrient concentrations were much higher in the Northwest Regional discharge than they were in the River Oaks sample. The total nitrogen of the Northwest Regional effluent (TKN of 4.3 mg/ L plus nitrate-nitrite of 1.5 mg/L) was 5.8 mg/L. This exceeded the facility's annual average total nitrogen limit of 3 mg/L. The effluent ammonia level (3.7 mg/L) was also elevated. The unionized ammonia fraction in the effluent was calculated to be 0.022 mg/L, a violation of Rule 62-302.530(3) FAC. Receiving water nutrient levels at test site 2 were elevated when compared with those of test site

1, indicating the influence of the Northwest Regional facility's discharge on Channel A. Total phosphorus increased from 0.15 mg/L at test site 1 to 0. 27 mg/L at test site 2. Comparing these same two stations, ammonia increased from 0.20 mg/L to 0.85 mg/L, nitratenitrite increased from 0.46 mg/L to 1.1 mg/L, and TKN rose from 0.81 mg/L to 1.8 mg/L. The ammonia and nitrate-nitrite levels at the Northwest Regional test site (test site 2) were higher than those found in 95% of other Florida streams.

Algal growth potential (AGP) results demonstrated there was nutrient enrichment present throughout Channel A. The AGP values at all three receiving water stations (21.5 mg dry wt/L at the reference site, 40.0 mg dry wt/ L at test site 1, and 83.3 mg dry wt/L at test site 2) exceeded the 5 mg dry wt/L "problem threshold" (Raschke and Schultz 1987). Interestingly, the River Oaks effluent AGP (11.0 mg dry wt/L) was lower than those observed in all three receiving water stations. It appeared that the Northwest Regional WWTP, with an AGP of 60.8 mg dry wt/L, contributed to the elevated AGP at test site 2, although the potentially toxic unionized ammonia present in the effluent may have actually inhibited algal growth in the sample.

Benthic macroinvertebrate communities appeared to be healthy at the reference site and at test site 1 (near the River Oaks discharge), but degraded at test site 2 (near the Northwest Regional discharge). The Figure on p. 2 indicates the degree of difference between the reference and test sites. The left-hand bar represents the reference site compared

to the River Oaks test site (test site 1) and the right-hand bar represents the comparison between the reference site and the Northwest Regional test site (test site 2). Larger differences (that is, higher percentages) correspond with greater degrees of degradation. Negative values mean the test site is better than the reference site. The relative abundance of each individual taxon appears in the Appendix.

Based upon dip net collections, taxa richness was very good at the reference site (with 53 taxa) and at test site 1 (with 58 taxa). but reduced at test site 2 (with 25 taxa). The Florida Index was normal for a Peninsular stream at the reference site (with 10 Florida Index points), increasing to 12 points at test site 1. Again, the Florida Index at test site 2 (with only 4 points) decreased to a level associated with impaired conditions. The EPT Index at the reference site (4 EPT taxa) and test site 1 (also with 4 EPT taxa) met regional expectations. The test site 2 EPT Index (with only 1 EPT taxon) was indicative of impairment. The amphipod, Hyallela azteca, was the dominant organism at all three stations, accounting for 32.9% of the total population at the reference site, 23.8% of the total community at test site 1, and 39% of the test site 2 population. Hyallela azteca is very common in Peninsular systems with slow water velocity, and can occur in a variety of water quality conditions, including situations with nutrient and organic enrichment.

The Stream Condition Index (SCI) score at the reference site (with 27 SCI points) and at test site 1 (with 29 SCI points) placed

these stations in the "excellent" category. The test site 2 SCI score (with 17 points) placed it into the "poor" category (see SCI calculation sheets in Appendix). The SCI results confirm the previously noted community impairment, showing test site 2 to be adversely affected by the discharge, compared to the reference site or to test site 1. Effluent ammonia, diazinon, and chronic toxicity probably contributed to these observed effects.

Hester-Dendy samplers were recovered from the reference site and from test site 1, but were lost at test site 2. The Hester-Dendy results at the two stations successfully sampled were consistent with those using the 20 dip net sweep method. Again, taxa richness (from 53 taxa at the reference site to 55 taxa at test site 1), Florida Index (ranging from 18 to 20 points), and the EPT Index scores (with 8 at the reference site and 5 at test site 1) were indicative of good water quality. Shannon-Weaver diversity (4.4 at the reference site and 4.3 at test site 1) was excellent.

Phytoplankton communities in Channel A were characterized by low algal density (ranging from 840 organisms/mL at the reference site to 11,020 organisms/mL at test site 1) and very low biomass (chlorophyll a ranged from $0.44 \mu g/L$ to $0.67 \mu g/L$). While 29 phytoplankton taxa were collected at the reference site, 16 taxa were represented at test site 1, and 13 taxa were found at test site 2 (see taxa list in Appendix). Most of the taxa which were found at the reference site but not the test sites were cyanophytes or euglenophytes. While the reference site was dominated by chlorophytes (41.3% of the total population),

cryptophytes were most abundant at test site 1 (72.6%) and test site 2 (46.2%). Diversity was highest at the reference site (4.3), decreasing to 2.2 at test site 1 and 2.4 at test site 2. The density and chlorophyll a values at the test sites indicated no nuisance blooms of phytoplankton were occurring. However, the decreases in taxa richness and diversity observed between the reference site and the two test sites suggest a moderate disturbance.

Conclusions

Effluent samples from the River Oaks Wastewater Treatment Plant and the Northwest Regional WWTP were not acutely toxic to the invertebrate, Ceriodaphnia dubia, or to the fish, Cyprinella leedsi.

Diazinon (0.094 µg/L) was found in the Northwest Regional effluent at a concentration which is cause for concern, since levels of 0.1 µg/L are acutely toxic to the midge, *Chironomus* sp. (AQUIRE 1991).

The metals detected in both effluents were within Class III water quality standards.

Nutrients were low in the River Oaks effluent sample, well within permit requirements, but were much higher in the Northwest Regional discharge. The total nitrogen of the Northwest Regional effluent (TKN of 4.3 mg/L) plus nitrate-nitrite of 1.5 mg/L) was 5.8 mg/L, exceeding the facility's annual average total nitrogen limit of 3 mg/L. The Northwest

Regional's effluent ammonia level (3.7 mg/L) was also elevated. The unionized ammonia fraction in the effluent was calculated to be 0.022 mg/L, a violation of Rule 62-302.530(3) FAC. The ammonia and nitrate-nitrite levels at test site 2 (near the Northwest Regional discharge) were higher than those found in 95% of other Florida streams.

Algal growth potential (AGP) results demonstrated that there was nutrient enrichment present throughout Channel A. The AGP values at all three receiving water stations (21.5 mg dry wt/L at the reference site, 40.0 mg dry wt/L at test site 1, and 83.3 mg dry wt/L at test site 2) exceeded the 5 mg dry wt/L "problem threshold".

Benthic macroinvertebrate communities were healthy at the reference site and at test site 1 (near the River Oaks discharge), but degraded at test site 2 (near the Northwest Regional discharge). The Stream Condition Index (SCI) score at the reference site (with 27 points) and at test site 1 (with 29 points) placed these stations in the "excellent" category. The test site 2 SCI score (with 17 points) placed it into the "poor" category. Ammonia and diazinon in the Northwest Regional's effluent may have contributed to these observed effects.

Phytoplankton communities in Channel A were characterized by low algal density and very low biomass (chlorophyll a ranged from 0.44 μ g/L to 0.67 μ g/L), indicating that no nuisance algal blooms were occurring. However, the decreases in taxa richness and diversity observed between the reference site and the two test sites suggest a moderate disturbance.

Literature Cited

- Aquatic Toxicity Information Retrieval Data Base (AQUIRE). 1991. U.S. EPA Environmental Research Laboratory, Duluth, Mn.
- Barbour, M. T., J. Gerritsen, and J. S. White. 1996. Development of the Stream Condition Index for Florida. Prepared for the Fla. Dept. Environ. Protection. 105 p.
- Chang, S., F. W. Steimle, R. N. Reid, S. A. Fromm,
 V. S. Zdanowicz, and R. A. Pikanowski. 1992.
 Association of benthic macrofauna with habitat types and quality in the New York Bight.
 Mar. Ecol. Prog. Ser. 89: 237-251.
- EA Engineering, Science, and Technology and Tetra Tech, Inc. 1994. Bioassessment for the nonpoint source program (draft). Prepared for the Fla. Dept. Environ. Protection. Unpaginated.
- FDEP. 1994. Lake bioassessments for the determination of nonpoint source impairment in Florida. Fla. Dept. Environ. Prot. Biology Section, Tallahassee, Fla. 73 p.

- Hudson, P. L., D. R. Lenat, B. A. Caldwell, and D. Smith. 1990. Chironomidae of the Southeastern United States: A checklist of species and notes on biology, distribution, and habitat. U. S. Fish Wildl. Serv., Fish. Wildl. Res. 7. 46 pp.
- Lenat, D. R. 1993. A biotic index for the southeastern United States: derivation and list of tolerance values, with criteria for assigning water-quality ratings. J. N. Am. Benthol. Soc. 12(3): 270-290.
- Miller, W. E., T. E. Maloney, and J. C. Greene. 1978. The Selenastrum capricornutum Printz algal assay bottle test. U. S. Environ. Prot. Agency, EPA-600/9-78-018. 126 p.
- Raschke, R. L. and D. A. Schultz. 1987. The use of the algal growth potential test for data assessment. J. Wat. Poll. Cont. Fed. 59(4): 222-227.
- Ross, L. T. 1990. Methods for aquatic biology. Fla. Dept. Environ. Reg. Tech. Ser. 10(1): 1-47.
- Weber, C. I. 1991. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. 4th edition. EPA/600/4-90/027. U. S. EPA, Cincinnati, Ohio. 216 pp.
- Whitmore, T. J. 1989. Florida diatom assemblages as indicators of trophic state and pH. Limnol. Oceanogr. 34(5): 882-895.

Chemistry summary table for River Oaks WWTP and Northwest Regional WWTP	River Oaks Effluent	Northwest Regional Effluent	Reference Site	Test Site 1 (River Oaks)	Test Site 2 (Northwest Regional)
Organic Constituents (ug/L)					
Atrazine	0.15 I	0.32			
Diazinon	•	0.094 T			
Metals (ug/L)					
Aluminum	106 I	100 U			· · · · · · · · · · · · · · · · · · ·
Arsenic	10 U	10 U	•		
Cadmium	0.08 U	0.08 U	•	:	•
Calcium	70.0 A	64.1	:		
Copper	3 U	3 U			•
Chromium	10 U	10 U			•
Iron	26 A	52		,	•
Lead	10 U	10 U	! :		
Magnesium	5.79 A	4.01			
Mercury	0.10 U	0.01 U	-	!	
Nickel	4 U	4 U	-	-	
Selenium	30 U	30 U		-	
Silver	0.05 U	0.05 U		:	
Zinc	24 A	24		;	
Nutrients (mg/L)					
Ortho-phosphate	0.11 A	0.57	0.072 A	0,10 A	0.20 A
Total phosphorus	0.16 A	0.65	0.096	0.15	0.27
Ammonia	0.041 A	3.7	0.19	0.20 A	0.85 A
Unionized Ammonia	i I	0,022			
Nitrate+Nitrite	0.0721	1.5 A	0.20	0.46	1.1
TKN	0.85 A	4.3	0.77	0.81	1.8
General Phys-Chem Parameters					
Habitat Assessment	!	İ	29	38	28
Dissolved Oxygen (mg/L)	6.7	8.7	8.5	7.6	7.1
pH (SU)	7.4	7.0	7.3	7.3	7.4
Specific Conductance (µmhos/cm)	269	810	283	585	724
Temperature (°C)	23.0	21.9	18.4	19.7	20.1
Algal Growth Potential (mg dry wt/L)	11.0	60.8	21.5	40.0	83.3
Toxicity	· · · · · · · · · · · · · · · · · · ·				
Bioassay Fish	Not toxic	Not toxic			
Bioassay Invertebrate	Not toxic	Not toxic			

