

Biological Assessment of

Nitram Incorporated

Hillsborough County NPDES #FL0001643 Sampled March 1997

October 1997

Biology Section Division of Administrative and Technical Services

Department of Environmental Protection Results of Fifth Year Inspections

Discharger:

Nitram Incorporated

County: NPDES Number: Hillsborough FL0001643

State Permit Expiration Date:

30 January 2000

Toxics Sampling Inspection (XSI)

Date Sampled:

17 March 1997

Results: No organic constituents were detected in the effluent. Effluent mercury $(0.4 \ \mu\text{g/L})$ exceeded the Class III water quality standard of $0.012 \ \mu\text{g/L}$. Since sample contamination was possible, follow up mercury sampling is recommended. Other than iron, all other metals were undetected. Lead was present in sediments from station 4 above the "probable effect level".

Compliance Biomonitoring Inspection (CBI)

Date Sampled:

17 March 1997

Results: The effluent was not acutely toxic to the fish, *Menidia beryllina*. Sediment elutriate at test sites 1 and 3 was chronically toxic to larvae of the sea urchin, *Arbacia punctulata*.

Impact Bioassessment Inspection (IBI)

Date Sampled:

17 March 1997

Results: The Stream Condition Index (SCI) placed the reference site and test site 2 in the lower range of the "good" category, while test site 1 was placed in the upper range of the "poor" category. The Florida Index scores decreased between the reference site and test site 1 in both the Hester-Dendy and dip net samples. In summary, although Delany Creek appeared stressed at all sampling sites, the benthic community at test site 1 was marginally worse, potentially related to the toxicity found in sediment elutriate from that location. Periphyton algal density and chlorophyll a were higher at test site 1 than at the reference site. All other algal indicators suggested no adverse effects from the discharge.

Water Quality Inspection (WQI)

Date Sampled:

17 March 1997

Results: The effluent, with a nitrate-nitrite concentration of 7.5 mg/L, caused enrichment of this nutrient at test site 2 (2.4 mg/L). Nitrate-nitrite levels at the reference site (0.26 mg/L) and test site 1 (0.24 mg/L) were also elevated, with values at all three sites being higher than those found in 95% of other Florida streams. The effluent total phosphorus concentration (0.06 mg/L) was much lower than those found in the receiving water sites, suggesting the phosphorus enrichment in Delaney Creek was due to inputs from other sources. AGP at the reference site (24.7 mg dry wt/L), test site 1 (21.6 mg dry wt/L), and test site 2 (116.0 mg/L) all exceeded the "problem threshold" of 5.0 mg dry wt/L for freshwater. Considering the nutrient levels, effluent AGP (8.4 mg dry wt/L) was lower than expected, suggesting algal growth inhibition.

These fifth year inspections provide the necessary information to evaluate the facility's impact on its receiving waters and to provide the basis for specific condition recommendations for permit renewal.

Chemistry Summary Table for Nitram, Inc.	Effluent	Refer ence Site	Test Site	Test Site 2	Test Site	Test Site 4	Test Site 5
Water Column Organic Constituents (ug/L)							
Chloroform					0.761	· 0.54 I	0.561
Cilidad San	None Detected				:		
Sediment Organic Constituents (ug/L)							
None Detected		None Detected	None Detected	None Detected	None Detected	None Detected	None Detected
Water Column Metals (ug/L)			S	ediment M	letals (mg/k	(g)	
Aluminum	200U	690	1000	470	1300	2310	1600
Arsenic	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.6	1.0 U
Barium	36	2,6	3.7	3.7	4.1	9.0	7.7
Cadmium	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.56	0.5 U
Calcium	190	1700	1700	5600	1800	11,000	6800
Copper	25 U	2.5 U	2.5 U	2.5 U	3.3	20	2.5 U
Chromium	10 U	2.1	3.6	1.6	5.0	8.5	4.4
Iron	85	440	720	360	1100	2500	1600
Lead	5 U	2.1	4.3	2.5	16	200*	43
Magnesium	34	100	170	110	360	650	710
Mercury	0.4	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U
Nickel	5 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U
Selenium	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Silver	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Zinc	20 U	11	21	8.7	24	45	24
Water Column Nutrients (mg/L)			i by in file.			<u>ktipai</u>	
Ortho-phosphate	0.04 Q		0.97 Q	0.61	0.77 Q	0.89 Q	0.92 Q
Total phosphorus	0.06	0.98	1.1	0.76	0.78 A	0.91	1.4
Ammonia	0.40	0.084	0.081 A	0.16 A	0.23	0.40 A	0.89
Unionized Ammonia (mg/L as NH4)	0.0029						
Nitrate+Nitrite	7.5	0.26	0.24	2.4	0.75	1.0	0.13
TKN	1.1	0.85	0.93	1.0	0.95 A	1.4	1.9
General Phys-Chem Parameters							
Habitat Assessment		74	76	73	<u> </u>		
Dissolved Oxygen (mg/L)	7.2	3.9	3.0	4.3	2.9	2.9	0.3
pH (SU)	7.1	7.3	7.3	7.1	7.1	7.0	6.9
Specific Conductance (µmhos/cm)	4,195	592	607	2,070	2,400	3,850	25,100
Salinity (ppt)	2.2	0.3	0.3	1.1	1.3	2.1	15.9
Temperature (°C)	24.6	19.3	19.0	20.4	19.3	19.0	24.7
Total Organic Carbon (mg/L)	5.3 A	17	17	13	13	15	13
Hardness (mg CaCO3)	590						
Algal Growth Potential (mg dry wt/L)	8.4	24.7	21.6	116.0	47.5	40.9	56.3
Toxicity							
Acute Bioassay Fish	Not Toxic						
Acute Bioassay Invertebrate	Test Invalid						
Chronic Bioassay Invertebrate		Not Toxic	Toxic	Not Toxic	Toxic	Not Toxic	Not Toxi

