

Biological Assessment of

Falkenburg WWTP

Hillsborough County NPDES #FL0040614 Sampled February 1998

December 1998

Biology Section

Division of Administrative and Technical Services

Bureau of Laboratories

Comprehensive Quality Assurance Plan No. 870346G

Department of Environmental Protection

Results of Fifth Year Inspections

Discharger:

Falkenburg WWTP

County: NPDES Number: Hillsborough F10040614

NPDES Permit Expiration Date:

8 January 2003

Toxics Sampling Inspection (XSI)

Date Sampled:

9 February 1998

Results:

No organic pollutants were detected in the effluent sample. Aluminum, lead, copper, iron, and zinc were detected in the effluent at levels that

complied with Class III water quality standards for marine systems.

Compliance Biomonitoring Inspection (CBI)

Date Sampled:

9 February 1998

Results:

The effluent was not acutely toxic to the invertebrate, Ceriodaphnia dubia, or to the fish, Cyprinella leedsi. The effluent CBOD complied

with the facility's permit limit (5.0 mg/L).

Impact Bioassessment Inspection (IBI)

Date Sampled:

9 February 1998

Results: Invertebrate communities were reduced at test site 2, Changes in macroinvertebrate communities downstream of the discharge. between the control and test sites could partly be accounted for by differences in sediment grain size. Conditions at test site 2 appeared worse than elsewhere in the canal, possibly due to stress from stormwater inputs and the Falkenburg WWTP discharge. In addition, some measures of algal community health, such as taxa richness, diversity, and percent dominance indicated degradation at test site 2. Chlorophyll α was undetected at all three sites.

Water Quality Inspection (WQI)

Date Sampled:

9 February 1998

Nutrient concentrations were relatively low in the effluent, Results: but elevated at the receiving water sites, possibly due to other inputs to the Tampa Bypass Canal. Total phosphorus levels exceeded those levels normally found in 85% of Florida's estuaries at the control and test sites. Similarly, nitrate+nitrite levels at all study sites were greater than those levels found in 95% of Florida's estuaries. AGP at all three sites exceeded the 10 mg dry wt/L "problem threshold" for marine waters, reflecting the elevated nutrient levels throughout the study area.

These fifth year inspections provide the necessary information to evaluate the facility's impact on its receiving waters and to provide the basis for specific condition recommendations for permit renewal.

Introduction

The Falkenburg Wastewater Treatment Plant is located in Hillsborough County, Florida (see map in Appendix). Treatment at this 6.0 MGD advanced domestic wastewater treatment plant consists of influent screening, grit removal, anaerobic treatment, aerobic treatment in four aeration tanks, settling, filtering (in five dual-media deep-bed filters with a combined surface area of 2,500 square feet), disinfection in two chlorine contact chambers, dechlorination, and postaeration. The facility also handles residuals utilizing a gravity belt thickener and a 100,000 gallon storage tank. The actual mean flow during this survey was 3.44 MGD.

The state permit limits for the Falkenburg WWTP are listed in Table 1. Monthly operating report data shows no violations during the past two years (see Facility Summary in Appendix).

Methods

The focus of this investigation was to determine the discharger's effects on the receiving waters. A comparison of biological community health was made between a control site (located in the Tampa Bypass Canal, approximately 100 meters upstream of the discharge and across the channel on the opposite shore) and two test sites, also in the Bypass Canal, bracketing the discharge. Although the control site is located within the same canal system, the canal itself is approximately 120 meters wide and quite deep with good flow (see Physical/Chemical Field Data Sheets in Appendix). A habitat assessment was performed *in situ* to establish comparability between sites.

Supplemental physical/chemical data were also collected on the effluent and study sites. The effluent was analyzed for nutrients, metals, and for organic constituents (base neutral and acid extractables, and pesticide extractables). Methods used for all chemical analyses are on file at the DEP Central Chemistry Laboratory in Tallahassee.

Acute toxicity bioassays, using the invertebrate, *Ceriodaphnia dubia*, and the fish, *Cyprinella leedsi*, as test organisms, were performed on an effluent sample.

Benthic macroinvertebrate communities were evaluated at control and test sites using three replicate petite Ponar grabs.

Phytoplankton were sampled at both control and test sites via subsurface grabs. Chlorophyll a was also determined for phytoplankton communities. Selenastrum capricornutum was used as the test organism for the algal growth potential tests.

Sediment from control and test sites was analyzed for grain size and percent organic matter. All field and laboratory biological methods were carried out following Biology Section Standard Operating Procedures (SOP's). The latest version of the SOP's can be viewed on our web site at 'www.dep. state.fl.us/labs/sops.htm'.

Several different measurements of macroinvertebrate and algal community health have been employed to determine the effects of the discharge. These measurements include: habitat assessment, taxa richness, Shannon-Weaver Diversity Index, numbers of pollution sensitive taxa, community composition, functional feeding groups, and algal biomass. For a discussion of each of these measures, see *Explanation of Measurements of Community Health* in Appendix.

For graphical purposes, the percent differences between sites involving the % tubificids, algal density, chlorophyll a, and algal growth potential are measured as the test site minus control site divided by the control site (Figure 1). The percent differences between the control and test sites involving the number of taxa, the diversity index, the number of polychaete taxa, and the % pelecypods are measured as the control site minus test site divided by the control site (Figure 2).

The following personnel were involved in this investigation: Andrea Grainger and Charles Kovach (Southwest District), and Julie Baughman, Ken Espy, Marshall Faircloth, Russel Frydenborg, Joy Jackson, Scott Lashbrook, Elizabeth Miller, Urania Quintana, Johnny Richardson, Lisa Tamburello, David Whiting, Vicki Whiting, and Steve Wolfe (DEP Central Biology Laboratory in Tallahassee). The report was reviewed by the Point Source Studies Review Committee, consisting of Wayne Magley, Chuck Ziegmont, and Michael Tanski, as well as District representatives.

Results and Discussion

This study took place in a saline portion of the Tampa Bypass Canal, a channelized system created for Hillsborough River flood control. Habitat quality at all three sites was less than optimal. Habitat scores at the control site and test

site 2 (21 points each) were lower than test site 1(38 points). Shorelines at the control and test site 2 were composed mostly of riprap and vertical sea-walls. The shoreline at test site 1 was mostly natural with occasional riprap. All sites were in the "fair" category for community types (see Habitat Assessment Sheets in Appendix). The depth at all three sites was similar (between 4.5 and 5 meters). The pH was near neutral at all three sites (Table 1). Surface salinity ranged from 11.5 ppt at test site 1 to 12.5 ppt at the control site. The salinity was slightly higher at the bottom, ranging from 16.5 ppt to 17 ppt (Table 1). All three sites were adequately oxygenated and similar in clarity (see Physical/Chemical Data Sheets in Appendix).

No organic pollutants were detected in the effluent sample (Table 1).

Aluminum, lead, copper, iron, and zinc were detected in the effluent at levels that complied with Class III water quality standards for marine systems (Table 1).

The effluent was not acutely toxic to the invertebrate, *Ceriodaphnia dubia*, or to the fish, *Cyprinella leedsi*, during the 48-hour bioassays (Appendix).

The CBOD was less than the minimum detection limit. Similarly, the BOD of the control and test sites was less than the minimum detection limit.

Fecal and total coliforms complied with Class III water quality standards in the effluent sample, as well as at the three study sites (Table 1). Fecal coliform concentrations were less than 4 counts/100 mL in the effluent, 20 counts/100mL at the control site, 100 counts/100 mL at test site 1, and

20 counts/100 mL at test site 2. Total coliform counts were 92 counts/100 mL in the effluent, 680 counts/100mL at the control site, 580 counts/100 mL at test site 1, and 900 counts/100 mL at test site 2.