A - Value reported is the mean of two or more determinations

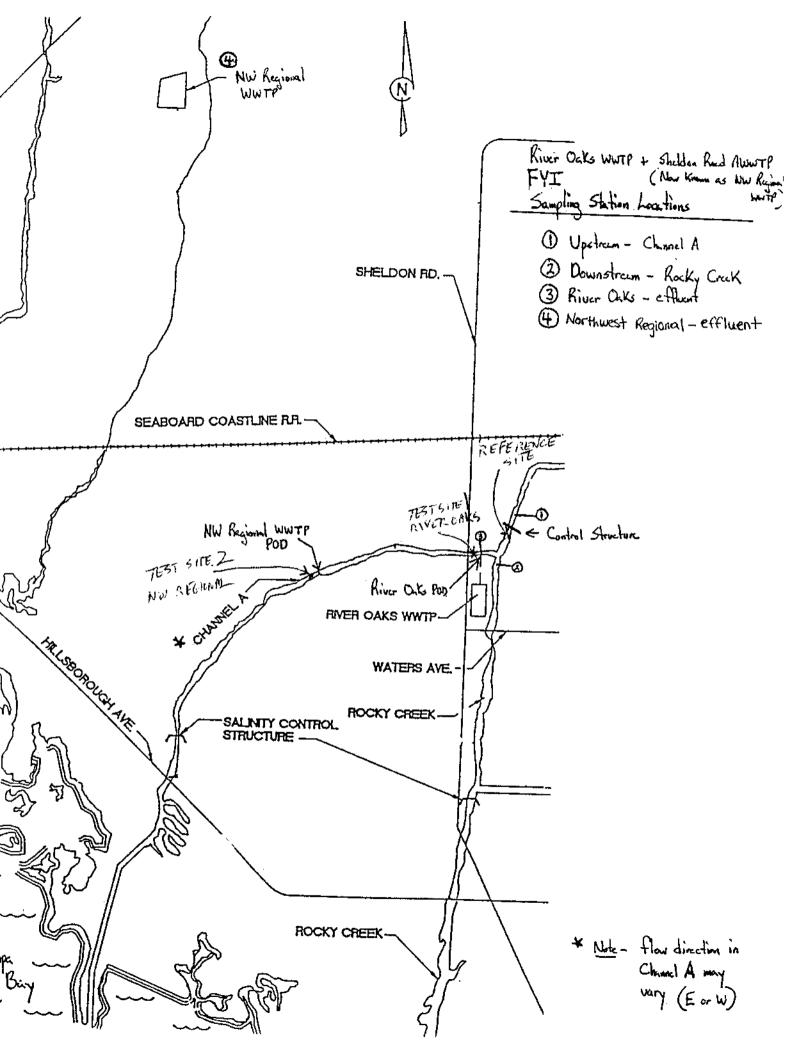
I - Value reported is less than the minimum quantitation limit, and greater than or equal to the minimum detection limit

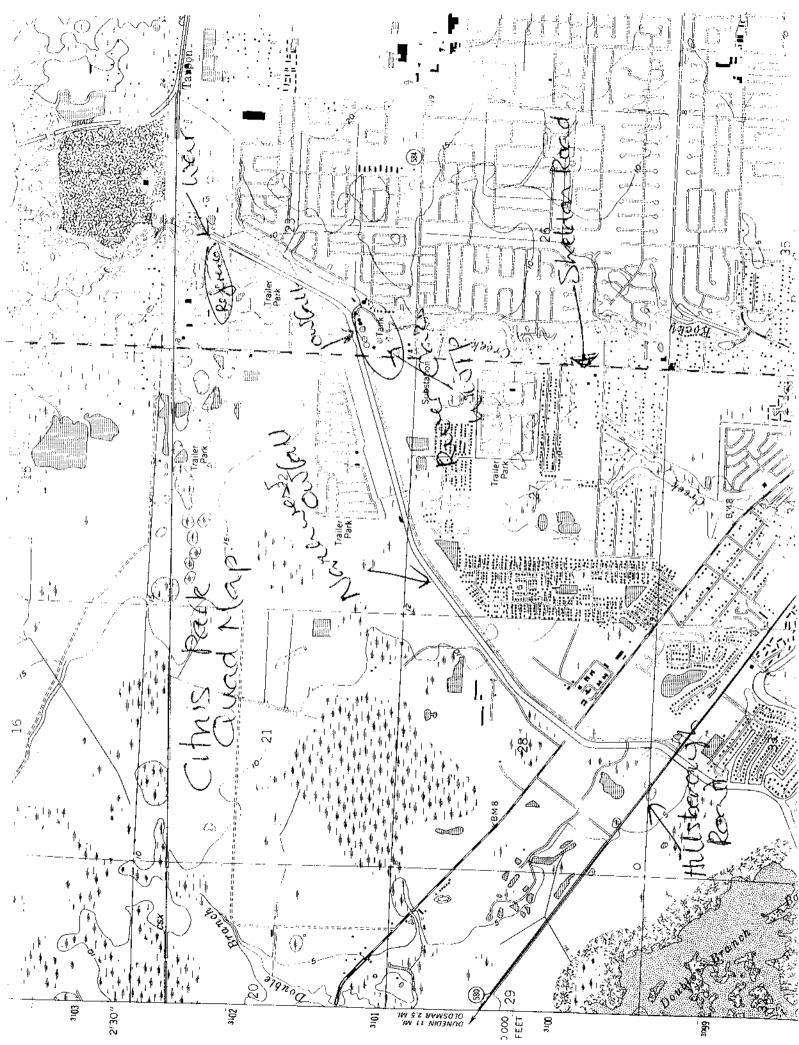
J - Estimated value

T - Value reported is less than the criterion of detection

U - Material analyzed for but not detected; value reported is the minimum detection limit

Typical Values for Selected Parameters in Florida Waters


Adapted from Joe Hand, FDER, personal communication, 1991 (data was collected between 1980 and 1989)


Percentile Distribution

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I D .	F 201	100		_	1000			HOM	0.00	0.00	0.7.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	5 %	10%	20%	30%	40%	50%	60%	70%	80%	90%	95%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
Chlorophyll a	Chlorophyll a	0.22	0.52	0.94	1.60	3.02	4.63	6.72	9.87	14.68	27.35	48.70
H-D Diversity Qualitative Taxa Richness Qualitative Taxa Richness G.00 12.00 17.00 20.00 22.00 24.50 26.00 28.00 31.00 37.00 53.00 H-D Taxa Richness G.00 G.50 9.00 11.50 13.00 15.00 17.00 21.50 26.00 29.00 32.00 TKN Qualitative Taxa Q.02 0.02 0.04 0.05 0.06 0.06 0.06 0.11 1.26 1.49 1.93 2.50 2.00												
Qualitative Taxa Richness 9.00 12.00 17.00 20.00 22.00 24.50 26.00 28.00 31.00 37.00 53.00 H-D Taxa Richness 6.00 6.50 9.00 11.50 13.00 15.00 17.00 21.50 26.00 29.00 32.00 TKN 0.30 0.39 0.56 0.73 0.87 1.00 1.11 1.26 1.49 1.93 2.80 NO2-NO3 0.01 0.01 0.03 0.05 0.07 0.10 0.14 0.20 0.34 0.60 NO2-NO3 0.01 0.01 0.03 0.05 0.06 0.08 0.11 0.14 0.20 0.32 0.64 1.05 1.04 1.05 1.												
Richness 9.00 12.00 17.00 20.00 22.00 24.50 26.00 28.00 31.00 37.00 53.00 H-D Taxa Richness 6.00 6.50 9.00 11.50 13.00 15.00 17.00 21.50 26.00 29.00 32.00 TKN 0.30 0.39 0.56 0.73 0.87 1.00 1.11 1.26 1.49 1.93 2.80 Ammonia 0.02 0.02 0.04 0.05 0.06 0.08 0.11 0.14 0.20 0.34 0.60 NO2-NO3 0.01 0.01 0.03 0.05 0.06 0.08 0.11 0.14 0.20 0.34 0.60 NO2-NO3 0.02 0.03 0.05 0.06 0.10 0.13 0.18 0.25 0.39 0.74 1.51 Ortho Phosphorus 0.01 0.01 0.03 0.04 0.05 0.08 0.11 0.17 0.27 0.59 1.37 Turbidity 0.60 0.90 1.20 1.45 2.10 2.80 3.60 4.50 6.65 10.45 16.30 LAKES (477 stations)		0.84	2,12	2.48	2.74	2.88	3.09	3.25	3.40	3.52	3.76	3.90
H-D Taxa Richness 6.00 6.50 9.00 11.50 13.00 15.00 17.00 21.50 26.00 29.00 32.00 TKN 0.30 0.39 0.56 0.73 0.87 1.00 1.11 1.26 1.49 1.93 2.80 Ammonia 0.02 0.02 0.04 0.05 0.06 0.08 0.11 0.14 0.20 0.34 0.60 NO2-NO3 0.01 0.01 0.03 0.05 0.07 0.10 0.14 0.20 0.32 0.64 1.05 Total Phosphorus 0.02 0.03 0.05 0.06 0.10 0.13 0.18 0.25 0.39 0.74 1.51 0.71 0.77 0.						·						
Richness		9.00	12.00	17.00	20.00	22.00	24.50	26.00	28.00	31.00	37.00	53.00
TKN												
Ammonia	··-											
NO2-NO3	TKN					_						
Total Phosphorus												
Ortho Phosphorus	<u> </u>											
Turbidity												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									0.17			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.60	0.90	1.20	1.45	2.10	2.80	3.60	4.50	6.65	10.45	16.30
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LAKES								·-··			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(477 stations)											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Phytoplankton										` .	
Dredge Taxa Richness 3.00 5.00 6.50 7.00 9.00 10.00 11.00 13.00 15.00 17.00 21.00	Chlorophyll a					10.06					65.44	113.90
Richness 3.00 5.00 6.50 7.00 9.00 10.00 11.00 13.00 15.00 17.00 21.00 TKN 0.36 0.49 0.67 0.83 1.08 1.26 1.40 1.51 1.68 2.11 3.46 NH3+NH4 0.01 0.02 0.02 0.03 0.04 0.06 0.08 0.12 0.15 0.21 0.28 NO2-NO3 0.00 0.00 0.01 0.01 0.01 0.02 0.04 0.05 0.10 0.14 0.23 Total Phosphorus 0.01 0.02 0.03 0.05 0.07 0.09 0.11 0.14 0.23 0.42 Ortho-Phosphorus 0.00 0.01 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.21 0.32 Turbidity 1.00 1.25 1.55 2.05 2.75 4.50 6.45 9.60 14.10 26.00 40.00 ESTUARIES		0.71	0.97	1.43	1.74	1.98	2.12	2.21	2.59	2.85	3.15	3.17
TKN 0.36 0.49 0.67 0.83 1.08 1.26 1.40 1.51 1.68 2.11 3.46 NH3+NH4 0.01 0.02 0.02 0.03 0.04 0.06 0.08 0.12 0.15 0.21 0.28 NO2-NO3 0.00 0.00 0.01 0.01 0.01 0.02 0.04 0.05 0.10 0.14 0.23 Total Phosphorus 0.01 0.02 0.02 0.03 0.05 0.07 0.09 0.11 0.14 0.23 0.42 Ortho-Phosphorus 0.00 0.01 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.21 0.32 Turbidity 1.00 1.25 1.55 2.05 2.75 4.50 6.45 9.60 14.10 26.00 40.00 ESTUARIES (690 stations) 1.34 1.53 1.91 2.28 2.56 2.90 3.15 3.59 4.01 4.53 4.98												
NH3+NH4												
NO2-NO3												
Total Phosphorus 0.01 0.02 0.02 0.03 0.05 0.07 0.09 0.11 0.14 0.23 0.42 Ortho-Phosphorus 0.00 0.01 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.21 0.32 Turbidity 1.00 1.25 1.55 2.05 2.75 4.50 6.45 9.60 14.10 26.00 40.00 ESTUARIES (690 stations) 8 8 8 8 9 8 9 12.40 17.60 22.20 Phytoplankton Chlorophyll a 2.14 3.28 4.49 5.13 6.00 6.93 7.94 9.60 12.40 17.60 22.20 Dredge Diversity 1.34 1.53 1.91 2.28 2.56 2.90 3.15 3.59 4.01 4.53 4.98 Dredge Taxa Richness 4.00 6.00 9.00 11.00 15.00 18.50 25.00 35.00 41.00 62.00												
Ortho-Phosphorus 0.00 0.01 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.21 0.32 Turbidity 1.00 1.25 1.55 2.05 2.75 4.50 6.45 9.60 14.10 26.00 40.00 ESTUARIES (690 stations) Phytoplankton Chlorophyll a 2.14 3.28 4.49 5.13 6.00 6.93 7.94 9.60 12.40 17.60 22.20 Dredge Diversity 1.34 1.53 1.91 2.28 2.56 2.90 3.15 3.59 4.01 4.53 4.98 Dredge Taxa Richness 4.00 6.00 9.00 11.00 15.00 18.50 25.00 35.00 41.00 62.00 90.00 TKN 0.26 0.34 0.42 0.50 0.59 0.69 0.76 0.82 0.95 1.30 1.49 NH3+NH4 0.01 0.02 0.03 0.04 0.05			_									
Turbidity 1.00 1.25 1.55 2.05 2.75 4.50 6.45 9.60 14.10 26.00 40.00 ESTUARIES (690 stations) Phytoplankton Chlorophyll a 2.14 3.28 4.49 5.13 6.00 6.93 7.94 9.60 12.40 17.60 22.20 Dredge Diversity 1.34 1.53 1.91 2.28 2.56 2.90 3.15 3.59 4.01 4.53 4.98 Dredge Taxa Richness 4.00 6.00 9.00 11.00 15.00 18.50 25.00 35.00 41.00 62.00 90.00 TKN 0.26 0.34 0.42 0.50 0.59 0.69 0.76 0.82 0.95 1.30 1.49 NH3+NH4 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.09 0.13 0.22 0.28 NO2-NO3 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.03 0.05 0.08 0.17 0.23 Total Phosphorus 0.01 0.02 0.06 0.07 0.10 0.11 0.14 0.17 0.23 0.43 0.59							 					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turbidity	1.00	1.25	1.55	2.05	2.75	4.50	6.45	9.60	14.10	26.00	40.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ESTUARIES								· .—			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(690 stations)											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	i									
Dredge Diversity 1.34 1.53 1.91 2.28 2.56 2.90 3.15 3.59 4.01 4.53 4.98 Dredge Taxa Richness 4.00 6.00 9.00 11.00 15.00 18.50 25.00 35.00 41.00 62.00 90.00 TKN 0.26 0.34 0.42 0.50 0.59 0.69 0.76 0.82 0.95 1.30 1.49 NH3+NH4 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.09 0.13 0.22 0.28 NO2-NO3 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.04 0.02 0.03 0.05 0.08 0.09 0.13 0.22 0.28 NO2-NO3 0.00 0.01 0.01 0.01 0.02 0.03 0.05 0.08 0.09 0.17 0.23 Total Phosphorus 0.01 0.02 0.06 0.07 0.10 0.11 0.14<		2,14	3.28	4.49	5.13	6.00	6.93	7.94	9.60	12.40	17.60	22.20
Dredge Taxa 4.00 6.00 9.00 11.00 15.00 18.50 25.00 35.00 41.00 62.00 90.00 TKN 0.26 0.34 0.42 0.50 0.59 0.69 0.76 0.82 0.95 1.30 1.49 NH3+NH4 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.09 0.13 0.22 0.28 NO2-NO3 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.05 0.03 0.05 0.08 0.17 0.23 Total Phosphorus 0.01 0.02 0.07 0.10 0.11 0.14 0.17 0.23 0.43 0.59												
Richness 4.00 6.00 9.00 11.00 15.00 18.50 25.00 35.00 41.00 62.00 90.00 TKN 0.26 0.34 0.42 0.50 0.59 0.69 0.76 0.82 0.95 1.30 1.49 NH3+NH4 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.09 0.13 0.22 0.28 NO2-NO3 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.05 0.08 0.07 0.08 0.17 0.23 0.43 0.59 Total Phosphorus 0.01 0.02 0.07 0.10 0.11 0.14 0.17 0.23 0.43 0.59												
TKN 0.26 0.34 0.42 0.50 0.59 0.69 0.76 0.82 0.95 1.30 1.49 NH3+NH4 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.09 0.13 0.22 0.28 NO2-NO3 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.05 0.08 0.17 0.23 Total Phosphorus 0.01 0.02 0.07 0.10 0.11 0.14 0.17 0.23 0.43 0.59		4.00	6.00	9.00	11.00	15.00	18.50	25.00	35.00	41.00	62.00	90.00
NH3+NH4 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.09 0.13 0.22 0.28 NO2-NO3 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.05 0.08 0.17 0.23 Total Phosphorus 0.01 0.02 0.06 0.07 0.10 0.11 0.14 0.17 0.23 0.43 0.59	TKN		0.34	0.42	0.50	0.59		0.76	0.82	0.95	1.30	1.49
NO2-NO3 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.05 0.08 0.17 0.23 Total Phosphorus 0.01 0.02 0.06 0.07 0.10 0.11 0.14 0.17 0.23 0.43 0.59		$\overline{}$				0.05	0.06	0.08	0.09	0.13	0.22	0.28
Total Phosphorus 0.01 0.02 0.06 0.07 0.10 0.11 0.14 0.17 0.23 0.43 0.59		\longrightarrow				·····						
		\rightarrow										
Α ΕΣΙΜΙΟΣΙΙΜΟΝΙΙΜΙΚΟ ΙΙΝΟΣΙΙ ΜΟΣΙΙ ΜΟΣΙ	Ortho-Phosphorus	0.01	0.02	0.03	0.04	0.04	0.05	0.07	0.09	0.12	0.21	0.44
Turbidity 3.50 4.00 4.50 5.05 5.40 5.60 6.30 6.80 8.00 11.40 11.75												