A - Value reported is the mean of two or more determinations

Q - Sample held beyond normal holding time

U - Material analyzed for but not detected; value reported is the minimum detection limit

 $[\]ensuremath{^*}$ - Value reported is greater than the 'Probable Effect Level'

Typical Values for Selected Parameters in Florida Waters Adapted from Joe Hand, FDER, personal communication, 1991 (data was collected between 1980 and 1989)

Percentile Distribution

	5%	10%	20%	30%	40%	50%	60%	70%	80%	90%	95%
Parameter CTO E A MC	370	3 0 70	20 70	20.0					· · · ·		
STREAMS											
(1617 stations)	· ·		Т					· · ·			
Phytoplankton	0.00	0.52	0.94	1.60	3.02	4.63	6.72	9.87	14.68	27.35	48.70
Chlorophyll a	0.22	0.52	0.94	1,00	5.02	1.05	- 07.12				
Periphyton	0.31	0.43	0.77	1.04	2.16	2,94	6.45	10.51	17.00	39.51	60.85
Chlorophyll a	0.84	2.12	2.48	2.74	2.88	3.09	3.25	3,40	3.52	3.76	3.90
H-D Diversity	0.64	2,12	2.40	2047	2100	2000					
Qualitative Taxa Richness	9.00	12.00	17.00	20.00	22.00	24.50	26.00	28.00	31.00	37.00	53.00
H-D Taxa Richness	3.00	12.00	17100								
H-D Taxa Richiess	6.00	6.50	9.00	11.50	13.00	15.00	17.00	21.50	26.00	29,00	32.00
TKN	0.30	0.39	0.56	0.73	0.87	1.00	1.11	1.26	1.49	1.93	2.80
Ammonia	0.02	0.02	0.04	0.05	0.06	0.08	0.11	0.14	0.20	0.34	0.60
NO2-NO3	0.02	0.01	0.03	0.05	0.07	0.10	0.14	0.20	0.32	0.64	1,05
	0.01	0.03	0.05	0.06	0.10	0.13	0.18	0.25	0.39	0.74	1.51
Total Phosphorus Onho Phosphate	0.02	0.03	0.03	0.04	0.05	0.08	0.11	0.17	0.27	0.59	1.37
	0.60	0.90	1,20	1.45	2.10	2.80	3.60	4.50	6.65	10.45	16.30
Turbidity	0.00	0.90	1,20	1,40	2.10						
LAKES											
(477 stations)		T	·		1		1				
Phytoplankton	0.00	1.71	2.88	4.28	10.06	13,40	20.00	30.10	47.20	65.44	113.90
Chlorophyll a	0.80	0.97	1,43	1.74	1.98	2.12	2,21	2.59	2.85	3.15	3.17
Dredge Diversity	0.71	0.97	1,43	1./~	1.70	25,12					
Dredge Taxa	3.00	5.00	6.50	7.00	9.00	10.00	11.00	13.00	15.00	17.00	21.00
Richness	0.36		0.50	0.83	1.08	1.26		1.51	1.68	2.11	3.46
TKN	0.30	0.02	0.07	0.03	0.04	0.06		0.12	0.15	0.21	0.28
NH3+NH4	0.00	0.02	0.02	0.01	0.01	0.02	0.04	0.05	0.10	0.14	0.23
NO2-NO3		0.00	0.02	0.03	0.05	0.07	0.09	0.11	0.14	0.23	0.42
Total Phosphorus	0.01		0.02	0.03	0.03		0.05	0.06	0.08	0.21	0.32
Ortho-Phosphate	0.00					4.50		9.60	14.10	26.00	40.00
Turbidity	1.00	1.25	1,33	2.03	2.13	7,50	0.15	7100	,		L ,
ESTUARIES											
(690 stations)			·	T	T		T	T	Γ .		1
Phytoplankton	1	2.00	1 440	5 12	6.00	6.93	7.94	9.60	12.40	17.60	22.20
Chlorophyll a	2.14			5.13 2.28				3,59	4.01	4.53	4.98
Dredge Diversity	1.34	1.53	1.91	2,28	2.50	4.50	5,15	3,37	† · ···	1	1
Dredge Taxa	1		1 000	11.00	15.00	18.50	25.00	35.00	41.00	62.00	90.00
Richness	4.00										
TKN	0.26									+	
NH3+NH4	0.01										
NO2-NO3	0.00		_								
Total Phosphorus	0.01					$\overline{}$					
Ortho-Phosphate	0.01							_			
Turbidity	3.50	4.00	4.50	5.05	5.40	5,60	6.30	0.00	0.00	1 11,40	111,73