Nutrient concentrations in the effluent were similar to those found at all three receiving water stations. Total phosphorus levels exceeded those levels normally found in 85% of Florida's estuaries at the control site (0.35 mg/L), test site 1 (0.37 mg/L), and test site 2 (0.36 mg/L). Similarly, nitrate+nitrite levels were greater than those levels found in 95% of Florida's estuaries.

with 0.26 mg/L at the control site, 0.24 mg/L at test site 1, and 0.28 mg/L at test site 2 (Table 1). Ammonia was reported at levels that were less than the minimum quantitation limit, and greater than or equal to the minimum detection limit, at all three sites. Although ortho-phosphate levels at test site 1 (0.33 mg/L) and test site 2 (0.34 mg/L) were elevated, these samples were held beyond their normal holding times.

Algal growth potential at the control site (20.8 mg dry wt/L), test site 1 (19.1 mg dry wt/L), and test site 2 (20.7 mg dry wt/L), all exceed-

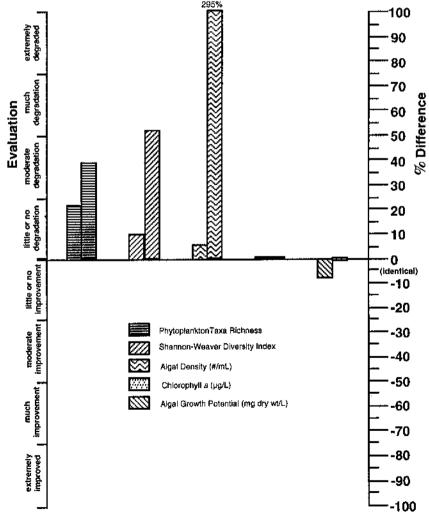


Figure 1. Effect of discharge on the phytoplankton community.

Table 1. Effluent limits and summary of chemistry data.

Falkenburg W W TP	Effluent Limits	Effluent Sample	Control Site	Test Site 1	Test Site 2
Organic Constituents (µg/L)		.			
None detected		-		u	
Metals (μg/L)	. <u>L</u>		<u> </u>		
Aluminum	≤ 1,500 **	45 I	· . [-	_
Arsenic	≤ 50 **	40 U		-	
Cadmium	≤ 9.3 **	0.02 U	-	_	-
Copper	≤ 2.9 **	1,4 J	_ '	-	
Iron	≤ 300 **	100	-	_	-
Lead	≤ 5.6 **	0.2 1	-	-	-
Mercury	≤ 0.025 **	0.1 U	<u>-</u>	-	-
Nickel	≤ 8.3 **	7 U	-	-	
Selenium	≤ 71 **	50 U	-	-	_
Silver	≤ 2.3 **	0.05 U	- 1	-	-
Zinc	≤ 86 **	32 J	- 1	-	- <u></u>
Nutrients (mg/L)			'		
Ortho-phosphate			0.02	0.33 Q	0.34 Q
Total phosphorus	1 *a	0.36	0.35	0.37	0.36 A
Ammonia	1 - 1	0.1 U	0.14 1	0.15 I	0.17 1
Total Nitrogen	3 *a	1,3	1.15	1.15	1.2
Nitrate+Nitrite	-	0,27	0.26	0.24	0.28
TKN	 	1.1	0.89	0.91	0.92 A
General Phys-Chem Parameters					
Habitat Assessment	<u> </u>	-	21	38	21
D.O. (mg/L) surface	-	7.1	7.3	6.7	6.8
D.O. (mg/L) mid	- 1	-	7.6	5.9	6.4
D.O. (mg/L) bottom	-	-	6.0	5.2	5.4
pH (SU) surface	6.0 - 8.5 *	6.9	7.6	7.5	7.5
pH (SU) mid	-	-	7.6	7.6	7.6
pH (SU) bottom	-	-	7,6	7.6	7.6
Conductivity (µmhos/cm) surface	- 1	1,062	19,100	17,500	18,100
Conductivity (µmhos/cm) mid	-	-	20,500	19,600	20,400
Conductivity (µm hos/cm) bottom	-		25,000	25,000	24,600
Temperature (°C) surface	- 1	20.2	17.7	17.2	17.7
Temperature (°C) mid		-	16.8	16.8	16,8
Temperature (°C) bottom	-	-	16.6	16.6	16.7
BOD (mg/L)	-	•	2 U	2 U	2 U
CBOD (mg/L)	5 *a	2 U·		-	
TSS (mg/L)	5 *a	1 U	6	7	5
Turbidity (NTU)		0.4	1.9	2.1	1.6
Fot. Residual Chlorine (mg/L)	0.01 *	0.01	-	_	
Flow (MGD)	6.0 *	3.4	-	_	*
AGP (mg dry wt/L)	-	18.97	20.8	19.1	20.7
l'oxicity					
Bioassay Fish	- 1	Not Toxic	-		-
Bioassay Invertebrate	-	Not Toxic		-	
Microbiology (# organisms/100 mL)					1.
Fecal Coliforms	Non-detectable	4 K	20 K	100 J	20 K
Potal Coliforms	-	92	680	580	900

^{*} Permitlimit

^{**} Class III water quality standard

a - Annual average

A - Value reported is the mean of two or more determinations

I - Value reported is less than the minimum quantitation limit, and greater than or equal to the minimum detection limit

J-Estimated value

K - Actual value is known to be less than value given

Q - Sample held beyond normal holding time

U-Material analyzed for but not detected; value reported is the minimum detection limit

Table 2. Major characteristics of community structure of control and test sites.

Falkenburg WWTP	Control Site	TestSite 1	TestSite 2
Macroinvertebrate Qualitative			
Number of Taxa	21	16	7
Shannon-Weaver Diversity	2.4	2.6	1.9
No. Polychaete Taxa	11	7	3
Community Composition			
% Chironomidae	0.0	0.4	9
% Cum acea	0.0	0.0	2
% Decapoda	0.2	0.0	0.0
% Gastropoda	2	3	0.0
% Mysidacea	0.2	2	2
% Pelecypoda	11	14	0.0
% Polychaeta	82	76	84
% Thoracica	5	4	0.0
% Tubificidae	0.0	0.0	0.0
% Other	0.0	0.6	3
Functional Feeding Groups			
% Burrowing DepositFeeders	1	0.4	0.0
% Predators/Carnivores	1	3	8
% Plant piercers	21	22	18
% Surface Deposit Feeders	31	29	33
% Suspension Feeders	45	45	32
% Unknown	1	0.6	9
Phytoplankton Algae			
Number of Taxa	23	18	14
Shannon-Weaver Diversity	3.8	3.4	1.9
Chlorophyll a (µg/L)	1.0 U	1.1 U	1,0 U
Algal Density (#/mL)	359	382	1,418
% Blue-green	9	13	2
% Cryptophytes	29	27	42
% Diatoms	33	52	6
% Dinoflagellates	16	0.0	45
% Green	11	8	3
AGP (mg dry wt/L)	20.8	19.1	20.7

U - Material analyzed for but not detected; value reported is the minimum detection limit

ed the 10 mg dry wt/L "problem threshold" (EPA 1974) for marine waters, reflecting the elevated nutrient levels throughout the study area (Table 1). The effluent AGP (18.97 mg dry wt/L) was less than receiving water values.

Although some measures of algal community health, such as taxa richness, diversity, and percent dominance, indicate degradation at test site 2, it is unclear whether or not the discharge is causing these effects. There were factors in addi-

tion to the discharge which may have affected the phytoplankton communities. For example, test site 2 was located directly downstream from a CSX railroad, and it is possible there were stormwater inputs from the ditches which are commonly found beside railroads. Test site 2 had higher algal density than the control site or test site 1 due to increased numbers of the (non-toxic) dinoflagellate, Peridinium sp., and the cryptophyte, Chroomonas sp. Because these two

organisms accounted for approximately 86% of the community, diversity at test site 2 was decreased by 52% when compared to the control site. There is currently insufficient data to determine the discharger's influence in causing the dominance of these two phytoplankton taxa. Both test sites had considerably lower taxa richness than the control site. According to Figure 1, algal density at test site 2 appears to be greatly increased when compared to the control site

and test site 1. The actual number however, is not that significant. Chlorophyll a was undetected at all three sites.