Units:

Phytoplankton Chlorophyll a (ug/L), Periphyton Chlorophyll a (mg/m²), Nutrients (mg/L), Turbidity (NTU), Taxa richness and diversity values are for macroinvertebrates

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION FACILITY SUMMARY

F		т						
Facility Name:	Jacks WOTP	Date Summary	Prepared: 3/1/96					
Location (attach detailed ma			District					
See map inche	· · ·	igh	Socialist					
Federal Permit # F1 002	7821 State GMS # and N	T 24+24480S	Facility Type: Industrial					
and expiration date:	State expiration dat	e:	Municipal Federal Agricultural					
5/31/40	1.2.	130/96	Other (list):					
Function of facility: A	type I Advan	iced Wasi	e water					
Tre	either plant.							
and expiration date: State expiration date: Municipal Federal Agricultural Other (list): Function of facility: A type I Advanced Waste water Treatment plant. Description of treatment process: Acrivaco shape with Dentrification and multimedia Fitters.								
The eff	"luent is rea	evalued,	undergoes					
high-lie	ed alisinfection	cind s	celum					
The effluent is renevated, under goes high-level disinfection and Sadum besulphete dechlorinated								
1								
			<u>.</u>					
Receiving waters: Chana	MA to 1	Classification:	1 li (îi)					
Design Flow:	Moon Flow	1367	Flow during survey:					
Design Flow: 10	3/10/11/DF 7.0							
Discharge is: Continuous) Intermittent Seasonal	Rainfall depende	nt					
Other (describe)	ummlo ios							
therefore, the best time to sa	ample is:							
If facility has a mixing zone,	give details (size, parameters	s affected, etc.):						
No mix	cing zono							
	J							
		· · · · · · · · · · · · · · · · · · ·						
List effluent limits (if necessa	ary, attach relevant paperwo	· · ·	cial permit conditions					
Parameter	Limit (units)	A ble	s beopy of the					
Flow	10 mgd	effice	obcopy of the w limitations is led in this submitted					
₽H.	6.00 to 8.50	includ	ed in this submitted					
CEODS	5 moll annual as	JQ P						
T55	5 mg/L annual av	M.						
TN	5 mg/L annual au 5 mg/L annual au 3 mg/L annual au 1 mg/L annual au 0.01 mg/L ** * */100 ml	3						
TP	1 mg/L annual au	Ĭ	i					
	0.01 my/L	√						
1=ecal conform	** * * /100 ml							
IDO .	5.00 ms/L		sample collected					
** Non-delea	in Mily operations to	·	sample collected					

STATE OF FLORIDA ENVIRONMENTAL REGILLATION

Page 2 01			DEPARTMENT OF
Rujer	Oaks	100577	FA
	ilitud		

Rue Cake LOTP FACILITY SI	
(Facility)	
Description of permitted outfall(s):	0 1 1
Outain 001 growty flows by pipe from &	the plant into charmel A
List permit violations (from MOR data or other source) and p	ant upsets that occurred within past
vear:	and can
· Plant consistently actions aut a	1/2 and abodrma rainfall
as me soil of RAN SKURE OCCUPY	ED 6/59/42 DOS 10 WD11
1 0.2 MED Storm 1	C dibia
. 12/94 failed chronic Toxicity TEST for	<u> </u>
1 (5)	•
Describe previous impact bioassessments, WQBEL's, and pro-	revious or current enforcement actions:
A beregical assessmen w	xis priformed by ICP
Sio District and Tallaharsee	DEP personnel on
A beregical assessment was so District and Tallaharsee samples collected in April conclusions were found:	1993. The following
conclusions were found:	I T C du Sia and
	- · ,
6) Diazinon + abasine were	5 Total to offerent
b) Diazinon + avazine were	acetical in I (100000
O Numeric were relatively	low in effluent.
declining) in the data set:	d whether there are trends (miproving)
Plant consistently meets Aut limit	ts.
Many CONSISTENTY MEETS.	
Previous Det CSI was 5/33/95 m/	The following results:
.CBOD = 2 ng/L TP = 0.17 m	5/L
755 = <1 " FECAL : < 2	
TN = 0.9 + TRC = <.01	
Additional information:	Staff contributing to this review (signature):
	Andrea Grainger (Biologist)
	Joe Skinten (Inspector)
	(Engineer)
	CEngineer)
·	()
	()

PERMITTEE:
Hillsborough County
Public Utilities Dept.
River Oaks AWWTP

GMS ID NO.: 4029C02963 PERMIT NO.: DT29-244805

SPECIFIC CONDITIONS:

- 1. Drawings, plans, documents or specifications submitted by the permittee, not attached hereto, but retained on file at the Southwest District Office, are made a part hereof.
- 2. In accordance with Chapter 17-699, F.A.C., the required certified operator on-site time is: A Class C or higher operator for 24 hours/day, and 7 days a week. The lead/chief operator must be Class A.
- 3. The disinfection system shall be operated to maintain a minimum chlorine residual of 1.0 mg/l at the outfall from the chlorine contact chamber and prior to dechlorination. A metering device for dosing chlorine to the effluent shall be utilized and the chlorine supply tank shall be inspected regularly to ensure proper operation.
- 4. The effluent shall be sampled in accordance with Chapter 17-601, F.A.C. and shall meet the following limitations:

				Sa	ambre
Parameter	Unit	Minimum	Maximum	Туре	Frequency
	•				
Permitted Capacity					
(flow)	MGD	-	10 Ann.Avg.**	**rfmt	Continuous
На	std u	n 6.00			Continuous
CBOD ₅ *	mg/l	-	5 Annual Avg.	**fpc	Daily/5 wk
Total Suspended					
Solids*	mg/l	-		**fpc	Daily/5 wk
Total Nitrogen	mg/l		3 Annual Avg.	**fpc	Daily/5 wk
Total Phosphorous	mg/l		1 Annual Avg.	**fpc	Daily/5 wk
Cl ₂	mg/1	0.01		grab	Hourly
Fecal coliform	#/100	ml ***No	n-detectable	grab	Daily/5 wk
DO	mg/l	5.00	***	*meter	Continuous

- Influent shall be monitored and reported monthly [Rule 17-601.300(1), F.A.C.]
- ** fpc flow proportional composite 24 hours
- *** Non-detectable in at least seventy-five percent (75%) of samples collected during the monthly operating period (e.g. 23 per 30 samples).
- **** rfm&t Recording flowmeter and totalizer
- ***** Hourly measurements for 24 hours may be substituted for continuous measurement.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION FACILITY SUMMARY

		· · · · · · · · · · · · · · · · · · ·	······································
Facility Name: Northu	icst Regional	Date Summary	Prepared: 3/1/96
Location (attach detailed ma	p): County		District
hocation map ince		iigh	Southwest
Federal Permit # FLCO4 16	70 State GMS # and IX	29-204300	Facility Type: Industrial
and expiration date:	State expiration dat	e: 9B0/96	(Other (list):
Function of facility: A	Tune T Accus	Comp C (CS)	usto write-
tree	Type I Actu		
Description of treatment pro-	cess: Oxidation orthics	with Devitrific	cariou through an one Tranks and
Fitterio. The for the	went how the	e follow	inf
treat mer	I high love nation, realed	& disin	Eaction
duchtag	notion Make	atron	
CAL COLLEGIA	/ /		
Receiving waters: Chan-		Classification:	ı ii (îî)
Cabbaje head Con			
Design Flow: 5,C	Moan Flow: 4.2		Flow during survey:
Discharge is: Continuous	Intermittent Seasonal	Rainfall depende	nt
Other (describe)	<i>5</i>		
therefore, the best time to sa	mple is:		
If facility has a mixing zone, o	rivo details (size, narameters	affected etc.):	
			i
N_0	mixing zon	-l	
			ļ
List effluent limits (if necessa	ry, attach relevant paperwor	k): Describe spe	cial permit conditions
Parameter	Limit (units)		odifications:
			i
See next pay copy of permi	e for photo-		
copy of permi	- offluent		
	00		
11 milation 5			

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION FACILITY SHMMARY

(Facility) FACILITY SUM	MARY
Description of permitted outfall(s): Pipe outfall to channel "A", which flows	To Rocky Crask To Tampa Bay.
List permit violations (from MOR data or other source) and plant year: - Munthing total Nithergent limit exceeds - Wickly total Nithergent limit exceeds 12/14/15, 12/17/95, 12/24/95, 4/7/96 a - Flow exceeded 5.0 mbD in December 12/12/16/16/16/16/16/16/16/16/16/16/16/16/16/	ed 12/95, 3/96, and 4/96. Id during the weeks of 19/96. A 4/14/96 EL 1995, February 1996,
Describe previous impact bioassessments, WQBEL's, and previous A biological assessment performed on this factories factories. See next summary sheet of muestigation	5m 1 10 1000
Discuss comparability of MOR results to past DER results and we declining) in the data set: $RSS + SS = SS = SS = SS = SS = SS = SS =$	rhether there are trends (improving,
additional mormation.	Iff contributing to this review (signature): ducte a Grange (Biologist) (Inspector) (Engineer)