Phytoplankton Chlorophyll a (ug/L), Periphyton Chlorophyll a (mg/m²), Nutrients (mg/L), Turbidity (NTU), Taxa richness and diversity values are for macroinvertebrates

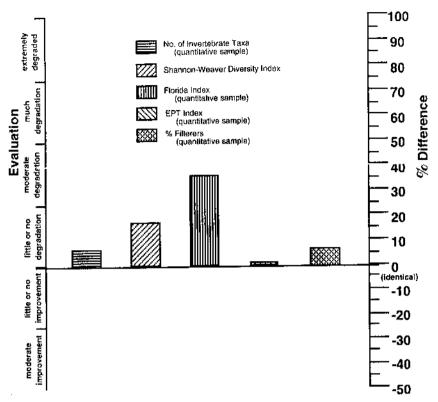
Introduction

Nitram Incorporated, a manufacturer of solid ammonium nitrate and ammonium nitrate fertilizer solutions, is located in Tampa, Florida (see maps in appendix). Wastewater from contaminated runoff areas, non-contact cooling water, boiler blowdown, condensate, and demineralizer regenerant are all combined in a 30,000 gallon mix tank, where the mixture is diluted, aerated, and pH adjusted. From the mix tank, wastewater may be routed to a lined holding pond, or may be pumped through a 1,300 foot pipeline to the Class III Delaney Creek, eventually mixing into Hillsborough Bay (see maps in Appendix). A lined hyacinth pond also receives cooling tower blowdown. The daily maximum permit limit for flow is 0.41 MGD; the monthly average is 0.2 MGD. Actual mean flow from the facility, between April, 1996, and September, 1996, was 0.196 MGD.

Permit limits for Nitram Incorporated are as follows: TSS (20 mg/L as a daily maximum), total nitrogen concentration (12 mg/L as a daily maximum, 7 mg/L as a monthly average), total nitrogen load (50 lbs/day as a daily maximum, 25 lbs/day as a monthly average), unionized ammonia (0.02 mg/L as a daily maximum), temperature (90 °F as a daily maximum), dissolved oxygen (6.0 mg/L as a daily minimum), and pH (6.5 - 8.5 SU). Total nitrogen and dissolved oxygen permit limits are based upon a WQBEL (Mandrup-Poulsen 1987).

There are no effluent data available from February, 1995, to April, 1996, because the facility was intentionally not discharging. Since resuming discharge, the facility Monthly Operating Reports indicate exceedences for total nitrogen during the months of June, July, and August, 1996. Data from September, 1996, to the present, have not yet been received.

Methods


The focus of this investigation was to determine the discharger's effects on the receiving waters. A comparison of biological community health was made between a reference site (located in Delaney Creek, approximately 100 m upstream of the discharge) and two test sites (bracketing the discharge in Delaney Creek (see maps in Appendix). Test site

1 was located in Delaney Creek, approximately 30 m upstream of the discharge while test site 2 was approximately 30 m downstream of the outfall. A habitat assessment was performed in situ to establish comparability between sites. Supplemental physical/chemical data were also collected on the effluent and study sites. Acute screening toxicity bioassays, using Menidia beryllina and Mysidopsis bahia as test organisms, were performed on an effluent sample (Weber 1993). In

Major characteristics of benthic macroinvertebrate community structure of control and test sites.