Sediments at the two test sites consisted mainly of mud, muck, and silt, while the control site was made up largely of sand, with some mud and muck (see Marine Habitat Assessment Sheets). Sediment particle size was very similar at the two test sites, with 85% of the substrate consisting of particles 0.25 mm or smaller. On the other hand, 78% of the particles at the control site were 0.25 mm or greater.

Changes in macroinvertebrate communities between the control and test sites could largely be accounted for by differences in sediment grain size. Figure 2 indicates the degree of difference between the control and test sites. Larger differences (that is, higher percentages) correspond with greater degrees of degradation. Negative values mean that the test site is better than the control.

Macroinvertebrate taxa richness was highest at the control site with 21 taxa, intermediate at test site 1, with 16 taxa, and decreasing to 7 taxa at test site 2 (Table 2). Note that taxa richness at test site 2 was 66% lower than that found at the control site. Shannon-Weaver diversity was similar between the control site (2.4) and test site 1 (2.6), but decreased by 21% at test site 2, where diversity was 1.9. The number of polychaete taxa declined from 11 taxa at the control site to 7 taxa at test site 1 and 3 taxa at test site 2. All three sites were dominated by the pollution-tolerant polychaete, Streblospio benedicti, which made up approximately 50% of the total community sampled at the control site, 41% at test site 1, and 56% at test site 2. Pelecypods,

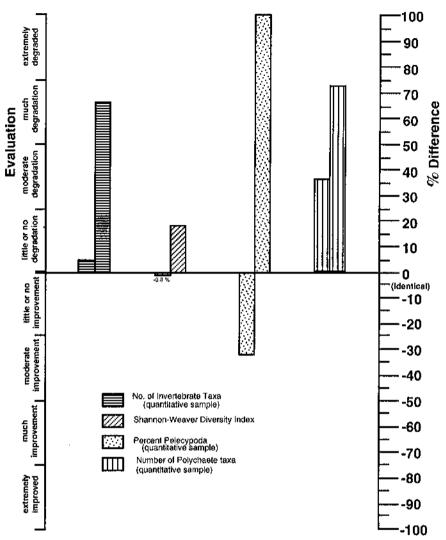


Figure 2. Effect of discharge on the benthic marcroinvertebrate community.

which are considered good-water quality indicators, made up 11% of the total community sampled at the control site and 14% of the test site 1 population (with one species represented), but were completely absent from test site 2. Pollution-sensitive mysids, such as Americamysis bahia and A. almyra, were found at all three study sites in low numbers. Tubificid worms, normally pollution-indicators, were absent from all three sites.

Conclusions

No organic pollutants were detected in the effluent sample.

Aluminum, lead, copper, and zinc were detected in the effluent at levels that complied with Class III water quality standards for marine systems.

The sample of effluent was not acutely toxic to the invertebrate, *Ceriodaphnia dubia*, or to the fish, *Cyprinella leedsi*, during the 48-hour bioassays.

The effluent CBOD complied with the facility's permit limit.

Fecal and total coliforms complied with Class III water quality standards in the effluent sample, as well as at the three study sites.

Nutrient concentrations were relatively low in the effluent, but elevated at the receiving water sites, possibly due to other inputs to the Tampa Bypass Canal. Total phosphorus levels exceeded those levels normally found in 85% of Florida's estuaries at the control and test sites. Similarly, nitrate+nitrite levels at all study sites were greater than those levels found in 95% of Florida's estuaries.

AGP at all three sites exceeded the 10 mg dry wt/L "problem threshold" for marine waters, reflecting the elevated nutrient levels throughout the study area.

Although some measures of algal community health, such as taxa richness, diversity, and percent dominance indicated degradation at test site 2, data were insufficient to determine if the discharge was causing these effects. Chlorophyll a was undetected at all three sites.

Invertebrate communities were particularly reduced at test site 2. Changes in macroinvertebrate communities between the control and test sites could largely be accounted for by differences in sediment grain size. It is unclear whether substrate differences are a direct result of the facility's discharge.

Macroinvertebrate taxa richness was highest at the control site, intermediate at test site 1, and decreasing to 7 taxa at test site 2. Shannon-Weaver diversity was similar between the control site (2.4) and test site 1 (2.6), but decreased by 21% at test site 2, where

diversity was 1.9. The number of polychaete taxa declined from 11 taxa at the control site to 7 taxa at test site 1 and 3 taxa at test site 2. All three sites were dominated by the pollution-tolerant polychaete, Streblospio benedicti. Pelecypods made up 11% of the total community sampled at the control site. 14% of the test site 1 community, but were completely absent from test site 2. Pollution-sensitive mysids, such as Americamysis bahia and A. almyra, were found at all three study sites in low numbers. Conditions at test site 2 appeared worse than elsewhere in the canal, possibly due to stress from stormwater inputs and the Falkenburg WWTP discharge.

Literature Cited

- Chang, S., F. W. Steimle, R. N. Reid, S. A. Fromm, V. S. Zdanowicz, and R. A. Pikanowski. 1992. Association of benthic macrofauna with habitat types and quality in the New York Bight. Mar. Ecol. Prog. Ser. 89: 237-251.
- EA Engineering, Science, and Technology and Tetra Tech, Inc. 1994. Bioassessment for the nonpoint source program (draft). Prepared for the Fla. Dept. Environ. Protection. Unpaginated.
- Engle, V. D., J. K. Summers, and G. R. Gaston. 1994. A benthic index of environmental condition of Gulf of Mexico estuaries. Estuaries 17(2): 372-384.
- Environmental Protection Agency. 1974. Marine algal assay procedure: Bottle test. Nat'l En-

- viron. Res. Center, Office of Res. and Dev., U.S. EPA, Corvallis, Oregon. 43 p..
- Farrell, D. H. 1992. A community based metric for marine benthos. Fla. Dept. Environ. Reg. SW Dist. Office. unpublished rept. 15 p.
- FDEP. 1994. Lake bioassessments for the determination of nonpoint source impairment in Florida. Fla. Dept. Environ. Prot. Biology Section, Tallahassee, Fla. 73 p.
- Hudson, P. L., D. R. Lenat, B. A.
 Caldwell, and D. Smith. 1990.
 Chironomidae of the Southeastern United States: A checklist of species and notes on biology, distribution, and habitat. U. S.
 Fish Wildl. Serv., Fish. Wildl. Res. 7. 46 pp.
- Hulbert, J. L. 1990. A proposed lake condition index for Florida. North Amer. Benth. Soc. 38th Ann. Mtg., Blacksburg, VA, 11 p.
- Lenat, D. R. 1993. A biotic index for the southeastern United States: derivation and list of tolerance values, with criteria for assigning water-quality ratings. J. N. Am. Benthol. Soc. 12(3): 270-290.
- Miller, W. E., T. E. Maloney, and J. C. Greene. 1978. The Selenastrum capricornutum Printz algal assay bottle test. U. S. Environ. Prot. Agency, EPA-600/9-78-018. 126 p.
- Raschke, R. L. and D. A. Schultz. 1987. The use of the algal growth potential test for data assessment. J. Wat. Poll. Cont. Fed. 59(4): 222-227.
- Ross, L. T. 1990. Methods for aquatic biology. Fla. Dept. En-

- viron, Reg. Tech. Ser. 10(1): 1-47.
- Weber, C. I. 1993. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. 4th edition. EPA/600/4-90/027F. U.S. EPA, Cincinnati, Ohio. 216 pp.
- Whitmore, T. J. 1989. Florida diatom assemblages as indicators of trophic state and pH. Limnol. Oceanogr. 34(5): 882-895.

Explanation of Measurements of Community Health

Several different measurements of macroinvertebrate and algal community health have been employed to determine the effects of a discharge. These are briefly discussed here.

Taxa richness: Stress tends to reduce the number of different types of organisms present in a system, although moderate nutrient enrichment may sometimes be correlated with increased algal taxa richness.