PERMITTEE: Hillsborough County GMS ID NO.: 4029C10857
Public Utilities Dept. PERMIT NO.: D029-204300D

Northwest Regional Water Reclamation Facility

SPECIFIC CONDITIONS:

- 1. Drawings, plans, documents or specifications submitted by the permittee, not attached hereto, but retained on file at the Southwest District Office, are made a part hereof.
- 2. In accordance with Chapter 62-699, F.A.C., the required certified operator on-site time is: A Class C or higher operator for 24 hours/day, and 7 days a week. The lead/chief operator must be Class A.
- 3. The disinfection system shall be operated to maintain a minimum chlorine residual of 1.0 mg/l at the outfall from the chlorine contact chamber and prior to dechlorination. A metering device for dosing chlorine to the effluent shall be utilized and the chlorine supply tank shall be inspected regularly to ensure proper operation.
- 4. The effluent shall be sampled in accordance with Chapter 62-601, F.A.C. and shall meet the following limitations prior to discharge into Channel "A":

				S	ampie
Parameter	Unit Mi	lnimum	Maximum	Type	Frequency
Permitted Capacity					
(flow)	MGD	_	5.0 Ann.Avg.**	***rfmt	Continuous
Ηα	std un 6	5.00	8.50 ***	***meter	Continuous
CBOD ₅ *	mg/l	· -	5 Annual Avg.	**fpc	Daily/5 wk
Total Suspended					
Solids*	mg/l	0	5 Annual Avg.	**fpc	Daily/5 wk
Total Nitrogen	mg/l		3 Annual Avg.	**fpc	Daily/5 wk
Total Phosphorous	mg/l		1 Annual Avg.	**fpc	Daily/5 wk
Cl ₂	mg/l		0.01	grab	Hourly
Fecal coliform	#/100 ml	ND	25***	grab	Daily/5 wk
DO	mg/l 5	5.00		grab	Daily/7 wk

- * Influent shall be monitored and reported monthly [Rule 62-601.300(1), F.A.C.]
- ** fpc flow proportional composite 24 hours
- *** Non-detectable in at least seventy-five percent (75%) of samples collected during the monthly operating period (e.g. 23 per 30 samples).
- **** rfm&t Recording flowmeter and totalizer
- ***** Hourly measurements for 24 hours may be substituted for continuous measurement.

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET AND TO

SUBMITTING AGENCY CODE:	STORET STATION NUMBER:	TERIZATION FIELD D		
SUBMITTING AGENCY NAME:	STORES STATION NUMBER:	DATE (M/DV): TIME 3/4/96/150/S	RECEIVING BODY OF WATER:	
DELIADIO.		O 1/10/1303	Channel 1	7
REMARKS: Ichalca 100m	Ruer C	als WWTP	RCSCHUCE	Site
RIPARIAN ZONE/INSTREAM FEATURES				
Predominant Surrounding Land-Use	specily relative percent	in each category):		
Forest/Natural Silviculture Field/F	Pasture Agricultural	Residential Com	nmercial Industrial	Other (Specify
Local Watershed Erosion (check box):	None	Slight Mo	oderate Heav	<u> </u>
Local Watershed NPS Pollution (check	البيبا	Some potential		ry [汉] us sources □
Width of riparian vegetation (m) Li	st & map dominant regetation on back	Typical Width (m)/D	epth (m) /Velocity (m/sec) vide at least 3 velocity & do	Transect (draw
Artificially Channelized no		「	Tin.	H:4V
Artificially Impounded yes recent, seve	re some recovery mostly recove more sinuou	8m	/ '	•
High Water Mark (m above bed):	m	\ \	/ }	steep.
Canopy Cover %: Open: X Ligi	ntly Shaded (11-45%)	: Moderately Sha	ded (46-80%): Heav	vily Shaded:
SEDIMENT/SUBSTRATE				
Sediment Odors: Normal: X Se	wage: Petroleum	Chemical: An	aerobic: Other:	
Sediment Oils: Absent: X	Slight: Moderate			
Sediment Deposition: Studge: Sai	nd smothering: none o	moderate Severe Silt smotheri	ng none moderate Oth	ier:
1—————————————————————————————————————	times sampled meth		% coverage # times san	
Woody Debris (Snags)		Sand	65 6	Nev
Leaf Packs or Mats		Mud/Muck/Silt	25 7	1 DEF
Aquatic Vegetation	7 10		·	
Rock or Shell Rubble		Other:		
Shorezone (Roots/Veg.)		Draw aerial view s	ketch of habitats found i	n 100 m section
WATER QUALITY Depth (m): Temp. (°	C): pH (SU): D.O	(mg/l): Cond. (µmho/c or Salinity (ppl):		Secchi (m)
Тор	- 11. 25 5.			
Mid-depth				
System Type : Streem 7/1st - 2nd or	dor Eth Other			
Gystern Type : Stream: 3rd - 4th or	der 7th order or greate			
Water Odors (check box): Normal:	<u> Д</u>	Petroleum:	Chemical: Other	
Water Surface Oils (check box): None:	X Sheen:	Globs:	Slick:	
Clarity (check box): Clear:	Slightly turbid:	Turbid: -	Opaque:	
Color (check box): Tannic:	Green (algae)	Clear:	Other:	-
Weather Conditions/Notes:		Abundance:		mon Abunda
very windy no	clouds,	Periphyton Fish		4
Sonny, no		Aquatic Macroph	□ (조] [] ytes □ (조]	, <u> </u>
		Iron/sulfur Bacter	· =	
SAMPLING TEAM:		SIGNATURE:	6	DATE

FRESHWATER BENTHIC HABITAT ASSESSMENT FIELD DATA SHEET (v2)

		ATION NUMBER:	DATE (M/D/Y):		EIVING BODY OF WATER:	<u> </u>
SUBMITTING AGENCY CODE:SUBMITTING AGENCY NAME:	3.0,12,10,	ATTOTI HOMOCIA	3/4/96		Channel 1	1
REMARKS: Localed	LICOM R	MAC (Onto L		FIELD ID/NAME	rence Site
Habitat Parameter	Optimal	Su	boptimal		Marginal	Poor
Bottom Substrate/ Available Cover	decayed), undercut banks, rubble, or ot stable habitat.	ogs, tree roots, and vegetation, leaf ve		s, t.	5% to 20% snags, logs, tree roots, emergent vegetation, leaf packs, etc. Less than desirable habitat, frequently disturbed or removed.	Less than 5% snags, logs, tree roots, emergent vegetation, leaf packs, etc. Lack of habitat is obvious, substrates unstable.
Water Velocity	20 19 18 17 16 Max. observed: >0.2 m/sec. but < 2 m/sec	25 Max c 0.1 t	13 12 11 . observed; o 0.25 m/sec		Max. observed; 0.05 to 0.1 m/sec	5 4 3 2 1 Max. observed; <0.05 m/sec, or spate occurring; > 2 m/sec
Artificial Channelization	20 19 18 17 16 No artificial channelization or dredging. Stream with normal, sinuon pattern	May ha channel (>20 yra	15 14 13 12 11 May have been channelized in the past (>20 yrs), but mostly recovered, fairly good sinuous pattern		10 9 8 7 6 Channelized, somewhat recovered, but > 80% of area affected	Artificially channelized, box-cut banks, straight, instream habitat highly altered
Deposition	20 19 18 17 16 Less than 20% of habitats affected by sand or silt accumulation	20%- habit sand	13 12 11 50% of ats affected by or silt nulation	7 E	10 9 8 7 6 Smothering of 50%- 80% of habitats with sand or silt, pools shallow, frequent	5 4 3(2)1 Smothering of >80% of habitats with sand or silt, a severe problem,
- 3	20 19 1 8 17 16 Stable. No evidence	15 14	13 12 11 rately stable.	1	sediment movement 10 9 8 7 6 Moderately unstable.	pools absent 5 4 3 2 1 Unstable. Many (60%-
Bank Stability	erosion or bank fail Little potential for future problems.	ure. Infred areas mostl	quent or small of erosion, y healed over.	- 6	Moderate areas of erosion, high erosion potential during floods.	80%) raw, eroded areas. Obvious bank sloughing.
Riparian Buffer Zone Width	20 19 1 8 17 16 Width of native vegetation (least buffered side) greater than 18 m	Width vegeta buffere 18 m	13 12 11 of native tion (least ed side) 12 m t	ا ه	10 9 8 7 6 Width of native vegetation 6 to 12 m, human activities still close to system	5 4 3 2 1 Less than 6 m of native buffer zone due to intensive human activities 5 4 3 2 1
Riparian Zone Vegetation Quality	20 19 1 8 17 16 Over 80% of riparian surfaces consist of na plants, including tree understory shrubs, or non-woody macrophy Normal, expected pla community for given sunlight & habitat	50% to zone is one cla normal tes. the sur condition represe	15 14 13 12 11 50% to 80% of riparian zone is vegetated, but one class of plants normally expected for the sunlight & habitat conditions is not represented. Some disruption in		10. 9 8 7 6 25% to 50% of riparian zone is vegetated, but one or two expected classes of plants are not represented. Patches of bare soil or closely cropped vegetation,	Less than 25% of streambank surfaces are vegetated. Poor plant community (e.g. grass monoculture or exotics) present. Vegetation removed to stubble height of 2
	conditions. 20 19 1 8 17 16	commu 15_14	nity evident.		disruption obvious. 10 9 8 7 6	inches or less. 5 4 3 2 1
to be	5 points if cross-section > one square meter do				Comments	
ANALYSIS DATE: 3/4/96	TAL SCORE Andrea	Carains	SIGNATURE:		reaso	

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET (Version 5)

SUBMITTING AGENCY CODE:	STORET STATION NUMBER:	DATE (M/D/Y); TIME	22222222		
SUBMITTING AGENCY NAME:	STORE: STATION NUMBER:	3/4/96 1:30	Chahn		
in air	RIVER C	ocks with	FIELD IDNAME	+ Site 1	
RIPARIAN ZONE/INSTREAM FEATURE	\$				
Predominant Surrounding Land-Use	(specify relative percen	t in each category):			
Forest/Natural Silviculture Field/	Pasture Agricultura	Residential Co	mmercial Ind	ustrial Other (Spe	ecify)
Local Watershed Erosion (check box)	None 🗌	Slight . N	Moderate	Heavy 🔀	
Local Watershed NPS Pollution (chec	k box): No evidence	Some potenti	al sources 😾	Obvious sources	; 🔲
	ist & map dominant vegetation on back	cross-section & pr		y (m/sec) Transect (dr ocity & depth values)	
Artificially Channelized no	Term some recovery mostly recov	377	0640m-	 1H:4V	
····	rere some recovery mostly recover more sinuo	1911	, 0	7	
High Water Mark (m above bed):	<u>1m</u>	1571			
Canopy Cover %: Open: Li	ghtly Shaded (11-45%):[X] Moderately Sh	aded (46-80%):	Heavily Shaded	1:
SEDIMENT/SUBSTRATE					
4-4	ewage: Petroleun	-=	naerobic: O	ther:	
Sediment Oils: Absent: K	Slight: Moderate		nono (mod	role)	· · · · · · · · · · · · · · · · · · ·
			es % coverage #		thod
Woody Debris (Snags)	$\begin{bmatrix} 5 \\ \end{bmatrix}$	Sand Sand Mud/Muck/Silt	00%	5 No	
Leaf Packs or Mats Aquatic Vegetation	5 Ne		20%		<u> </u>
Rock or Shell Rubble		Other:			
Shorezone (Roots/Veg.)		Draw aerial view	sketch of habita	ts found in 100 m se	ection
WATER QUALITY Depth (m): Temp.	(°C): pH (SU): D.0	O. (mg/l): Cond. (μmho or Salinity (pp		Secch	—— hi (m)
Top 19-6	S 7.32	7-58 <u>585</u>			
Mid-depth					\sim
Bottom					
System Type : Stream: (1st - 2nd 3rd - 4th	order 5th - 6th order order 7th order or grea	_{iter}) Lake: Wetlan	d: Estuary: L	_ Other: ∑ <u>(an</u>	<u>ial</u>
Water Odors (check box): Norma	al: Sewage:	Petroleum:	Chemical:	Other: X Child	oring
Water Surface Oils (check box): None	e: Sheen:	Globs:	Slick:		
Clarity (check box): Clea	r: Slightly turbi	id: X Turbid:	Opaque:	* · · · · · · · · · · · · · · · · · · ·	
Color (check box): Tanni	c: X Green (algae	e): 🚺 Clear: 📘	Other:	promish/gra	ec,
Weather Conditions/Notes:	E. ala	Abundance: Periphyton	Absent R	are Common Abu	inda M
VERY WINDY.	t few clou	Fish *			
very sunny.		Aquatic Macro		i 🛭 i	
33,30		Iron/sulfur Bac	` <u></u>		
SAMPLING TEAM:		SIGNATURE;	£		DATE
Andrea Grain	ger	<u>Canare</u>		10 1 -	
**************************************	- Muapia	beds 20,	n depar	Æ,Σ	