Reference Site Test Site 1 Test Site 2

	ence Site		 :
Macroinvertebrate Qualitative			
Number of Taxa	29	37	32
Florida Index	12	4	10
SCI	21	19	21
EPT Index	3	3	2
% Contribution of Dominant Taxon	54.9	40.1	57.4
% Diptera	73.1	61.7	82.2
% Gastropoda	5.3	6.5	2.9
% Pelecypoda	5.8	0.2	0
% Amphipoda	6.6	21.5	8.8
% Isopoda	6.0	2.0	1.0
% Other	3.2	8.1	5.1
% Predators	4.5	9.5	7.7
% Above Surface Deposit Feeders	39.1	38.3	43.6
% Shredders	5.3	14.7	6.9
% Suspension Feeders	37.9	22.9	35.6
% Scrapers	5.5	7.4	3.5
% Other	7.7	7.2	2.7
Macroinvertebrate Hester-Dendy			
Number of Taxa	32	30	
Florida Index	14	9	
Shannon-Weaver Diversity	3.0	2.5	
EPT Index	1	0	
% Diptera	81.3	74.7	
% Amphipoda	7.1	12.9	
% Isopoda	5.4	4.5	
% Gastropoda	2.8	6.9	1
% Other	3.4	1.0	
% Above Surface Deposit Feeders	42.1	42.7	
% Suspension Feeders	35.3	32.7	1
% Scrapers	2.9	7.1	
% Shredders	3.5	8.4	i
% Other	16.2	9.1	!

Effect of discharge on the benthic macroinvertebrate community.

addition, sediment elutriate chronic bioassays were performed at the reference site and at 5 test sites, using Arbacia punctulata gametes (see map in Appendix for bioassay test sites 3, 4, and 5). The effluent was analyzed for metals and for organic constituents (base neutral and acid extractables, and pesticide extractables). Sediments from all study sites were analyzed for metals and organic compounds. Nutrient analyses were performed on the effluent, reference, and test sites. Methods used for all chemical analyses are on file at the Tallahassee DEP Chemistry Laboratory.

Benthic macroinvertebrate communities were evaluated at the reference and test sites. Invertebrates were collected from multiple substrates (e.g., snags, leaf packs, vegetation) using discrete dip net sweeps. Additional invertebrate collections were made using Hester-Dendy multiplate samplers which

were incubated for 28 days (Ross 1990). Periphyton was sampled by incubating glass microscope slides in a standard periphytometer for 28 days (Ross 1990). Phytoplankton was sampled at the reference and test sites by subsurface grabs. Chlorophyll α was also determined for periphyton and phytoplankton communities (Ross 1990). Algal Growth Potential tests, using both Selenastrum capricornutum and Dunaliella tertiolecta as test organisms, depending on the salinity at a particular site, followed Miller et al. (1978) and EPA (1974).

Explanation of Measurements of Community Health

Several different measurements of macroinvertebrate and algal community health have been employed to determine the effects of

a discharge. These are briefly discussed here.

Habitat Assessment: Seven attributes known to have potential effects on the freshwater stream biota were evaluated and scored, with 20 points possible for each factor. Based on the sum of these individual scores, overall habitat quality is assigned to one of four categories: Optimal (105-140 points); Suboptimal (70-104 points); Marginal (35-69 points); and Poor (0-34 points). For marine systems, overall habitat quality is also assigned to one of four categories: Optimal (75-100 points); Suboptimal (50-75 points); Marginal (25-49 points); and Poor (0-24 points) (see habitat assessment field sheets in Appendix).

Taxa richness: Stress tends to reduce the number of different types of organisms present in a system, although moderate nutrient enrichment may sometimes be correlated with increased algal taxa richness.

Shannon-Weaver diversity: This index is specified in the Florida Administrative Code as a measure of biological integrity. Low diversity scores are undesirable. They represent conditions where only a few organisms are abundant, to the exclusion of other taxa. Excessive numerical dominance of a single type of organism (a high % contribution of the dominant taxon) is a related measure which is also associated with disturbance.

Numbers of pollution sensitive taxa: Some organisms become rare or absent as the intensity or duration of disturbance increases. For example, the Florida Index assigns points to stream-dwelling macroinvertebrates based on their sensitivity to pollution (see Ross 1990). A site with a high Florida Index score is considered healthy. Species sensitivity data from other sources, such as Hulbert (1990), Hudson et al.