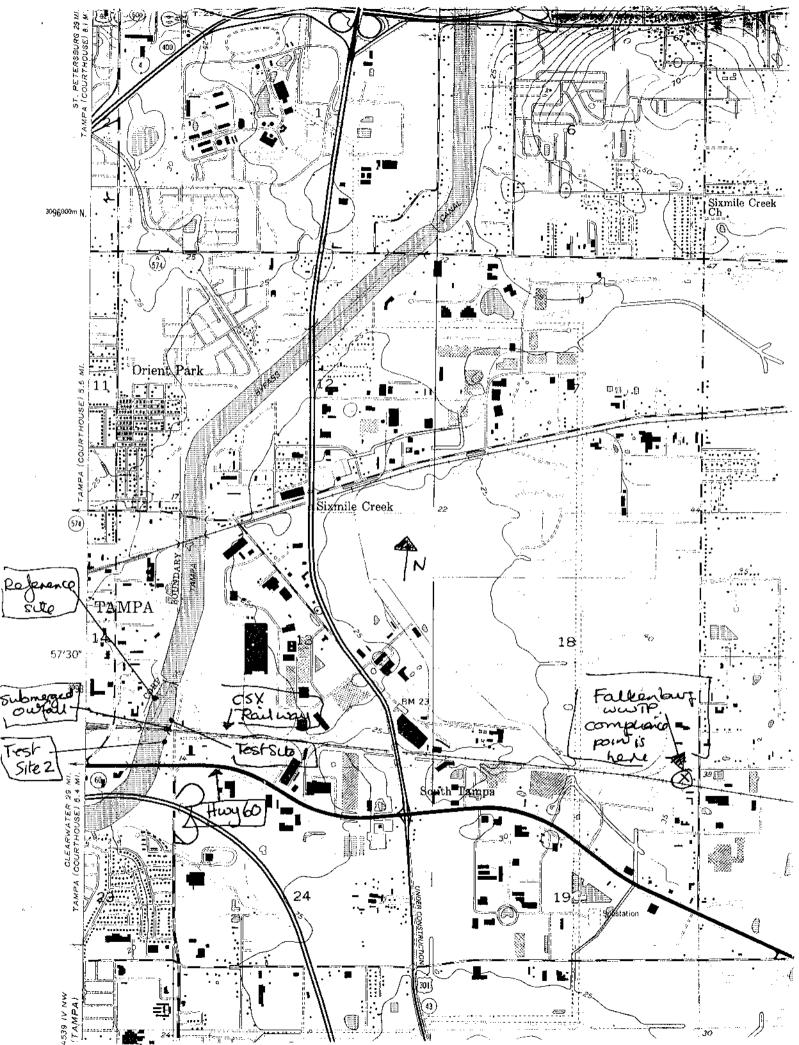
Shannon-Weaver diversity: This index is specified in the Florida Administrative Code as a measure of biological integrity. Low diversity scores are undesirable. They represent conditions where only a few organisms are abundant, to the exclusion of other taxa. Excessive numerical dominance of a single type of organism (a high % contribution of the dominant taxon) is a related measure which is also associated with disturbance.

Numbers of pollution sensitive taxa: Some organisms become rare or absent as the intensity or duration of disturbance increases. Species sensitivity data from other sources, such as Chang *et al.* (1992), Farrell (1992), Hudson *et al.* (1990), Hulbert (1990), Lenat (1993), and Whitmore (1989), are used as appropriate.

Community structure: Substantial shifts in proportions of major groups of organisms, compared to control conditions, may indicate degradation. In marine systems, an increase in the % tubificid oligochaetes, a decrease in the % pelecypods, and a decrease in the number of polychaete taxa are all considered indicators of disturbance (Engel *et al.* 1994).

Trophic composition/feeding guilds: Disturbance can shift the feeding strategies of invertebrates. In Florida for example, pollution may be responsible for reducing the numbers of filter-feeders (FDEP 1994) and shredders (EA Engineering 1994).

Algal biomass: High algal biomass (algal density or chlorophyll a) implies nutrient stress.


Typical Values for Selected Parameters in Florida Waters Adapted from Joe Hand, FDER, personal communication, 1991 (data was collected between 1980 and 1989)

Percentile	Distribution
reremme	Digninanon

Parameter	5 %	10%	20%	30%	40%	50%	60%	70%	80%	90%	95%
STREAMS		•	<u> </u>			·		1		1	
(1617 stations)											
Phytoplankton								<u> </u>	i		
Chlorophyll a	0.22	0.52	0.94	1.60	3.02	4.63	6.72	9.87	14.68	27.35	48.70
Periphyton		7									
Chlorophyll a	0.31	0.43	0.77	1.04	2.16	2.94	6.45	10.51	17.00	39.51	60.85
H-D Diversity	0.84	2.12	2.48	2.74	2.88	3.09	3,25	3.40	3.52	3.76	3.90
Qualitative Taxa] [)
Richness	9.00	12.00	_17.00	20.00	_22.00	24.50	26.00	28.00	31.00	37.00	53.00
H-D Taxa		}									
Richness	6.00	6.50	9.00	11.50	13.00	15.00	17.00	21.50	26.00	29.00	32.00
TKN	0.30	0.39	0.56	0.73	0.87	1.00	111	1.26	1.49	1.93	2.80
Ammonia	0.02	0.02	0.04	0.05	0.06	0.08	0.11	0.14	0.20	0.34	0.60
NO2-NO3	0.01	0.01	0.03	0.05	0.07	0.10	0.14	0.20	0.32	0.64	1.05
Total Phosphorus	0.02	0.03	0.05	0.06	0.10	0.13	0.18	0.25	0.39	0.74	1.51
Ortho Phosphorus	0.01	0.01	0.03	0.04	0.05	0.08	0.11	0.17	0.27	0.59	1.37
Turbidity	0.60	0.90	1.20	1.45	2.10	2.80	3.60	4.50	6.65	10.45	16.30
LAKES											
(477 stations)											
Phytoplankton	ĺ		-					}			
Chlorophyll a	0.80	1.71	2.88	4.28	_10.06	13.40	20.00	30.10	47.20	65.44	113.90
Dredge Diversity	0.71	0.97	1.43	1.74	1.98	2.12	2.21	2.59	2.85	3.15	3.17
Dredge Taxa		Ĩ]		"]					
Richness	3.00	5.00	6.50	7.00	9.00	10.00	11.00	13.00	15.00	17.00	21.00
TKN	0.36	0.49	0.67	0.83	1.08	1.26	1.40	1.51	1.68	2,11	3.46
NH3+NH4	0.01	0.02	0.02	0.03	0.04	0.06	0.08	0.12	0.15	0.21	0.28
NO2-NO3	0.00	0.00	0.01	0.01	0.01	0.02	0.04	0.05	0.10	0.14	0.23
Total Phosphorus	0.01	0.02	0.02	0.03	0.05	0.07	0.09	0.11	0.14	0.23	0.42
Ortho-Phosphorus	0.00	0.01	0.01	0.02	0.03	0.04	0.05	0.06	0.08	0.21	0.32
Turbidity	1.00	1.25	1.55	2.05	2.75	4.50	6.45	9.60	14.10	26.00	40.00
ESTUARIES											
(690 stations)											
Phytoplankton			1	Ĩ		i			T		
Chlorophyll a	2.14	3.28	4.49	5.13	6.00	6.93	7.94	9.60	12.40	17.60	22.20
Dredge Diversity	1.34	1.53	1,91	2.28	2.56	2.90	3.15	3.59	4.01	4.53	4.98
Dredge Taxa					ļ	İ					
Richness	4.00	6.00	9.00	11.00	15.00	18.50	25.00	35.00	41.00	62.00	90.00
TKN	0.26	0.34	0.42	0.50	0.59	0.69	0.76	0.82	0.95	1.30	1.49
NH3+NH4	0.01	0.02	0.03	0.04	0.05	0.06	0.08	0.09	0.13	0.22	0.28
NO2-NO3	0.00	0.00	0.01	0.01	0.01	0.02	0.03	0.05	0.08	0.17	0.23
Total Phosphorus	0.01	0.02	0.06	0.07	0.10	0.11	0.14	0.17	0.23	0.43	0.59
Ortho-Phosphorus	0.01	0.02	0.03	0.04	0.04	0.05	0.07	0.09	0.12	0.21	0.44
Turbidity	3.50	4.00	4.50	5.05	5.40	5.60	6.30	6.80	8.00	11.40	11.75