FRESHWATER BENTHIC HABITAT ASSESSMENT FIELD DATA SHEET (v2)

SUBMITTING AGENCY CODE:SUBMITTING AGENCY NAME:	STORET STATION	NUMBER: DATE (MOV): RE	CEIVING BODY OF WATER:	
REMARKS: CINCOVINC.	OCICY LOCATION:	Ruer Crk	5 FRELD (DANAME:	r site. 1
Habitat Parameter	Optimal	Suboptimal	Marginal	Poor
Bottom Substrate/ Available Cover	decayed), undercut banks, rubble, or other stable habitat.	20% to 40% snags, logs, tree roots, emergent vegetation, leaf packs, etc. Adequate habitat. Some substrates may be new fall (fresh leaves or snags).	5% to 20% snags, logs, tree roots, emergent vegetation, leaf packs, etc. Less than desirable habitat, frequently disturbed or removed.	Less than 5% snags, logs, tree roots, emergent vegetation, leaf packs, etc. Lack of habitat is obvious, substrates unstable.
Water Velocity	20 19 1 8 17 16 Max. observed: >0.25 m/sec. but < 2 m/sec	Max. observed; 0.1 to 0.25 m/sec	Max. observed; 0.05 to 0.1 m/sec	Max. observed; <0.05 m/sec, or spate occurring; > 2 m/sec
	20 19 1 8 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3(2)1 3()
Artificial Channelization	No artificial channelization or dredging. Stream with normal, sinuous pattern	May have been channelized in the past (>20 yrs), but mostly recovered, fairly good sinuous pattern	Channelized, somewhat recovered, but > 80% of area affected	Artificially channelized, box-cut banks, straight, instream habitat highly altered
	20 19 1 8 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3(2)1
Deposition	Less than 20% of habitats affected by sand or silt accumulation	20%-50% of habitats affected by sand or silt accumulation	Smothering of 50%- 80% of habitats with sand or silt, pools shallow, frequent sediment movement	Smothering of >80% of habitats with sand or silt, a severe problem, pools absent
_	20 19 1 8 17 16	15 14 13 12 11	10 9 8 7 6	5.4.3.2.1
Bank Stability	Stable. No evidence of erosion or bank failure. Little potential for future problems.	Moderately stable. Infrequent or small areas of erosion, mostly healed over.	Moderately unstable. Moderate areas of erosion, high erosion potential during floods.	Unstable. Many (60%-80%) raw, eroded areas. Obvious bank sloughing.
	20 19 1 8 17 16	15 14 13 12 11	10 9 8 7 6	5)4 3 2 1
Riparian Buffer Zone Width	Width of native vegetation (least buffered side) greater than 18 m	Width of native vegetation (least buffered side) 12 m to 18 m	Width of native vegetation 6 to 12 m, human activities still close to system	Less than 6 m of native buffer zone due to intensive human activities
	20 19 1 8 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Riparian Zone Vegetation Quality	Over 80% of riparian surfaces consist of native plants, including trees, understory shrubs, or non-woody macrophytes. Normal, expected plant community for given sunlight & habitat conditions.	50% to 80% of riparian zone is vegetated, but one class of plants normally expected for the sunlight & habitat conditions is not represented. Some disruption in community evident.	25% to 50% of riparian zone is vegetated, but one or two expected classes of plants are not represented. Patches of bare soil or closely cropped vegetation, disruption obvious.	Less than 25% of streambank surfaces are vegetated. Poor plant community (e.g. grass monoculture or exotics) present. Vegetation removed to stubble height of 2 inches or less.
	20 19 1 8 17 16	15_14_13_12_11	10 9 8 7 6	5 4 3 2 1
Add to be	 points if cross-sectional one square meter during 	area of flow is estimated periods of normal flow.	Comments	
	TAL SCORE		İ	
ANALYSIS DATE: 2/4/96	ANALYST:	SIGNATURE:	dies 250	101 10

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET (Version 5)

SUBMITTING AGENCY CODE:	STORET STATION NUMBER:	DATE (M/D/Y): TIME	RECEIVING BOD	OY OF WATER:	
SUBMITTING AGENCY NAME:		3/4/9610	15 Chan	wel A	
REMARKS: Air had strong	LOCATION:	; o to	FIELD IDA	NAMÉ:	
Chlorine octor	Northic	rest Region	ed Ta	est Sito	
RIPARIAN ZONE/INSTREAM FEATURE	S			···.	
Predominant Surrounding Land-Use	(specify relative percer	it in each category):			
Forest/Natural Silviculture Field/	Pasture Agricultura	l Residential	Commercial	Industrial Other	r (Specify)
Local Watershed Erosion (check box)	: None	Slight	Moderate	Heavy [<i>Y</i>
Local Watershed NPS Pollution (chec	k box): No evidence	<u> </u>	tential sources 🛴	<u> </u>	فحسا ,
Width of riparian vegetation (m) L on least buffered side: 1/2	ist & map dominan vegetation on back	' larges sention		locity (m/sec) Transo 3 velocity & depth va	
Artificially Channelized		- TANZ		m > sla	משלח"
Artificially Impounded yes	vere some recovery mostly recovery more sinu	vered, 7 m	cus.	/IH:	4V.
High Water Mark (m above bed):	l m	200	بيسيي	576	, ,
Canopy Cover %: Open: X Li	ghtly Shaded (11-45%	6): Moderate	ly Shaded (46-80°	%): Heavily Sh	naded:
SEDIMENT/SUBSTRATE					
Sediment Odors: Normal: X S	Sewage: Petroleur	m: Chemical:	Anaerobic:	Other:	
Sediment Oils: Absent: X	Slight: Moderat				
Sediment Deposition: Sludge: S	and smothering: none	moderate Silt si	nothering) none of	severe Other:	
Substrate Types % coverage	# times sampled me		Types % coverage	ge # times sampled	method
Woody Debris (Snags)		Sand			Nor
Leaf Packs or Mats		Mud/Muck	Silt 5	- -	LAR
Aquatic Vegetation 5	$\begin{bmatrix} 6 \end{bmatrix} \begin{bmatrix} N \end{bmatrix}$	Other:	<u> </u>		
Rock or Shell Rubble Shorezone (Roots/Veg.)			l view sketch of ha	abitats found in 100) m section
Silorezone (Hoots/Veg.)	<u> </u>		μmho/cm)		
WATER QUALITY Depth (m): Temp.	(°C): pH (SU): D.		ity (pp!):		Secchi (m)
Top 20.	08 7-37	7:10 72	1		VOB
Mid-depth					, v.O.O.
Bottom	order 5th - 6th order				
System Type : Stream: 1 3rd - 4th	order 7th order or gre	ater / Lake. W	etland: Estuar		Canal.
Water Odors (check box): Norm	<u> </u>	Petroleum:			Cslight
Water Surface Oils (check box): Non		Globs:			
Clarity (check box): Clea	ar: Slightly turb		Opaque:		
Color (check box): Tann	ic: Green (alga		Other:		•
Weather Conditions/Notes:	alm and a	Abunda Periphyto		Rare Commor	Abung:
Very windy, no	clouds,	1 ' /1 .1	eding beds)	$\overline{\mathbb{Z}}$	
Sunny.		Aquatic N	Nacrophytes 🔲	$oxdar{\square}$	
<u> </u>			r Bacteria 🛛 🔯		
SAMPLING TEAM: A 10 0 0 0 CTC 10	500	SIGNATURE:	readra	unser	ITAG

FRESHWATER BENTHIC HABITAT ASSESSMENT FIELD DATA SHEET (v2)

SUBMITTING AGENCY CODE:SUBMITTING AGENCY NAME:	STOREY STATION		Channel /	+	
REMARKS: Chlorina n our	ODLOV LOCATION:	hwest Regiona	EIELD IDMIANE	Situ 2	
Habitat Parameter	Optimal	Suboptimal	Marginal	Poor	
Bottom Substrate/ Available Cover	Greater than 40% snags, logs, tree roots, emergent vegetation, leaf packs (partially decayed), undercut banks, rubble, or other stable habitat.	20% to 40% snags, logs, tree roots, emergent vegetation, leaf packs, etc. Adequate habitat. Some substrates may be new fall (fresh leaves or snags).	5% to 20% snags, logs, tree roots, emergent vegetation, leaf packs, etc. Less than desirable habitat, frequently disturbed or removed.	Less than 5% snags, logs, tree roots, emergent vegetation, leaf packs, etc. Lack of habitat is obvious, substrates unstable.	
Water Velocity	Max. observed: >0.25 m/sec, but < 2 m/sec	Max. observed; 0.1 to 0.25 m/sec 15 14 13 12 11	Max. observed; 0.05 to 0.1 m/sec 10 9 8 7 6	Max. observed; IOSeC <0.05 m/sec, or spate occurring; > 2 m/sec 5 4 (3) 2 1	
Artificial Channelization	20 19 1 8 17 16 No artificial channelization or dredging. Stream with normal, sinuous pattern	May have been channelized in the past (>20 yrs), but mostly recovered, fairly good sinuous pattern	Channelized, somewhat recovered, but > 80% of area affected	Artificially channelized, box-cut banks, straight, instream habitat highly altered	
	20 19 1 8 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3(2)1 Smothering of	
Deposition	Less than 20% of habitats affected by sand or silt accumulation	20%-50% of habitats affected by sand or silt accumulation	Smothering of 50%- 80% of habitats with sand or silt, pools shallow, frequent sediment movement	Smothering of >80% of habitats with sand or silt, a severe problem, pools absent	
-	20 19 1 8 17 16	15 14 13 12 11	10 9 8 7 6	pools absent	
Bank Stability	Stable. No evidence of erosion or bank failure. Little potential for future problems.	Moderately stable. Infrequent or small areas of erosion, mostly healed over.	Moderately unstable. Moderate areas of erosion, high erosion potential during floods.	Unstable. Many (60%- 80%) raw, eroded areas. Obvious bank sloughing.	
	20 19 1 8 17 16	15 14 13 12 11	10 9 8 7 6	5 4 (3)2 1	
Riparian Buffer Zone Width	Width of native vegetation (least buffered side) greater than 18 m	Width of native vegetation (least buffered side) 12 m to 18 m	Width of native vegetation 6 to 12 m, human activities still close to system	Less than 6 m of native buffer zone due to intensive human activities	
	20 19 1 8 17 16	<u> 15 14 13 12 11 </u>	10 9 8 7 6	5 4 3 (2)	
	Over 80% of riparian surfaces consist of native plants, including trees, understory shrubs, or non-woody macrophytes. Normal, expected plant community for given sunlight & habitat conditions.	50% to 80% of riparian zone is vegetated, but one class of plants normally expected for the sunlight & habitat conditions is not represented. Some disruption in community evident.	25% to 50% of riparian zone is vegetated, but one or two expected classes of plants are not represented. Patches of bare soil or closely cropped vegetation, disruption obvious.	Less than 25% of streambank surfaces are vegetated. Poor plant community (e.g. grass monoculture or exotics) present. Vegetation removed to stubble height of 2 inches or less.	
7		_	. s.f.		
V99 E	20 19 1 8 17 16	15 14 13 12 11	10 9 8(7) 6 Comments	5 4 3 2 1	
	points if cross-sectional one square meter during		Comments		
_	TAL SCORE				
ANALYSIS DATE: 3/4/96	ANALYST:	SIGNATURE:			