(1990), Lenat (1993), Farrell (1992), Chang *et al.* (1992), and Whitmore (1989), are used as appropriate.

Ephemeroptera/Plecoptera/Trichoptera Index: This index is the sum of the number of EPT taxa present. Higher EPT values are associated with healthier systems.

Community structure: Substantial shifts in the proportions of major groups of organisms, compared to reference conditions, may indicate degradation. In marine systems, an increase in the % tubificid oligochaetes, a decrease in the % pelecypods, and a decrease in the number of polychaete taxa are all considered indicators of disturbance (Engel et al. 1994).

Algal biomass: High algal biomass (algal density or chlorophyll a) implies nutrient stress. A decreased diatom to blue-green algae ratio (calculated by dividing the number of individuals in the Bacillariophyta by the number of indi-

viduals in the Bacillariophyta + Cyanophyta) is often indicative of nutrient enriched conditions in flowing streams.

Trophic composition/feeding guilds: Disturbance can shift the feeding strategies of invertebrates. In Florida, for example, pollution may be responsible for reducing the numbers of filter-feeders (FDEP 1994) and shredders (EA Engineering 1994).

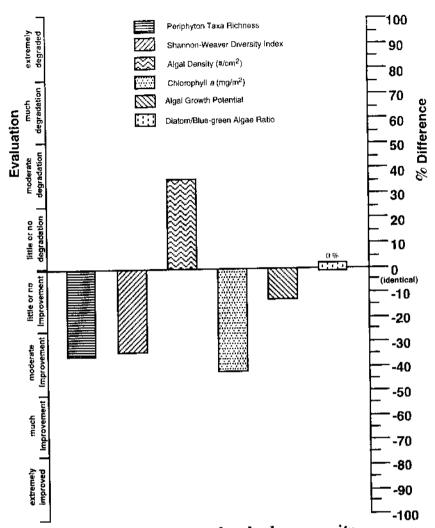
The Stream Condition Index for Florida (SCI) is a composite macro-invertebrate metric (Barbour *et al.* 1996). The SCI assigns points to a variety of parameters, depending on how closely each parameter approaches an expected reference condition.

For graphical purposes, the percent differences between the reference and test sites involving the number of taxa, the diversity index, the Florida Index, the EPT Index, the diatom to blue-green algae ra-

tio, and the % filter-feeders are measured as the reference site minus test site divided by the reference site. The percent differences between sites involving algal density, chlorophyll a, and algal growth potential are measured as the test site minus reference site divided by the reference site.

The following personnel were involved in this investigation: Andrea Grainger, Charles Kovach, Rose Poyner, and Sarah Watkins (DEP Southwest District), Marshall Faircloth, Russel Frydenborg, Joy Jackson, Kathleen Lurding, Elizabeth Miller, Urania Quintana, Lisa Tamburello, David Whiting, Vicki Whiting, (Tallahassee Biology Laboratory). The report was reviewed by the Point Source Studies Review Committee, consisting of Wayne Magley, Jan Mandrup-Poulsen, and Michael Tanski, as well as District representatives.

Major characteristics of algal community structure of control and test sites.


	Refer- ence Site	Test Site 1	Test Site 2
Periphyton Algae	····		
Number of Taxa	26	35	
Shannon-Weaver Diversity	2.9	3.9	
Algal Density (#/sq. cm)	23,350	31,793	!
Chlorophyll a (mg/sq. m)	3.8	2.2	
Diatom/Diatom + B-G Abundance Ratio	0.97	0.97	
% Blue-green	2.6	2.9	
% Diatoms	94.3	92.1	
Phytoplankton Algae			
Number of Taxa	7		12
Shannon-Weaver Diversity	2.1	1.1	3.1
Algal Density (#/mL)	144	346	210
Chlorophyll a (µg/L)	1.0 U	1.0 U	1,0 U
Diatom/Diatom + B-G Abundance Ratio	0.80	0.90	0.85
% Blue-green	5.7	1.9	14.0
% Green	71.4	80.6	2.0
% Diatoms	22.9	16.7	80.0
Algal Growth Potential (mg dry wt/l)	24.7	21.6	116.0