Units:

Phytoplankton Chlorophyll a (ug/L), Periphyton Chlorophyll a (mg/m²), Nutrients (mg/L), Turbidity (NTU), Taxa richness and diversity values are for macroinvertebrates

STATE OF FLUNDA

DEP	ARTMENT OF ENVIRONMENT OF ENVIRONMEN	ONMENTAL REGI SUMMARY	ULATION
Facility Name: Folkenburg	g. WWTF	Date Summary	Prepared: 11/21/97
Location (attach detailed map):	County HULS been	ragh !	District Sus DISTRICT
Federal Permit # FLCO40614 and expiration date:	State GMS # and State expiration dat 402 CCCC	e: らら	Facility Type: Industrial Municipal Federal Agricultural Other (list):
Function of facility: Domestic	westerniter	treatmen	w plani
consisting of the following units: Influmillion gallons, four (4) aeration tanks combined capacity of 3.0 million gallons filters with a combined surface area of gaseous chlorine with a combined capacity of 83,357 gallons, a 5.0 million gravity belt thickener and a 100,000 garacility for treatment and disposal. Receiving waters:	ons and a combined surface 2,500 square feet, a 76,296 gpacity of 300,000 gallons, in gallon reclaimed water stoutlen storage tank. Residuals	gallon clear well, two two (2) dechlorination	(2) chlorine contact chambers using surfreaeration tanks with a combined als handling facilities which include a
Design Flow: 6.0		<u> </u>	
Discharge is: Continuous Inter Other (describe) therefore, the best time to sample is	mittent Seasonal	Rainfall depend	
II facility has a mixing zone, give do	etails (size, parameter - Plosphor	s affected, etc.):	applied for
		The series of	necial permit conditions

[List effluent limits (if necessary, attach relevant paperwork)] Describe special permit conditions

The effluent shall be sampled in accordance with Chapter 17-601, F.A.C. and shall meet the following limitations:

Sample Type Frequency Maximum <u>Unit</u> Minimum <u>Parameter</u> Permitted Capacity 6.00 Annual Avg ***rfm&t Continuous mgd (flow) meter Continuous 8.50 6.00 std un Нq Daily/5 wk *fpc 5 Annual Avg. mg/L CBOD₅ Total Suspended *fpc Daily/5 wk 5 Annual Avg. mg/L Solids Daily/5 wk 3 Annual Avg. *fpc mg/L Total Nitrogen Daily/5 wk *fpc 1 Annual Avg. Total Phosphorous mg/L Hourly grab 0.01 mg/L Cl_2 Daily/5 wk **Non-Detectable grab Fecal coliform #/100

^{*}fpc - flow proportional composite - 24 hours **Non-detectable in at least seventy-five (75%) of samples collected during the monthly operating period (e.g. 23 per 30 samples). ***rfm&t - recording flowmeter and totalizer

(Facility)	DEPARTMENT OF ENVIRON FACILITY S		
Description of permitted outfall(s):		
An existing 6.0 mgd annual average which flows to Hillsborough Bay approximately at latitude 28° 01' 30"	which flows to Tampa Bay. The	(D001) to Palm River (the Hillsborough Bypass he discharge D001 is located in Hillsborough West.	Canal) County
List permit violations (from MOF	data or other source) and p	plant upsets that occurred within past	
year: No significati	on violations mo	teo	
•			•
Describe previous impact bioas No Enforcement A Limits imposes b	sessments, WOBEL's, and position of the positi	GRIZZLE TISS	
			-
Discuss comparability of MOR redectioning) in the data set:	esults to past DER results a	nd whether there are trends (improving,	
N/A			
-			,
Additional information:		Joe Scrituri (re): (Biologist) Inspector) (Engineer)
		,	ار

(

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION MARINE BENTHIC HABITAT ASSESSMENT FIELD DATA SHEET

SUBMITTING AGENCY CODE:	Isro	RET STATION N	JMBER: DATE (MOM): 1	RECEIVING BODY	OCHATED.	
SUBMITTING AGENCY NAME:			2/9/98	Pulm		
REMARKS:		LOCATION: Fall	ken burg h	JWPP	FIELD IDNUME	ence Site
Habitat Parameter	Exc	ellent	Good	F	air :	Poor
Littoral Alterations	None—Ur shoreline. 9-10 poin		Mostly natural shoreline, but with occasional riprap. 6-8 points			Shoreline consisting almost entirely of vertical seawalls. 0-2 points
Community Types Observed	from the fo	ies observed ollowing rove arsh, oyster bed, reef, tural idal creek.	from those listed. 26-37 points	One comm d observed i listed. 13-25 po	rom those	No communities observed from those listed. 0-12 points
Tidal Fluctuation	>0.75 m. 4-5 point	s ·	0.5 - 0.75 m. 3 points	0.25 - 0.5 r 2 points	n.	<0.25 m. 0-1 point
Freshwater Discharges/ Alterations	Only natur 9-10 poin		Mostly natural runoff but with a few, small stormwater sources. 6-8 points	Consideral stormwate from local parking lot 3-5 point	r discharge roads, s, etc.	Extensive manmade discharges, especially from canals draining large tracts of land. 0-2 points
2	Light to mo wave action except under harshest we conditions. unrestricted manmade states 9-10 point	present er the eather Flow I by tructures.	·			Heavy wave action sometimes present even during average weather conditions, or flow restricted by manmade structures so that velocities are very high. 0-2 points
Sediment Type	Combination gravel, and 12-15 poin	shell.	Primerily sand, with small areas of mud. 8-11 points	Mixture of a mud, or well mud only. 4-7 points	l-serated	Anserobic mud. 0-3 points
TOTAL SCORE						
DAMENTS:						
12/9/98 Grainfer Candres from						

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

almost tide highing

PHYSICAL/CHEMICAL C	CHARACTERIZATION FIELD DATA SHEET (5-10-86)
SUBMITTING AGENCY CODE: STORET STATION SUBMITTING AGENCY NAME:	THE CHARGE OF THE WATER
SOUNT THE SOUND IN	2/9/98 1300 Palm Ruer
REMARKS: COUNTY: LOCATION:	FELD DNAME:
F	Kenburg WWIP Reference Site
RIPARIAN ZONE/INSTREAM FEATURES	
Predominant Land-Use in Watershed (specify rela	ative percent in each category):
	atoute and I Do at I at I Do
20 5	- Carol (opeciny)
L pool Motorphy of Francis	
	Slight Moderate Heavy
Local Watershed NPS Pollution (check box): No evi	Obvious sources [V]
Width of riparian vegetation (m) List & map do vegetation or least buffered side: O:5	
Artificially Channelized no	
Artificially Impounded yes	moetly recovered more sinuous
High Water Mark: 0:3 + 4:5 = [4.8 4.5 m deep 4.5 m deep
Canopy Cover %: Open: Lightly Shaded (
SEDIMENT/SUBSTRATE	
Sediment Odors: Normal: Sewage: Pe	etroleum: Chemical: Anaerobic: V Other:
0-2:	foderate: X Profuse:
Sediment Deposition: Studge: Sand smothering	none moderate Silt smothering none moderate Other
Substrate Types	method Substrate Types % coverage # times sampled method
Woody Debris (Snags)	Sand Sand Medical Medi
Leaf Packs or Mats	Mud/Muck/Silt
Aquatic Vegetation	Other:
Rock or Shell Rubble	Other:
Indefcut banks/Roots	Oraw serial view sketch of habitats found in 100 m section
VATER QUALITY Depth (m): Temp. (°C): pH (SU).	Cond. (µmho/cm)
Top 0.1 17.67 7.61	or Salinity (ppt):
Mid-depth 2.3 16.77 7.60	7:40 70.505
Bottom 4-5 16:55 7:61	7:60 20,50C 1·2
System Type: Stream: 1/1st - 2nd order 5th - 6th	Order Later Matter February February
Water Odors (check box): Normal: X Sewag	si gradier
Valer Surface Oils (check box): None: 🗴 Shee	
	y turbid: Turbid: \(\bar{\chi} \) Opaque:
color (check box): Tannic: X Green ((algae): Clear: Other:
(In all the Control of the Control o	
Laye number of Turkey Burn bank eating dead ple	Periphyton
in bank eating dead be	Cockmus Aquatic Macrophytes 🗹 🗍 📗
acques.	Iron/sulfur Bacteria
APLING TEAM:	SKSNATURE: DATE:
Train zer / Kowach	Condicatranger 2/13/98