FDEP Biology Section — Acute Bioassay Bench Sheet

					Secu		AN	cute	DIC	assi	uy L	·CIIC	11 67.	LLCCU			
Sample Sour									ample	Collec	tion: 1	Date_3	44126	Ti	me <u>/</u>	<u> ጉ</u> ያዕ	_
Cour	nty: <u>™</u> ;	75	Hills	polo	<u>ogh</u>	<u>-</u> .			Test	Begina	ning: 1	Date_ <u></u>	15/9	6 Ti 96 Ti	me <u>/</u>	430	-
Contact / Distr	rict: 🔼	<u> </u>	Corte	r /	J. t.J			— o	rganis	est Ein	ch #:)) 	ـــــــــــــــــــــــــــــــــــــ	uent Ba	tch #:	70	-
NPDES Permi	t#: <u>FLOO</u>	<u>27</u>	82							anism	Age:		24 1	uent Ba			-
LIMS Sample	#: <u>/3/35</u>	<u>7</u> L	IMŞ Jo	b#: 5			25 - 2.	3	Test (Organ	ism:	<u>Cer</u>	isday	phn/a	du	bia	_
Test Type: S	<u>creening</u> ⊲ D ⊠ Static Rer	efinitive rewal (Flow-th	rough	Calib	iment rations f 7	s: pH		peratu 01826). mg/L 8262		ductivity		can	
Test Number:	. 7 of 7				01	hr <u>7.0</u>	@ 7.0	\ \(\frac{1}{2}\lambda_1\)	<u>7 @ 7</u>	2.0	8.1	@ 25.	<u>7</u> °c _	107.7	@ <u>/</u> 04.	<u>L</u>	
	·						@%							121@			<u>}</u> °C
Remarks:					24 1	hr 7. s		74.6	2@2	4.1	F. /	@_26	J°C ∠	025	@ <u>/;;</u>	<u>, L</u>	
							 '@_7 <u>~</u>							2.4 <u>@</u>			₹°C
					48 i				l @ 3	23,4	8.1	@JS.7		107.8			_
					701		@1,2 				·						. °C
						1,0	<u> </u>	_						<u>ي کړ</u> مندونم			_ ~ 1
														I .	ORREC		
		Nu	ımber L	lve		рΗ		Temp	erature	(°C)	D	.O. (mg/	L)		(µmh		
Conc.	Chamber #	0 hr	24 h	48 h	0 hr	24 h	48 h	0 hr	24 h	48 h	0 hr	24 h	48 h	0 hr	24 h	48 h	
CtLA		5	5	5	7.9		7.8	145		245	ブフ		7.8	175	1	18Q	
CR B	3	5	5	Ś	 		79	- 17.4		24.5			7.8			190	
ch C	Č	.5	3	5			79			24.5			7.9			180	
CAZ D	D	5	5	5			0.8	*****		24,6			7.9			185	
10 10 A	Δ	5	5	Ś	7,6			24,3		245			79			1785	4
10% 0	B	5	25	5			8.6			24.5	ļ		P.F		<u> </u>	780	
100% C	C	5_	.2	S.			<u> </u>			245			79		ļ	835	
10%0	Δ	5	5	5		<u> </u>	8.6	. <u></u> ;		24.4		<u> </u>	7.9	ļ	ļ	860	ļ
							8,6 244 79 860										
					[ļ		<u> </u>		<u> </u>	<u></u>	ļ]
					.		<u> </u>		<u> </u>	ļ			<u> </u>	ļ			1
									<u> </u>	<u> </u>		ļ	-	<u> </u>	 	 	-
			ļ		ļ	<u> </u>				ļ	ļ	ļ	ļ	-	ļ	+	
		<u> </u>	ļ .						-	 	-	ļ <u> </u>	-	-	ļ	 -	1
		ļ	<u>.</u>		ļ	<u> </u>	<u> </u>						ļ	+	ļ.——	+	1
	ļ	ļ	ļ <u>-</u>	<u> </u>		ļ <u> </u>							<u> </u>	-	 	+	1
			-	<u> </u>			 		<u> </u>	 -		 	 		 		1
			ļ. 						-	-	<u> </u>		+]	<u> </u>	+	1
	<u> </u>			 	ļ	 -	<u> </u>			 		 				1	1
		1	-	<u> </u>	 	 -	 	 		†***	† · · · · · ·	-	 	-			1
		<u> </u>				 -					Ī						
	Loaded by:	MF	WE	ME	7M		m	7/\		TM	741		WE	TM	ļ	TM	
	rded by:	DW	ME	me	DW	i	JKS	0~	<u> </u>	<u> </u>	104 OH	ality Pa	137 1		<u> </u>		₹
Investigato	ors' Signature	9\$ ***						alt Wat				-			1		
	<u> </u>						\$300	Vell Wat	ter 20	r% Min	water			Method	Mea	zürea p	ĽΥ
Jens	>) paga	<i>jury</i>			?esidual		-		r		.7	N/.			No.	-100	
() Jum	(VYMMVY)	·			lesidual					10.0	2	0.05		700 C	17.	$\frac{100}{100}$	1 3 m
1mg (Distriba	ــنځ			(mg/L a				_	#2		180		<u>√00 =</u>	711	アンロ <u>アル</u> は、	3
Marshal	y tairlet	<u></u>			s (mg/L		. —			<u>68</u> 10,01		20		12/2/2	1 1	N	, 本
	}				monia (-						17 0				
15			An	nmonia		mmoni		51. U	Amm	ionia ノル	C - 017	ontrol	o	ppt S	ample	_	ppt
reviewer	form updated	5/05/95	Me	eter #9	8136 M	leter S	lobe: _	J 10, 1	Blani	C - 0	<u>~1/</u> S	alinity:		_ s	alinity:		_

	FDE	$\mathbf{P}\mathbf{B}$	iolo	gy S	Secti	on -	– A	cute	Bio	ass	ay B	enc	h Sl	heet			
Sample Sour	rce: RI	ver	Oaks	h	WIT	9		s	ample	Collec	tion: [Date 3	141	96 Ti	me /7	30	
	nty: Fe[3	11510	00	ugh	١				Test	Begin	ning:[Date3	1519	<u> 24.</u> Tii	me_ <i>_/</i> ∠	* 2011	· -
Contact / Distr	rict: Z/	ra C	ort-	r] s	i J			O	Te graanis	est En: :m Rat	ding: l ch #:	Date_ <u>3</u> 73		zent Ba			-
NPDES Permi									Org	anism	Age:	110	545			<u> </u>	-
LIMS Sample	#: <u>/3/3</u>	? <u>57</u> L	IMS Jo	b#: 9	16-M	AR -	05-3	<u> 23</u>	Toot t	Organ	iem ·	(-,0		In le	edsi		
	12 miles	3 3 11-	16		Instru	iment						//					-
Test Type: Statio	creening Do	efinitive sewal 1	Flow-th	rough		rations ‡	: pH 851		peratu 01826:		D.0 90H01			ductivity 3900574		m	
Test Number:	of ?				0	hr <u>7, ა</u>	_@ 7.0	32.9	`_@_ <u>2</u>	3.0	8:1	@ <u>Z5,7</u>					
Remarks:						7.0	<u>@ 7.</u>	9 40			6			<u> 2/ @</u> _			_°C
					24	_		24.	<u>c_@_2</u>	<u>4.1 </u>	0.1	@ <u>፲᠘.</u>					
							@ <u>9.0</u>							<u> ۲۰ @ :</u>			_°C
					481			<u> 33,4</u>	_@_2	3,4	8.1	@ <u>.) 5. </u>	L°C _	<u> 107/8 (</u>	@ <u>106.</u>	$\not\succeq$	
						9.0	<u>.99.(</u>)_					1	135 @ 70230) <u>C 101</u>	<u>a 25 4</u> 80	_°C
															ORREC		1
	1	Nu	mber L	lve		pН		Temp	erature	(°C)	D.	O. (mg/	L)	Cond.	(mmho (µmho	s/cm)	
Cana	Chamber #	0 ht	24 h	48 h	0 hr	24 h	48 h	0 hr			0 hr	24 h	48 h			48 h	
Conc.					スタ	 	0 0	24.5			2.7	7.9	79	250			
CAL A	/ <u>)</u> ごい3	<u>5</u>	5-	5	7.9	8.3	84	24.4			77	7.9	79	250		25C	
CAL B	119	<u>3</u>		5	7.9	8.3	\$.1	27.4			7.8		7.9	250		2 50	
Ctr. D	287	5	5	5	7. 9		8.4	244			77	7.9	8.0			250	
100% A	502	5	5	5	7.5		8,4	24.8	23.9	24.1	7.7	7.5	9,8	785	785	785	
100% B	41	5	5	5	7.6		8,4	24.8	23.8	24.0		7.8	80		780	785	
100% C	147	5	5	5	7.6	8.1	8,4	24.8	23.8	24.0		7.8	80	795	775	775	
10% D	79	45)	5	5	716	8.1	84	24.5	23.8	24.1	7.5	7.8	80	755	780	785	Į
																	•
										ļ			ļ	ļ	<u> </u>		
										ļ .		<u></u>		ļ	ļ	ļ	l
								ļ					<u> </u>	-	ļ	-	
	<u> </u>							<u> </u>			<u> </u>					 -	1
	-	. 						·· ·	<u> </u>				 	<u> </u>			1
i		-								 	·		\ -	1			
				 						 				<u> </u>			1
					- ;		=										1
										-	1			1			
														ļ			
			<u> </u>					<u> </u>					ļ	<u> </u>	ļ	ļ <u>-</u>	
					ļ		ļ <u>-</u> .		<u> </u>				 		ļ		-
<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	-					<u> </u>	 	 				 -	-
Measured	/Loaded by:	MF	OW	mF_	TM	MF	m£	711	ME	mF	Th	MF	me	7/1	ME	mF	1
	rded by:	Di	pu	J65	DIN	100	JAS	DW	D:7	J36	Dis	PLJ	JOEKS	-	DU	3XS	J
Investigato	rs' Signature	is .					S	alt Wat	er	Wa	ter Qua	ality Pa	ramet	ers			
<i>-</i>	<u> </u>						r fee	Vell Wat	e) 20	% Min	Water			Method	Meas	sured b	Ľ
Jennilo	Segua	paid			esidual		•	1	<u> </u>			N/				ī	_
	YNWW	<u> </u>	Lab	Total R	lesidual	C12 (m	g/L):	<u> 20.03</u>				0.05		r-100			_
Finar	nikuld	<u> </u>						120				787	<u> </u>	7#Clt_	J0	, C 7.5	
Marshelf for	airclith				s (mg/L				_			<0.01	3/2	tacti Tion	<u>وں</u> الا	1-2	
	<u> </u>							10.017	Amm			ontrol	, 10				_
10			An sa	nmonia ster#98	. А 3136 М	mmonia leter Sk		56.4			017 S		0	ומס	ample alinity:	0	ppt

בוסוס Diology Section — Acute Bioassay Bench Sheet Sample Source: NW Ayand Itspital WWTP County: Hillsborough Test Beginning: Date 3/5/96 Time 1945 Test Ending: Date 3-7-96 Time 1/500 Contact/District: Break Johnson / 5W NPDES Permit #: FL00 41670 LIMS Sample #: /3/363 LIMS Job #: 96-MAR-05-27 Instrument Test Organism: Ceriodophnia dubla Instrument Test Type: Screening Definitive Calibrations: pH D.O. me/L Conductivity umhos/an Temperature °C Static | Static Renewal | Flow-through meter # 7851 90H018262 G9005749 90H018262 Test Number: 2 of 2 Ohr 7.0 @ 7.0 LL.5 @ 23.0 8.1 @ 27.7 °C 107.7 @ 106.2 1421 @ 1409 @ 25.3 °C 9,0 @9,0 Remarks: 24 hr 7.0 @ 7.0 24.0 @ 24.1 8.1 @26.1 °C 107.6 @ 106.2 9.0 @ 7.0 1426 @1419 @25,8 °C 48 hr 7.0@7.0 234@23.4 8.1 @25.7 °C 1078 @ 106.2 1425 @ 1409 @ 25,2 °C 9.009.0 UNCORRECTED Cond. (mmhos/cm) Temperature (°C) Number Live pН **D.O.** (mg/L) Cond. (µmhos/cm) Conc. Chamber # 0 hr 24 h 48 h 0 hr 48 h 48 h 24 h 0 hr 24 h 0 hr 48 h 0 hr 24 h 48 h CALA 8.3 5 24.1 24.5 190 7.8 7,8 7.8 170 Ź CALB 5 کے 7.8 195 245 Ĭ 8.3 79 195 5 Ctz C 5 79 78 780 D 5 ct 0 5 ζ 190 245 24.4810 5 24.3 5 5 7.5 75C 5 7.8 R 5 60% B 5 745 S 7 5 8,6 2460 7.8 100 % C 780 24.6 5 5 8.6 R05 100 %.D ME ME ME PU Measured/Loaded by: 7/ TM MF നല TΜ Recorded by: DU DW investigators' Signatures Water Quality Parameters Salt Water Well Water | 20% Min Water | Sample | Method | Measured by Field Total Residual CI2 (mg/L): NIM

20.03 40.03 Dr-100 Lab Total Residual Cl2 (mg/L): ---180 Alkalinity (mg/L as CaCO₃) ; ---185 HACH Hardness (mg/L as CaCO₃) : ---Total ammonia (mg/L as N) <0.017 <0.017 Orion Ammonia Ammonia Ammonia Control Sample Meter #98136 Meter Slope: <u>+56.4</u> Blank: <u><0.017</u> Salinity: __ g ppt O ppt form updated 5/05/95 Salinity:

FDFD Biology Section -Acute Rieggay Rench Sheet

					366 66			cute	DIC	ass	ay L	CILC	/II ().	iicci	,	
Sample Sour	rce: _ <i>\UU</i>	U Re	الم أورد	<u> 1 15</u>	5p1h_1	$-\omega$	JIP	S	ample	Collec	ction:	Date	1/4/	94° TI	me/ <i>C</i>	145
Cour	nty: Ha	مطخاا	<u>12158</u>	.					Test	Begin	ning:	Date	9.15/	<i>9</i> ઢ _ Ti	me/_	~vo
Cour Contact / Distr	rlet: 3	cont	- 5	Anso	·~ /	56	د		T	est En	ding:	Date	3-7-	76 11	me <u>/</u>	100
NPDES Permi									Org	anism	Age:	nda	DIR 	ieur Ba	tch #:	weg
LIMS Sample				ob #: 🤆	96-M	4R-C) S - Z	7	Test	Organ	ism: _	Cyp	rinelle	· /e	eds:	
Test Type: S		efinitive	9		Calib	rations		Ten	peratu 101826:	re °C). mg/L	Cond		/µmhos/c	m
Test Number:	.)	L			0	hr スの	@ 7.0	22.9	7 @ 2	3.0	6.1	@ 17.	<u>)</u> °C _	107.7	@ <u>/</u> 34.	1.
	· 01	_														a 25.3
Remarks:					24	******		- <u>24.5</u>	ງ @ 2	4.1	8.1	@ 16.				
							@ %,0									<u>25.8</u>
					AR:			23,	4 @ 3	13.4	8.1	@J5.				
					40		_@ 9,6		<u></u>			@ <u>s</u>				
						7,0	<u>/ @_114</u>	_					-74			<u> 25.1</u>
															ORREC	
		Nι	ımber L	lve		pН		Temp	erature	(°C)	D.	O. (mg/	(L.)		(mmho (µmho	
Conc.	Chamber #	0 hr	24 h	48 h	0 hr	24 h	48 h	0 hr	24 h	48 h	0 hr	24 h	48 h			48 h
CTI A	700	.5	5	5	7.9	8.3	84	20.3	21.5	2)[1	フィフ	7.9	8,1	245	250	255
CAL B	65	5	5	5	7.9	8.3	8.4		3.8			7.9		550	1.50	250
ctic	45	5	5	5	7.9	8.3	8,4		53.8			7.9	8.1	250	250	250
CAL D	358	5	5	5	7.9	8.3	84		23.8		フィブ	7.9	811	250	250	250
100% A	701	5	5	5	7.5	811	84	24,5		24.1	7.9	7.8	181	815	800	800
15 % B	412	5	5	4	۲،۲	8.1	8,4		23.5	24.1	7.9	7.8	81	815	805	810
10%C	348	_5	5	5	7,5	8.1	84	24.5	23.8		7.8	7.8	8.0	815	805	80
100% D	304	5	5	5	7.5	8.1	8.4	24,4	23.8	24,1	7.9	7.8	8.0	815	810	815
															:	
					·					ļ					1	
<u></u>															ļ	
ļ																
			ļ	:						ļ					1	
		. <u> </u>	ļ				ļ <u>.</u>			ļ				<u> </u>		
			<u> </u>									ļ				
	·		ļ			<u>-</u>				-	 					
		<u> </u>							<u> </u>		 	<u> </u>	-			
		-						·			 		-	\vdash		_
			-							-		-			-	
	Loaded by:	ME	0W	JB	7/^	no	OF JAS	'T^~	MF	ME	TA	MC	me	TM	MF	ME_
	ded by:	OW	ואמ	me	OW	001		DU	DW	JKS.	OW	04	Joss	DW	Dus	CLS.
Investigator	rs' Signature	s	_				S	att Wate	er	Wat	ter Qua	ility Pa	ramete	ers		
	2 4	1					Ø	/ell Wat	er) 20°	% Min	Water	Samp	le N	/lethod	Meas	ured by
Spride	Bornos	ممدر	Field	Total R	esidual	Cl2 (m	g/L):[[[NIA				
U DOMAN	137 With	` `			esidual			40.03				< 0.0	3 D	<u>r/00</u>	15	7
1ima c	nikulo	<u>نىلا</u>			(mg/L a				20			<u>18C</u>	H	<u>ACH</u>	1 10	<u> </u>
Marshell for	whith				(mg/L a		_					185		ACH		<u> </u>
			То	ital ami	nonia (mg/L as	N} <u>.∠</u>	0.017				<0.01	7 0	non	1	<u> </u>
			Am	monia	Ar	nmonia	a	5% U	Ammo			introl			ample	n P
reviewer	form updated	5/05/95	Me	ter #98	136 M	eter Sk	ope: _	JØ 19	Blank	: <u><0.0</u>	217 Sa	dinity:	0	ppt Sa	alinity: _	٥٢

REFERENCE SITE

Winter Index Pe	Period: Stream Condition Index for Florida (SCI) (April 1996)	ım Con	dition I	ndex fo	r Flor	ida (SC	(A)	pril 199	(9,			
Macroinvertebrate Dip Net (20	***** **** ****	Panhandle	ıandle	****		Peninsula	ula		ng n	Northeast	east	`
sweeps or most productive substrates)	value 5	က	7	Score	က	က	-	Score	ಬ	က	, , ,	Score
Total Number of Taxa	53 227	26-14	1 /14		> 27	26-14	<14	۱,	≥18	17-9	9	
EPT Index	7 7	5.3	\$; ;	\ 4	3-2	77	ľ	,		æ	
# Chironomid Taxa	6× 0℃	8	?		6<		10	/۲	≥4	3-2	₹	
% Contribution of Dominant Taxon	32.9 <25	26-62	2 >62		≥30	31-65	>65	iı	≥37	38-69	69<	;
% Diptera	32.2	095 /	>60	-		<52	>52	K,	•	7.67	>67	
Florida Index	10 >13	3 12-7	22	-	>10	9-5	5	/^	9 ⊲	5-3	\$	
% Suspension feeders/Filterers	6.5 5.13	3 12-7	1 >		≥15	14-8	\$		≥ 25	25-13	<13	
Total Score	Bd	Panhandle			Ä	Peninsula		7	Z	Northeast	*	. , , . , . ,
	Ex	Excellent		27-33		Excellent		27-33		Excellent	4	26-31
		Good		21-26	1	Good		21-26		Good		20-25
Interpretation of Score		Poor		14-20		Poor	! 	14-20		Poor		14-19
	Severel	Severely Degraded	aded	7.13	DS	Severely Degraded		7-13	(S) (C)	Severely Degraded	ď	7-13

TEST SITE / (RIVER CITES)

-		1,5	165: 5:16	τ. Γ	1	711CV C11K3	3		1			
Period: Stream Condition Index for Florida (SCI) (April 1996)		n Cond	ition L	ndex fo	r Flor	ida (SC	E (A)	pril 199	(9			
(*************************************		Panhandle	ındle	* * * * * * * * * * * * * * * * * * *		Peninsula	ıula			Northeast	east	
value 5		က	-	Score	5	က	 1	Score	ည	က	П	Score
5.8 227	L	26-14	*		> 27	26-14	<14	,	≥18	17-9	₹	
97 /7	<u>.</u>	5-3	\$3		≯ ✓	2. 2.	₹	ľ	,	8	3	
30 ≥9		8.75	ic.	ļ	6X		V	۲,	∀ i	3-2	Z	
23.8 <25	TO.	26-62	>62		≥30	31-65	>65	1	≤37	38-69	>69	
315	l .`	095 ∕	>60		•	≥52	>52	ſη	•	<u></u> ₹6%	>67	
12 > 18	22	12.7	L>		>10	9-2	\$	١	9 ∧	5 4-3	భ	
57 213	00	12-7	L >		>15	14-8	80		> 25/	/25-13	<13	:
		Panhandle			ਨੂੰ ∖	Peninsula	mt l	54	Z	Northeast	#;	
Œ	XC	Excellent		27-33		Excellent	ţ	27-33	ŽÍ	Excellent	ı.	26-31
	Ľ5	Good		21-26	<i>)</i> 	Good	; 	21-26		Good		20-25
	<u>a</u> ,	Poor	!	14-20		Poor		14-20		Poor		14-19
Sever	ely.	Severely Degraded	ded	7-13	S C	Severely Degraded	75	7-13	S C	Severely Degraded	, TG	7-13

TEST SITE 2 (NW REGIUNAL)

Winter Index Per	Period: Stream Condition Index for Florida (SCI) (April 1996)	ream	Condi	tion I	ndex fo	r Flor	ida (SC	I) (A	pril 199	(9)			
Macroinvertebrate Dip Net (20	**************************************	1000 1000 1000 1000 1000 1000 1000 100	Panhandle	ndle			Peninsula	ակա			Northeast	east	:
sweeps or most productive substrates)	vaine	က	က	7	Score	ıΩ	က		Score	் ம	က	7	Score
Total Number of Taxa	25	>27	26-14	×14		> 27	26-14	<14	· •	≥18	17.9	6 >	
EPT Index		9	5-3	63		44	3-5	77		•	⇔	8	
# Chironomid Taxa	x	6 ∧	8	iç.	 	6 %		۲ <u>٠</u>	ĸ	7	3-5	7	
% Contribution of Dominant Taxon	373	25	26-62	>62		≥30	31-65	>65	٣	<37	38-69	×69	
% Diptera	38.7		09⋝	>60	 	•	≤52	>52	ns)	•	≥67	>67	
Florida Index	7	× ×	12.7	₹		≥10	9-5	IÇ.	· · —	9 ⊲	5-3	\$	-
% Suspension feeders/Filterers	12.3	× 13	12-7	₹		\ ∑	14-8	%	m	≥ 25	25-13	<13	·
Total Score		Panhandle	ındle			Pe	Peninsula	e et	7	Z	Northeast	i.	
		Excellent	llent		27-33	Œ	Excellent	٠	27-33	Œ	Excellent	بد	26-31
		Good	po		21-26		Good	.	21-26		Good		20-25
Interpretation of Score		Poor	or		14-20	U	Poor		14-20		Poor		14-19
	Seve	rely I	Severely Degraded	peg	7-13	ρ. U	Severely Degraded		7-13	S	Severely Degraded	, d	7-13

Winter Index Pe	riod: S	tream	Condi	ition I	ndex fo	r Flor	ida (S	(I)	Period: Stream Condition Index for Florida (SCI) (April 1996)	9			
Macroinvertebrate Dip Net (20	77.1		Panhandle	ındle			Peninsula	sula			Northeast	east	
sweeps of most productive substrates)	value	ம	က	-	Score	5	က	П	Score	က	က	H	Score
Total Number of Taxa		2	26-14	<1 4		> 27	> 27 26-14	<14		≥ 18	17-9	6>	 - -
EPT Index		9<	5-3	స		∠ 4	3-5	7	 		 }	×3	
# Chironomid Taxa		6 %	8 10	\$		63	8-5	iç.		<u>*</u>	3-2	%	-
% Contribution of Dominant Taxon		≤25	26-62	>62		≥30	31-65	>65		≤37	38-69	>69	
% Diptera			≥60	09<		•	≤52	>52		,	≥67	>67	
Florida Index		≥ 13	12-7	L >		>10	9-5	\$		9 ⊲	5-3	°2	
% Suspension feeders/Filterers		≥ 13 12-7	12-7	1>		>15	14-8	80	 - - -	> 25	> 25 25-13	<13	<u> </u>
Total Score	**************************************	Panhandle	indle			Ã	Peninsula	ផ		Z	Northeast	t t	
		Excellent	llent		27-33	(원	Excellent	+	27-33	E)	Excellent	يد	26.31
		Good	po		21-26		Good	 :	21-26		Good	:	20-25
Interpretation of Score		Po	Poor		14-20		Poor		14-20		Poor		14-19
	Sev	erely]	Severely Degraded	led	7-13	S CI	Severely Degraded	, _' ' ''	7-13	S. D	Severely Degraded	d.	7-13

Benthic macroinvertebrate taxa list for River Oaks WWTP (test site 1) and Northwest Regional WWTP (test site 2), collected via 20 dipnet sweeps in Channel A, on 4 March, 1996.