Results and Discussion

In the vicinity of the study sites, Delaney Creek is undergoing a transition from a sluggish, blackwater stream to a tidally influenced system. Land use in the area was predominantly residential, field/ pasture, and industrial. Habitat quality was in the low range of the suboptimal category at all three sites, with 74 points at the reference site, 76 points at test site 1, and 73 points at test site 2. The three study sites were comparable with regard to most physical/chemical parameters, such as: Secchi depth (between 0.2 m and 0.5 m), temperature (19.3 °C at the reference site, 19.0 °C at test site 1, and 20.4 °C at test site 2), and pH (which ranged from 7.1 to 7.3 SU). The conductivity at test site 2 (2,070 µmhos/cm) was considerably higher than the at reference site (592 µmhos/cm) or at test site 1 (607 umhos/cm), reflecting the increased tidal influences or possible contributions from the effluent. The dissolved oxygen levels at the three receiving water sites (3.9 mg/L at the reference site, 3.0 at test site 1, and 4.3 at test site 2) were below the Class III water quality standard of 5.0 mg/L for freshwater systems.

No organic constituents were detected in the effluent. Metals found in the effluent above detection limits included iron (85 µg/L) and mercury (0.4 µg/L). The mercury concentration exceeded the Class III water quality standard of 0.012 µg/L. Since sample contamination was possible, follow up mercury sampling is recommended. Analysis of sediments from the reference site and all five study sites yielded no organic compounds, and the presence of several metals, mostly at non-problem concentrations. The amount of lead (200 mg/ kg) found at station 4 was greater than the "probable effect level" suggested by MacDonald (1993).

The Nitram effluent was not acutely toxic to the fish, Menidia beryllina. The Mysidopsis bahia toxicity test was invalidated due to excessive control mortality. Chronic sediment elutriate bioassays were performed on sediment collected from the reference site and test sites 1 through 5, using Arbacia punctulata gametes. The Arbacia fertility in elutriate from test sites 1 and 3 was significantly lower than that of the reference site, indicating chronic sediment toxicity at these two sites. The cause or source of this toxicity is not currently

Effect of discharge on the algal community.

known. The sediment elutriate toxicity at test site 1 may be associated with the poor quality benthic community found at that location (see discussion on benthic populations below).

Effluent nitrate-nitrite was 7.5 mg/L, directly contributing to the elevated level observed at test site 2 (2.4 mg/L), located immediately downstream of the effluent. In addition to the high nitrate-nitrite concentrations at test site 2, nitrate-nitrite levels at the reference site (0.26 mg/L) and test site 1 (0.24 mg/L), were also elevated, with values at all three sites being higher than those found in 95% of other Florida streams (see list of typical

water quality values in Appendix). Note that effluent total nitrogen (8.6 mg/L) and unionized ammonia (0.0029 mg/L) complied with permit limits. The effluent total phosphorus concentration (0.06 mg/L) was much lower than those found in the receiving water sites, suggesting inputs from other sources. Total phosphorus at the reference site (0.98 mg/L) and test sites 1 (1.1 mg/mg)L) and test 2 (0.76 mg/L) and orthophosphate at test site 1 (0.97 mg/ L) and 2 (0.61 mg/L) were higher than approximately 90% of other Florida streams. A gradual increase in TKN and ammonia was observed between the reference site and station 5, possibly due to increased stormwater or other inputs.

Considering the nutrient levels, effluent AGP (8.4 mg dry wt/L) was lower than expected, suggesting algal growth inhibition. AGP measured at the reference site (24.7 mg dry wt/L), test site 1 (21.6 mg dry wt/L), and test site 2 (116.0 mg/L) all exceeded the "problem threshold" of 5.0 mg dry wt/L for freshwater (Ron Raschke, USEPA, personal communication).

The quantitative measures of benthic macroinvertebrate community health suggested some adverse effects potentially caused by the discharge. The figure on p. 2 indicates the degree of difference between the invertebrate populations of the reference and test sites. Larger differences (that is, higher percentages) correspond with greater degrees of degradation. Negative values mean the test site is better than the reference.

Although the Hester-Dendy samplers at test site 2 were vandalized, the results for the reference site and test site 1 are reported here. There was little difference between the test and reference site with respect to the number of taxa, the EPT Index, percent filter feeders, or basic community structure. Dipterans comprised 81.3% of the taxa at the reference site and 74.7% at the test site. Dicrotendipes modestus was the dominant taxon at both sites (54% at the reference site and 47% at the test site). The amphipod, Hyalella azteca, was the next most abundant organism at both the reference site (with 7%) and the test site (13%). However, the Florida Index decreased from 14 at the reference site to 9 at the test site, due to the elimination of some pollution sensitive chironomidae taxa (e.g., Ablabesmyia sp. and Stenochironomus sp.). Shannon-Weaver diversity also decreased at the test site (2.5) compared to the reference site (3.0).