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION MARINE BENTHIC HABITAT ASSESSMENT FIELD DATA SHEET

SUBMITTING AGENCY CODE: SUBMITTING AGENCY NAME:	STORET STATION A	10MBER: OLTE (MOM): R 2/9/98	ECENING BODY OF WATER: Palm Ruie	r ·			
shuture open a	REMARKS: Flood control LOCATION: Shucture open and Fatherburg wwith Test Site!						
Habitat Parameter	Excellent	Good	Fair	Poor			
Littoral Alterations	None—Unaltered shoreline. 9-10 points	Mostly natural shoreline, but with occasional riprap.	Shoreline consisting mostly of riprap and vertical seawalls. 3-5 points	Shoreline consisting almost entirely of vertical seawalls. 0-2 points			
Community Types Observed	At least four communities observed from the following list: mangrove swamp, marsh, oyster bar, grass bed, reef, saltern, natural beach, or tidal creek. 38-50 points	from those listed. 26-37 points	One community dobserved from those listed. 13-25 points	No communities observed from those listed. 0-12 points			
Tidal Fluctuation	>0.75 m. 4-5 points	0.5 - 0.75 m. 3 points	0.25 - 0.5 m. 2 points 2	<0.25 m. 0-1 point			
Freshwater Discharges/ Alterations	Only natural runoff 9-10 points	Mostly natural runoff, but with a few, small stormwater sources. 6-8 points	Considerable stormwater discharge from local roads, parking lots, etc. 3-5 points	Extensive manmade discharges, especially from canals draining large tracts of land. 0-2 points			
2	Light to moderate wave action present except under the harshest weather conditions. Flow unrestricted by manmade structures. 9-10 points			Heavy wave action sometimes present even during average weather conditions, or flow restricted by manmade structures so that velocities are very high. 0-2 points			
Sediffert Type	Combination of sand, gravel, and shell. 12-15 points	Primarily sand, with small areas of mud. 8-11 points	Mixture of sand and mud, or well-serated mud only. 4-7 points	Anaerobic mud. 0-3 points			
TOTAL COORT							

TOTAL SCORE | 38

Probably sweep over flood gate from Tumpa By Pass canal.

ANALYSIS DATE:	ANALYST:	SKANTURE:
2/9/98	Grainger	candreo tramper

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET (5-10-90)

SUBMITTING AGENCY CODE:	STORET STATION NUMBER:	DATE (MOM): TIME	RECEIVING BODY OF WATER:			
SOBMITTING AGENCT NAME:		2/9/98 1100	Palm River			
Flowing over flowing the true Hill	1	oury warr	FIELD IDNUME: Down stream Test Site 1			
RIPARIAN ZONEANSTREAM FEATUR	***************************************					
Predominant Land-Use in Waters	ed (specify relative perc	ent in each category):				
	d/Pasture Agricultura	l Residential Com	mercial Industrial Other (Specify)			
Local Watershed Erosion (check bo	:): None	Slight Mo	derate 🗓 Heavy			
Local Watershed NPS Pollution (cl	eck box): No evidence	Slight Moder	ate potential Obvious sources			
Width of riparian vegetation (m) List & map dominant on least buffered side: O'S vegetation on back Typical Width (m)/Depth (m) /Velocity (m/sec) Transect 120 m wide						
Artificially Channelized no most mostly recovered m/s to m/s						
Artificially Impounded yes	Artificially Impounded yes more sinuous					
High Water Mark: 0.3 + 5 = 5.3 u m deep m deep m deep m deep						
Canopy Cover %: Open: X Lightly Shaded (11-45%): Moderately Shaded (46-80%): Heavily Shaded:						
SEDIMENT/SUBSTRATE						
Sediment Odors: Normal:	Sewage: Petroleur	n: Chemical: Ana	aerobic: X Other:			
Sediment Oils: Absent:	Slight: Moderat					
Sediment Deposition: Sludge:	Sand smothering: none sligh	moderate Silt smothering	ng: none moderate Other:			
Substrate Types			% coverage # times sampled method			
Woody Debris (Snags)		Sand				
Leaf Packs or Mats		Mud/Muck/Silt				
Aquatic Vegetation		Other:				
Rock or Shell Rubble		Other:				
Undercut banks/Roots		Oraw aerial view sk	etch of habitats found in 100 m section			
WATER QUALITY Depth (m): Temp	(°C): pH (SU): D.0	D. (mg/l): Cond. (µmho/cm o r Salinity (ppt) :	Secchi (m):			
	7.20 7.50 6					
	- 24,	·91 19,600	1/2			
		23 25,000				
System Type : Stream: (1st - 2nd - 41f			Estuary: X Other:			
Water Odors (check box): Norm	al: Sewage:	Petroleum:	Chemical: X Other:			
Water Surface Oils (check box): Nor	e: 🐧 Sheen: 🗌	Globs:	Slick:			
Clarity (check box): Cle	r: Slightly turbio	1: Turbid: 🗴	Opaque:			
Color (check box): Tann	c: 💢 Green (algae): Clear:	∠ Other: ☐			
Weather Conditions/Notes:	Weather Conditions/Notes: Sunny, few clauds, Slight breeze. Abundance: Absent Rare Common Abundant Periphyton					
sunny, few clauds,	sugn breeze	Periphyton				
		Fish Aquatic Macrophy				
		Iron/sulfur Bacteria				
SAMPLING TEAM:		SIGNATURE:	DATE:			
Grainger / Kova	.L	t dudie at	ran-2/3/18			

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION MARINE BENTHIC HABITAT ASSESSMENT FIFLD DATA SHEET

SUBMITTING AGENCY CODE:	SUBMITTING AGENCY CODE: STORET STATION NUMBER: DATE (MOM: RECEIVED BODY OF WATER.					
SUBMITTING AGENCY NAME:	- STORET STATION	1, ,,3, ,2, ,,, 1,	ECENNIC BOOY OF WATER: Palm Ruver	- -		
Twkey bulgards on dead freshi	Lerof LOCATION: feeding Fal	ken burg n	JUTP FIELD IDAM	Site 2		
Habitat Parameter	Excellent	Good	Fair	Poor		
Littoral Alterations	None—Unaltered shoreline. 9-10 points	Mostly natural shoreline, but with occasional riprap. 6-8 points	Shoreline consisting mostly of riprap and vertical seawalls. 3-5 points	Shoreline consisting almost entirely of vertical seawalls. 0-2 points		
Community Types Observed	At least four communities observe from the following list: mangrove swamp, marsh, oyster bar, grass bed, reef, saltern, natural beach, or tidal creek. 38-50 points	from those listed. 26-37 points	One community d observed from those listed. 13-25 points Ousler on up rap.	No communities observed from those listed. 0-12 points		
Tidal Fluctuation	>0.75 m. 4-5 points	0.5 - 0.75 m. 3 points	0.25 - 0.5 m. 2 points	<0.25 m. 0-1 point		
Freshwater Discharges/ Alterations	Only natural runoff 9-10 points	Mostly natural runoff, but with a few, small stormwater sources. 6-8 points	Considerable stormwater discharge from local roads, parking lots, etc. 3-5 points	Extensive manmade discharges, especially from canals draining large tracts of land. 0-2 points		
Flow and Wave Action	Light to moderate wave action present except under the harshest weather conditions. Flow unrestricted by manmade structures. 9-10 points			Heavy wave action sometimes present even during average weather conditions, or flow restricted by manmade structures so that velocities are very high. 0-2 points		
Sediffert Type	gravel, and shell.	small areas of mud. 8-11 points	Mixture of sand and mud, or well-acrated mud only. 4-7 points	Anserobic mud. 0-3 points		
	TOTAL	SCORE 2		•:		
DOMMENTS:						