	Reference Site	Test Site 1	Test Site 2
Planariidae			
Dugesia sp.	-	4	_
Dugesia tigrina	1	_	-
Rhynchocoela	-		
Prostoma rubrum	-	1	_
Oligochaeta		_	
Aulodrilus pigueti	1	14	_
Bratislavia unidentata	-	_	5
Dero sp.	_	1	1
Dero digitata	_	î	$\overline{7}$
Dero trifida	-	$\overline{1}$	í
Dero vaga		$1\overline{4}$	
Gloiobdella elongata	1	3	
Haber speciosus	$\overset{\mathtt{1}}{4}$	-	
Ilyodrilus templetoni	<u>.</u>	_	1
Limnodrilus hoffmeisteri	3	7	27
Lumbriculus variegatus	,	· -	1
Nais communis	_	1	$\overset{ au}{2}$
Nais pardalis	·-	-	20
Pristinella jenkinae	_	_	ĩ
Stylaria lacustris	-	1	-
Hirudinea		•	
Undetermined Hirudinea		_	1
Gastropoda			-
Ferrissia hendersoni	_	_	2
Hebetancylus excentricus	49	75	-
Melanoides tuberculata	$\overset{\mathbf{L}}{2}$	-	_
Micromenetus dilatatus	_	4	-
Micromenetus dilatatus avus	8	-	-
Micromenetus floridensis	10	_	-
Physella sp.	4	-	_
Planorbella duryi	î	_	1
Pseudosuccinea columella	5	26	-
Pyrogophorus platyrachis	5	5	_
Undetermined Ancylidae	-		2
Undetermined Hydrobiidae	-	11	_
Pelecypoda	-	11	
	18	12	_
Corbicula fluminea Undetermined Pisidiidae	1	-	_
	1	-	"
Acarina	1		_
Albia sp.	1 1	-	-
Arrenurus sp.	1	1	-
$At ractides ext{ sp.}$	••	1	-

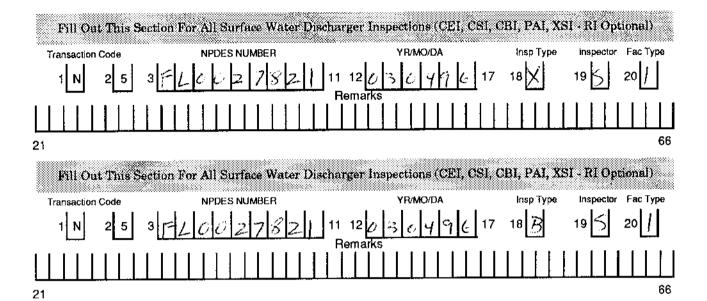
Koenikea sp.	-	1	-
Piona sp.	1	sole.	-
Amphipoda			
Hyalella azteca	137	150	138
Palaemonetes paludosus	2	-	1
Collembola			
Sminthurinus sp.	1	-	-
Ephemeroptera			
Baetis sp.	-	1	-
Caenis sp.	5	12	-
$Callibaetis\ floridanus$	3	7	-
$Procloeon\ viridocularis$	1	1	•
Undetermined Leptophlebiidae	-	-	2
Odonata			
Argia sp.	-	2	-
Argia fumipennis	-	1	-
Enallagma cardenium	-	2	-
Enallagma sp.	1	-	-
Erythemis simplicicollis		1	-
Ischnura sp.	6	12	-
Somatochlora sp.	1	-	_
Hemiptera			
Mesovelia sp.	2	6	-
Undetermined Corixidae	-	_	4
Coleoptera			
Dubiraphia sp.	2	2	
Megaloptera			
Chauliodes sp.	1	48	-
Trichoptera			
Cyrnellus fraternus	1	<u></u>	
Lepidoptera			
Undetermined Lepidoptera	2	1	-
Undetermined Pyralidae	1	-	_
Diptera			
Ablabesmyia mallochi	6	2	-
Asheum sp.	-	1	-
Asheum beckae	-	1	•
Chironomus sp.	8	1	_
Cladopelma sp.	-	1	_
Cladotanytarsus sp.	-	8	82
Clinotanypus sp.	2	2	_
Coelotanypus sp.	_ -	$\overline{1}$	_
Corynoneura sp.	_	$ar{1}$	-
Cricotopus or Orthocladius sp.	1	_	_
Cricotopus sylvestris	î	12	12
Cryptochironomus sp.	i	3	<u>.</u>
Cryptotendipes sp.	$\ddot{3}$	6	_
Dicrotendipes modestus	3	8	5
Endochironomus subtendens	-	1	$\frac{3}{1}$
Endochironomus subtendens	•	1	1

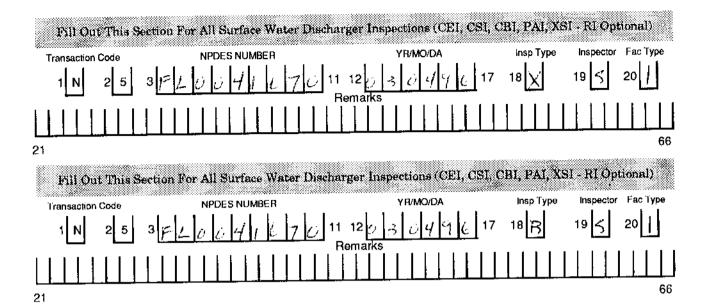
Glyptotendipes sp.	1	-	-	
Glyptotendipes sp. B Epler	-	1	-	
Goeldichironomus sp.	-	1	-	
Kiefferulus sp.	1	u	-	
Labrundinia neopilosella	-	2	-	
Labrundinia pilosella	1	NA.	-	
Nanocladius sp.	-	1	1	
Odontomyia sp.	1	-	-	
Palpomyia/Bezzia grp.	11	2	7	
Paralauterborniella nigrohalterale	3	-		
Polypedilum sp.	-	1	-	
Polypedilum convictum grp.	2	-	-	
Polypedilum halterale grp.	2	6	2	
Polypedilum illinoense grp.	50	127	13	
Procladius sp.	1	-	_	
Pseudochironomus sp.	1	9	3	
Tanytarsus sp.	4	6	-	
Tanytarsus sp. A Epler	5	6	-	
Tanytarsus sp. C Epler	-	5	-	
Tanytarsus sp. D Epler	н	1	-	
Tanytarsus sp. F Epler	-	4	-	
Tanytarsus sp. G Epler	2	7	-	
 Tanytarsus sp. K Epler	-	1	-	
Tanytarsus sp. L Epler	-	1	-	
Tanytarsus sp. T Epler	-	1		
Undetermined Chironomidae	24	19	11	

Benthic macroinvertebrate taxa list for River Oaks WWTP (test site 1), collected via Hester-Dendy samplers in Channel A on 4 March, 1996. Densities are in number/m².

	Reference Site	Test Site 1
Planariidae		
Dugesia tigrina	11	_
Oligochaeta		
Dero trifida	5	_
Nais sp.	8	_
Nais behningi	3	-
Nais communis	16	_
Stylaria lacustris	3	_
Gastropoda	•	
Amnicola sp.	3	2
Hebetancylus excentricus	32	14
Micromenetus sp.	13	54
Micromenetus dilatatus	-	2
Physella sp.	98	30
Pseudosuccinea columella	13	2
Pyrogophorus platyrachis	8	_
Undetermined Ancylidae	13	34
Undetermined Hydrobiidae	3	•
Undetermined Gastropoda	3	-
Acarina		
Albia sp.	8	2
Atractides sp.	11	-
Amphipoda		
Hyalella azteca	355	298
Ephemeroptera		
Baetis sp.	5	4
Caenis sp.	8	56
Callibaetis floridanus	3	6
Stenacron sp.	13	4
Stenacron interpunctatum	11	-
Undetermined Baetidae	5	2
Undetermined Leptophlebiidae	-	4
Odonata		
Enallagma sp.	13	14
Enallagma cardenium	3	-
Enallagma pollutum	~	10
Ischnura sp.	3	2
Undetermined Zygoptera	21	4
Coleoptera		
Dubiraphia sp.	-	2
Trichoptera		
Cernotina sp.	3	-
Undetermined Trichoptera	3	-

Diptera		
Ablabesmyia sp.	3	_
Ablabesmyia mallochi	63	18
Ablabesmyia peleensis	-	$\tilde{2}$
Ablabesmyia rhamphe grp.	40	30
Asheum beckae	3	26
	3	20
Chironomus sp.	79	6
Corynoneura sp.		U
Corynoneura sp. C Epler	29	-
Corynoneura taris	5	-
Cricotopus bicinctus	8	
Cricotopus or Orthocladius sp.	5	12
Cricotopus sylvestris		10
Cryptochironomus sp.	3	6
Cryptotendipes sp.	8	8
Dicrotendipes sp.	-	4
Dicrotendipes modestus	29	77
Dicrotendipes neomodestus	5	8
Dicrotendipes simpsoni	-	46
Endochironomus nigricans	_	2
Endochironomus subtendens	-	32
Glyptotendipes sp.	_	10
Glyptotendipes sp. B Epler	_	10
Goeldichironomus sp.	-	4
Goeldichironomus natans	-	6
Labrundinia sp.	3	2
Labrundinia neopilosella	-	$\frac{1}{4}$
Labrundinia pilosella	24	10
Larsia sp.	5	
Nanocladius sp.	50	10
	19	8
Palpomyia/Bezzia grp.		8
Parachironomus sp.		4
Parachironomus carinatus	-	$\overset{\mathbf{r}}{2}$
Parachironomus hirtalatus	-	2
Paralauterborniella nigrohalterale	5	-
Pentaneura inconspicua	13	-
Polypedilum sp.	3	4
Polypedilum convictum grp.	16	$\frac{2}{2}$
Polypedilum fallax	-	2
Polypedilum halterale grp.	-	2
Polypedilum illinoense grp.	42	226
Polypedilum scalaenum		4
Polypedilum scalaenum grp.	19	2
Pseudochironomus sp.	-	4
Rheotanytarsus distinctissimus grp.	3	-
Rheotanytarsus exiguus grp.	3	-
Stenochironomus sp.	-	2
Tanytarsus sp.	13	24
Tanytarsus sp. A Epler	262	145
z w.v. two one o op zakaz-		


Tanytarsus sp. C Epler	56	42
Tanytarsus sp. F Epler	3	12
Tanytarsus sp. G Epler	5	2
Tanytarsus sp. L Epler	26	10
Tanytarsus sp. O Epler	•	2
Tanytarsus sp. S Epler	3	
Tanytarsus sp. T Epler	11	26
Thienemanniella sp.	-	2
Thienemanniella sp. A Epler	26	-
Tribelos sp.	3	2
Tribelos fuscicornis	3	-
Undetermined Chironomidae	190	95


Phytoplankton taxa list and densities (#/mL) for River Oaks WWTP (test site 1) and Northwest Regional WWTP (test site 2), collected via subsurface grabs in Channel A, on 4 March, 1996.

	Reference Site	Test Site 1	Test Site 2
Cyanophyceae			
Anabaena sp.	11	40	
<i>Aphanocapsa</i> sp.	63	_	_
$Aphanothece \ { m sp.}$	11		
$Chroococcus \ \mathrm{sp.}$	21	_	
Dactylococcopsis sp.	32	_	_
Gloeocapsa sp.	11	_	_
Lyngbya sp.	11	_	_
Marssoniella sp.	53	80	
Merismopedia sp.		40	_
$Oscillatoria ext{ sp.}$	42	_	_
Spirulina sp.	-	***	12
Bacillariophyceae			10
Achnanthes sp. Amphora sp.	- 11	40	12
Bacillaria sp.	11	40 40	
Cocconeis sp.	$\overset{-}{21}$	40	_
Cyclotella sp.	$\overset{21}{21}$	40	173
Melosira sp.	$\frac{21}{21}$	_	
Navicula sp.	21	40	49
Nitzschia sp.	42	201	$\widetilde{62}$
Skeletonema sp.		1327	1063
Undetermined Pennales	-	442	136
Chlorophyceae			
Carteria sp.	11	_	_
$Characium ext{ sp.}$		40	
$Chlamydomonas \ { m sp.}$	21	121	12
Chodatella sp.	_	40	25
Crucigenia sp.	63	_	12
Dictyosphaerium sp.	11	-	_
Kirchneriella sp.	11	_	-
Scenedesmus sp.	137	-	12
Schroederia sp.	21	40 400	 0 7 0
Spermatozoopsis sp. Tetradesmus sp.	11	402	272
Tetraedron sp.	42	_	_
Undetermined Chlorophyce		80	_
Euglenophyceae	ae 2 2	0.0	_
Euglena sp.	11		_
Trachelomonas sp.	11	_	_
Dinophyceae			
Ceratium sp.	11	-	_
Cryptophyceae	-		
Chroomonas sp.	11	6073	1273
Cryptomonas sp.	42	1931	309

Periphyton taxa list and densities (#/cm²) for River Oaks WWTP (test site 1) and Northwest Regional WWTP (test site 2), collected via standard diatometers in channel A on 4 March, 1996.

	Test Site 1	Test Site 2
Cyanophyceae		
Anabaena sp.	7,068	1,494
Chrococcus sp.	1,571	, <u> </u>
Gloeocapsa sp.	_,0 \	136
Lyngbya sp.	_	272
Oscillatoria sp.	_	679
Bacillariophyceae		0.0
Achnanthes affinis	3,141	_
Achnanthes exigua	2,356	8,015
Achnanthes lanceolata	9,424	6,657
	28,273	2,445
Achnanthes minutissima	20,273 785	2,40
Amphora ovalis	700	679
Amphora veneta	955 944	3,396
Cocconeis placentula	255,244	,
Cyclotella meneghiniana	- 0.141	1,223
Eunotia pectinalis	3,141	 E40
Gomphonema angustatum	785	543
Gomphonema gracile	~ ~	543
Gomphonema parvulum	50,263	13,042
Melosira sp.		1,087
Navicula sp.		408
Navicula capitata	1571	100
Navicula elginensis	1000	136
$Navicula\ lance olata$	— —	136
Navicula minima	72,254	11,276
$Navicula\ radiosa$	 -	408
$Navicula\ rhynchocephala$	<u> </u>	408
Nitzschia amphibia	5,498	4,483
Nitzschia fonticola	1,571	2,038
Nitzschia ignorata	_	136
Nitzschia palea	_	679
Synedra sp.		679
Undetermined Pennales	_	9,238
Chlorophyceae		
Ankistrodesmus sp.	***	136
Characium sp.	2,356	2,581
Chlamydomonas sp.	1,571	543
Chlorococcum sp.	· _	408
Gloeocystis sp.	785	_
Oedogonium sp.	<u> </u>	679
Pediastrum sp.	785	_
Scenedesmus sp.	_	136
Stigeoclonium sp.	25,132	3,532
Tetraedron sp.	785	-
	-	136
Tetrastrum sp.	1,571	
Undetermined Chlorophyceae	7,017	