Dip net data were available for the reference site, and for test sites 1 and 2. The Stream Condition Index (SCI) placed the reference site and test site 2 site (each with 21 points) in the lower range of the "good" category, while test site I (with a score of 19) was placed in the upper range of the "poor" category. Of the measures that make up the SCI, the Florida Index scores were the only ones to differ significantly among the three sites. The reference site and test site 2 received 12 and 10 Florida Index points, respectively, while test site 1 received only 4 points. The absence of trichopterans (e.g., Hydroptila sp. and Nectopsyche sp.) and other pollution sensitive taxa at test site 1 accounts for this decline. In summary, although Delaney Creek appeared stressed at all sampling sites, the benthic community at test site 1 was marginally worse, potentially related to the toxicity found in sediment elutriate from that location.

The figure on p. 4 represents changes in the periphyton algal community. As was noted with the macroinvertebrates, larger differences (that is, higher percentages) correspond with greater degrees of degradation. The periphyton samplers at test site 2 were vandalized, so only the results for the reference site and test site 1 are presented. Most values indicate improvement at test site 1 compared to the reference site. For example, the number of taxa found at test site 1 (35 taxa) was greater than that found at the reference site (26 taxa). Shannon-Weaver diversity values also improved at test site 1 (3.9) compared to the reference site (2.9). Chlorophyll α was only slightly higher at the reference site (3.8 mg/m²) compared to test site (2.2 mg/m²). There was no difference in the ratio of diatom/blue-green algae between the reference and test site. The pollution tolerant diatom, *Cocconeis placentula*, was the dominant taxon at the reference site (50.5%) and test site 1 (25.5%). Algal density was elevated at both sites, with the test site levels (31,793 cells/cm²) being higher than those of the reference site (23,350 cells/cm²), possibly due to the higher nutrient concentrations there.

Conclusions

No organic constituents were detected in the effluent. Effluent mercury (0.4 µg/L) exceeded the Class III water quality standard of 0.012 µg/L. Since sample contamination was possible, follow up mercury sampling is recommended. Lead was detected in sediments from station 4 at a level greater than the "probable effect level" (200 mg/kg).

The effluent was not acutely toxic to the fish, *Menidia beryllina*. Sediment elutriate at test sites 1 and 3 was chronically toxic to *Arbacia punctulata*.

The effluent, with a nitrate-nitrite concentration of 7.5 mg/L, caused enrichment of this nutrient at test site 2 (2.4 mg/L). Nitrate-nitrite levels at the reference site (0.26 mg/L) and test site 1 (0.24 mg/L) were also elevated, with values at all three sites being higher than those found in 95% of other Florida streams. The effluent total phosphorus concentration (0.06 mg/L)

was much lower than those found in the receiving water sites, suggesting the phosphorus enrichment in Delaney Creek was due to inputs from other sources.

AGP at the reference site (24.7 mg dry wt/L), test site 1 (21.6 mg dry wt/L), and test site 2 (116.0 mg/L) all exceeded the "problem threshold" of 5.0 mg dry wt/ L for freshwater. Considering the nutrient levels, effluent AGP (8.4 mg dry wt/L) was lower than expected, suggesting algal growth inhibition.

The Stream Condition Index (SCI) placed the reference site and test site 2 in the lower range of the "good" category, while test site I was placed in the upper range of the "poor" category. The Florida Index scores decreased between the reference site and test site 1 in both the Hester-Dendy and dip net samples. In summary, although Delaney Creek appeared stressed at all sampling sites, the benthic community at test site 1 was marginally worse, potentially related to the toxicity found in sediment elutriate from that location.

Periphyton algal density was higher at test site 1 than at the reference site, while all other algal indicators suggested no adverse effects from the discharge.