SIGNATURE:

condreafra

ANALYSIS DATE:

2/9/98

ANALYST:

Grainger

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET (5-10-96)

SUBMITTING AGENCY CODE:	STORET STATION NUMBER:	DATE (MOM): TIME	RECEIVING BODY OF WATER:
SUBMITTING AGENCE NAME:		2/9/98 1200	Paln River
REMARKS: COUNTY:	LOCATION:		FIELD IDMAME:
copstream Huls	Falken	burg wwith	Test Site 2.
RIPARIAN ZONE/INSTREAM FEATURES			
Predominant Land-Use in Watershed	f (specify relative perce	nt in each category):	
Forest/Natural Silviculture Field/	Pasture Agricultural	<u> </u>	mercial Industrial Other (Specify)
20 5		35 2	0 20
Local Watershed Erosion (check box):	None	Slight Mo	oderate X Heavy
Local Watershed NPS Pollution (chec	k box): No evidence [~	rate potential Obvious sources 🔀
	ist & map dominant vegetation on back	Typical Width (m)/De	pth (m) /Velocity (m/sec) Transect [126 m wide]
Artificially Channelized		- m/s	↑ m/s ↑ m/s
Artificially Impounded yes	vere some recovery mostly recovered more sinu-	our	
High Water Mark: 4.5 + [$\frac{O\cdot3}{\text{sent depth in m}} = \frac{4\cdot8}{\text{(m above bot)}}$	3.5 m deep	m deep 4.5 m deep
	htly Shaded (11-45%)	: Moderately Shac	ded (46-80%): Heavily Shaded:
SEDIMENT/SUBSTRATE			
Sediment Odors: Normal: S	ewage: Petroleum	: Chemical: An	aerobic: 🛛 Other: 📗
Sediment Oils: Absent:	Slight: Moderate	Profuse:	· .
	nd smothering: none slight		
	times sampled met		% coverage # times sampled method
Woody Debris (Snags)		Sand	
Leaf Packs or Mats		Mud/Muck/Silt	
Aquatic Vegetation		Other:	
Rock or Shelf Rubble			ketch of habitats found in 100 m section
Undercut banks/Roots		DIAM BELIEF VIEW SI	Reten of habitats found at footh section
WATER QUALITY Depth (m): Temp. (°C): pH (SU): D.C	O. (mg/l): Cond. (µmho/cror-Satinity (ppt):	m) Secchi (m):
Top 0.1 17.6	7 7.51 6	82 18,100	
Mid-depth 2.25 16.8	0 7.59 6	.39 20,400	11/2
Bottom 4.5 16.		.43 24,600	
System Type: Stream: (1st - 2nd o		er) Lake: Wetland:	
Water Odors (check box): Normal	: Sewage:	Petroleum:	Chemical: Y Other:
Water Surface Oils (check box): None	: 🗓 Sheen:	Globs:	Slick:
Clarity (check box): Clear	Slightly turbic	f: Turbid: 🚶	Opaque:
Color (check box): Tannic	Green (algae		Other:
Weather Conditions/Notes:	Short bree	Abundance: → Periphyton	Absent Rare Common Abundant
Sunny, few clouds Large flock of w	hiti polican	S Fish	
	· · · · · ·	Aquatic Macroph	ytes 🗓 🔲 🖳
present.		Iron/sulfur Bacter	
SAUPLING TEAM:		SIGNATURE:	Arcine la C 2/13/98

FDEP Biology Section — Acute Bioassay Bench Sheet ____ Sample Collection: Date 218158 Time 1445 Falkonburg worth Test Beginning: Date 2/10/98 Time /550
Test Ending: Date 2/10/98 Time /500 Sample Source: Hillsborough County: Organism Batch #: 7 Diluent Batch #: 5 Andrea Grainger / Southwest Contact / District: Organism Age: <24 hours NPDES Permit #: FL0040641 LIMS Sample #: 306006 LIMS Job #: 1998-02-11-07 Test Organism: Coriodaphnia sample log: 2/17/98 au Instrument D.O. mg/L Conductivity µmhos/cm Temperature °C Calibrations: pH Test Type: Screening | Definitive G9005749 90H018262 Statio I Static Renewal I Flow-through meter # 90H018262 7851 21.5 @ 21.5 8.2 @ 25.3 °C 99.8 @ 96.3 Temperature range: room 23.0-24.80 Ohr 7.0@7.0 1 incubator 23.9-25.0°C 989 @ \$ 1005@ 25,7 °C <u>9.0</u> @ 9.0 24 hr 1.0 @ 7.0 22.3 @ 22.4 8.1 @ 25.5 °C /0.5 @ 96.3 Test Number: _ Remarks: D = dead, M = missing 978 @ 1005 @ 259 °C 9.0 @ 9.0 48 hr 7.2 @ 7.0 23.5 @ 23.5 8.1 @ 24.9 °C 98.6 @ 96.3 490 @ 1005 @ 245 °C 9.0 <u>എറ</u> UNCORRECTED Cond. (mmhos/cm) Cond. (µmnos/cm) D.O. (mg/L) Temperature (°C) pΗ Number Live 48 h 0 hr 48 h 24 h 0 hr 24 h 48 h 0 hr 48 h 0 hr 24 h 48 h 24 h 0 hr Chamber # 205 Conc. 185 7.6 8,4 239 21.7 60 5 8.1 Control 5 180 4 7.6 23.8 4.2 5 185 Control 5 7.6 23.6 8.7 Control C 5 195 7.6 23.7 8.2 5 980 985 5 7.7 7.7 Control D 23,8 8,2 22.5 7,6 1015 ς 5 100% Α 239 5 5 1050 B 100% 7.7 23.9 817 5 5 ζ C 1095 100% 7,7 D 5 100 % MEDW DW ME mF MF Measured/Loaded by: MAP TW Water Quality Parameters within by MF m_{FL} WE Recorded by: Salt Water Investigators' Signatures Well Water | 20% Min Water | Sample | Method | Measured by Kouacla 0.01 Field Total Residual Cl2 (mg/L): DR-100 TL/DW Marshell Fairlett 20.03 0.04 Lab Total Residual CI2 (mg/L): from world PW 167 HACH 61 Alkalinity (mg/L as CaCO3) 227 Hach 81 Hardness (mg/L as CaCO3) ; Motal ammonia (mg/L as N) 20,017 20,017 aug mt O ppt Sample Salinity Control Ammonia Ammonia Ammonia -5814 Blank LOIDIN Salmity:

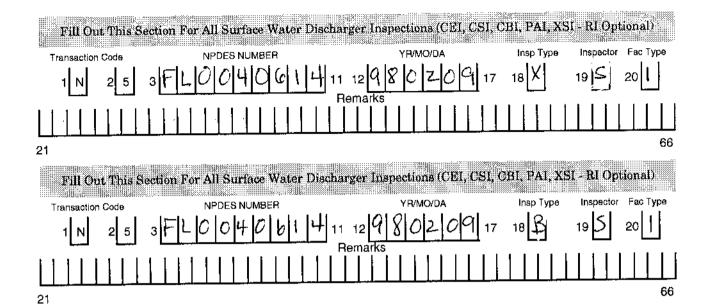
apains Mater Stone

FDEP Biology Section — Acute Bioassay Bench Sheet

						•				
Sample Source: County: Contact / District:	H,11 Andrea	sburgs sburoig! Gainges /	Southw	esT	 Organism Bat 	ning: D iding: D tch #: _	ate <u> </u>	/58 /58 Diluent B	Time <u>//4/</u> Time <u>//6/0</u> Time <u>//5/0</u> Batch #: <u>wei</u>	2
NPDES Permit #:	FL00 40	644			Organism	Age:		11 days	r	
LIMS Sample #:	306006 2/17/98 pu	LIMS Job #: /	998— 0.2- Instrum		Test Organ	ism: _	Cyp.	77	, ,	
Test Type; Scree	niga i Definitiv	re	Calibra	tions: pH	Temperature °C	D.O.	. mg/L. O	onductivi	ty µmĥos/cm	
(Static St	latic Renewal	Flow-through	meter#	7851	90H018262	90H018	262	G9005	749	
Temperature range	e: room <u>スカ.</u> incubator	26.0-26.5°C	_ 0 hr	<u>7.0</u> @ 7.0	<u>21.5@21.5</u>	8,2	<u>25.3</u> °C	99,8	@ <u>96.3</u>	
Test Number: 2	_ of <u>2_</u>			<u>9.0 @ 9.0</u>					1005 @ 25	<u>i. 1</u>
Remarks: D = dea	.d, M = missin	g	24 hr	<u>7.0</u> @ 7.0	22,3 @ 22.4	8.1	م <u>کرکر می</u>	101.5	@ <u>96.3</u>	
				9.0 @ 9.0				<u>978</u> @	1005 @25	.9
			48 hr	<u>`] +0</u> @ 7.0	<u>23.5</u> @ 23,5	8,2	⊋ <u>249</u> °C	98.6	@ <u>96,3</u>	
				9,0 @ 9,0			-	990 @	1005 @24,	<u>, S</u>
										_

													LINC	OBBEO	TED
	Ni	ımber L	er Live pH Temperature (°C) D.O			Live pH Temperature (°C) D.O. (mg/L)				L)	UNCORRECTED Cond. (mmhos/cm Cond. (µmhos/cm				
Conc. Chamber#	0 hr	24 h	48 h	0 hr	24 h	48 h	0 hr	24 h	48 h	0 hr	24 h	48 h	0 hr	24 h	48 h
Control A E 1	7	5	5	8.0	8.1	4.2	24.8	74.4	244	8.0	8.3	7.3	255	<i>755</i>	260
Control B E 2	<u>5</u> 5	5	5	8.0	8.1	8.2	24.8		25.1	8.0	8.3	7.4		260	270
Control C E3	5	5	5	8.0	8.1	8.2			24.6	8.0	83	7,2	255	260	260
Control D EY	S	5	5	8,0	8.1	4.2	24.8	246	24.6	8.1	8.3	7.3		F	<i>36</i> 0
	5	5	5	7.4	8.0	3,3		24.0	24.7	8.1	8.4		1050	1045	106
100%A ES	5	5	6	7.4	8.0	4.3	24.8	24.3	20.2		8.4	7,4	1055		1090
100 % (E7	5	5	5	フリ	8.0	8.3	24.8		25,3	8.2	8.4	7.4	1060	1055	104
100% O E8	5	5	5	7.4	80	4.3	24.9		25.1	8.1	8.3	74	1060	1050	107
,, ,			_ ··									,			
						1									
	 		<u> </u>								·				
											 			1	
		 					··-				ļ-····				
	 			ļ —				!	· · · ·				<u> </u>		
	 	 						-							
		 		<u> </u>		 	i			———	T				
		 	<u> </u>	···	ļ · · 			 -					<u> </u>		
		ļ <u>-</u> -	ļ <u>-</u>	 	-		1	 	 -		 		<u> </u>		
	ļ	ļ	-		1		 				-	 	······	 	-
	├ ─	ļ <u> </u>	ļ <u>.</u>			 		 	-			 		 	
		 	 		<u> </u>	 			 -		 	ļ·	 	 	
	-	 	ļ <u> </u>	ļ		ļ			 		 	 		 	1
	 	 	 	 	 	 		ļ	-	 	 	 	 	 	
	 	 	ļ	<u> </u>	 					ł	 	 	 		†
Measured/Loaded by:	mr.	FW	m.	DW	ME	mi	1000	ME	MF	DW	mr	mi	DW		mf
Recorded by:	かん	EW	2	MF	Fu	FW	MF	Fiv	Fin		Fin	Ful	MF	Fine	100

Investigators' Signatures	-1	Salt Water	Kied by MF			
Dag (1)		(Well Water)	20% Min Water	Sample	Method	Measured by
Markell Pairchth	Field Total Residual Cl2 (mg/L):			0.01		Houacer
Frankerlid	Lab Total Residual Cl2 (mg/L):	20.03		0.06	DR-100	TL/DW_
TAYLOR LECKON	Alkalinity (mg/L as CaCO3) :			167	HACH	FW
144142	Hardness (mg/L as CaCO ₃)			227	Hach	FW
	Total ammonia (mg/L as N) :			20.017	orion	mF_
	Ammonia Ammonia		ттопіа С	ontrol	– Sa	mple


monia Ammonia Ammonia Control Sample
or #98136 Meter Stope: ~58.6 Blank: 40.617 Salinity: 0 ppt Salinity: 0

Phytoplankton taxa list and densities (#/mL) for Falkenburg WWTP, collected via subsurface grabs in Palm River on 9 February, 1998.

	Control Site	Test Site 1	Test Site 2
Bacillariophyceae		22	
$Biddulphia ext{ sp.}$	6	20	6
Chaetoceros sp.	18	49	6
$Coscinodiscus \mathrm{sp.}$	_	3	6
Cyclotella sp.	29	49	1 8
$Cylindrotheca \ { m sp.}$	-	3	-
Nitzschia sp.	3	6	
$Rhizosolenia ext{ sp.}$	41	43	36
Skeletonema sp.	_	14	_
$Thalassiothrix ext{ sp.}$	3	3	_
Undeterminded Biddulphiaceae	9	9	_
Undetermined pennate diatom	9		6
Chlorophyceae			
Golenkinia sp.	3	_	_
Scenedesmus sp.	26	29	30
Selenastrum sp.	6	_	
$Tetraedron ext{ sp.}$	_	3	_
Tetrastrum sp.	_	_	6
Undeterminded Chlorophyceae	3		
Cryptophyceae			
Chroomonas sp.	79	90	592
Cryptomonas sp.	24	12	-
Cyanophyceae			
Aphanocapsa sp.	6	_	_
Chroococcus sp.		3	_
Dactylococcopsis sp.	15	32	6
Lyngbya contorta	6	6	6
Merismopedia sp.	6	9	12
Dinophyceae			
Ceratium sp.	3	_	_
Peridinium sp.	9	_	634
Prorocentrum sp.	6	_	_
Undetermined Dinophyceae	38	_	
Euglenophyceae			
Euglena sp.	12	_	54

Benthic macroinvertebrate taxa list for Falkenburg WWTP, collected via Ponar grab samples in Palm River, on 2 February, 1998. Densities, in number/ m^2 , represent the mean of three replicates.

Control Site Test Site 1 Test	st Site 2
Cirripedia	
Balanus sp. 444 125	-
Cumacea	
Cyclaspis sp	14
Decapoda	
Undetermined Palaemonidae 14 -	-
Diptera	
Chaoborus albatus	14
Undetermined Chironomidae - 14	56
Gastropoda	
Rictaxis punctostriatus 97 -	_
Undetermined Gastropoda - 14	-
Undetermined Hydrobiidae 97 69	<u>.</u>
Mysidacea	
Americamysis almyra 14 14	-
Americamysis bahia - 14	14
Undetermined Mysidae - 42	_
Pelecypoda	
Mactra fragilis 28 -	-
Modiolus demissus 14 -	-
Musculus lateralis 14 -	-
Mytilopsis leucophaeata 875 444	-
Undetermined Mytilidae 14 -	-
Polychaeta	
Capitella sp 14	-
Eurythoe sp. 28 -	-
Gyptis brevipalpa 14 -	-
Hobsonia florida 14 14	-
Nereis succinea 83 69	-
Pectinaria gouldi 111 -	-
Polydora ligni 417 250	-
Polydora sp. 292 -	-
Stenoninereis martini 1861 681	111
Streblospio benedicti 4361 1292	347
Undetermined Ampharetidae 14 -	-
Undetermined Nephtyidae 14 -	-
Undetermined Nereidae - 69	69
Turbellaria	
Stylochus sp. 14	-