Literature Cited

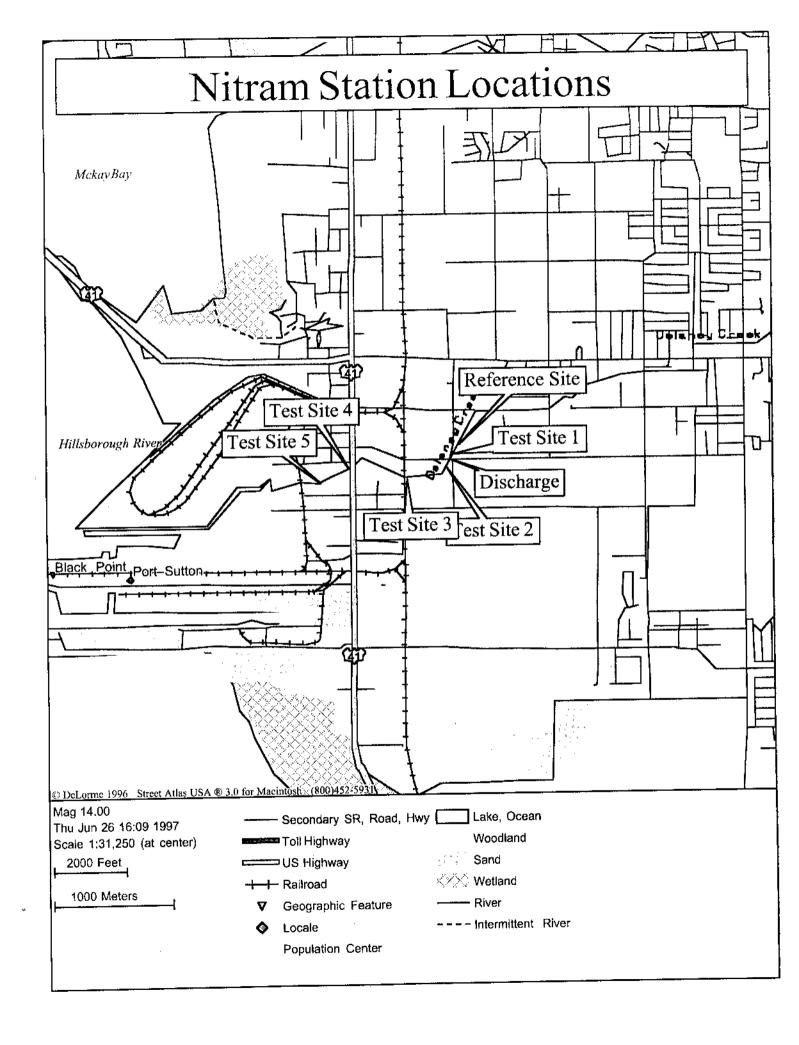
- Barbour, M. T., J. Gerritsen, and J. S. White. 1996. Development of the Stream Condition Index for Florida. Prepared for the Fla. Dept. Environ. Protection, 105 p.
- Chang, S., F. W. Steimle, R. N. Reid, S. A. Fromm, V. S. Zdanowicz, and R. A. Pikanowski. 1992. Association of benthic macrofauna with habitat types and quality in the New York Bight. Mar. Ecol. Prog. Ser. 89: 237-251.
- EA Engineering, Science, and Technology and Tetra Tech, Inc. 1994. Bioassessment for the nonpoint source program (draft). Prepared for the Fla. Dept. Environ. Protection. Unpaginated.
- Environmental Protection Agency. 1974. Marine algal assay procedure: Bottle test. Nat'l Environ.

- Res. Center, Office of Res. and Dev., U.S. EPA, Corvallis, Oregon. 43 p.
- Engle, V. D., J. K. Summers, and G. R. Gaston. 1994. A benthic index of environmental condition of Gulf of Mexico estuaries. Estuaries 17(2): 372-384.
- Farrell, D. H. 1991. A community based metric for marine benthos. DEP Southwest District. Unpublished draft. 15 p.
- FDEP. 1994. Lake bioassessments for the determination of nonpoint source impairment in Florida. Fla. Dept. Environ. Prot. Biology Section, Tallahassee, Fla. 73 p.
- Hudson, P. L., D. R. Lenat, B. A. Caldwell, and D. Smith. 1990. Chironomidae of the Southeastern United States: A checklist of species and notes on biology, distribution, and habitat. U.S. Fish Wildl. Serv., Fish. Wildl. Res. 7. 46 pp.
- Hulbert, J. L. 1990. A proposed lake condition index for Florida. North Amer. Benth. Soc. 38th Ann. Mtg., Blacksburg, VA, 11 p.
- Lenat, D. R. 1993. A biotic index for the southeastern United States: derivation and list of tolerance values, with criteria for assigning water-quality ratings. J. N. Am. Benthol. Soc. 12(3): 270-290.
- MacDonald, D. D. 1993. Development of an approach to the assessment of sediment quality in Florida coastal waters. Report prepared for the Florida Department of Environmental Regulation, Tallahassee FL. 133 p.
- Mandrup-Poulsen, J. 1987. Delaney Creek WQBELs. Hillsborough County. Water Qual. Tech. Series 2, #109. 94 p.
- Miller, W. E., T. E. Maloney, and J. C. Greene. 1978. The Selenastrum capricornutum Printz algal assay bottle test. U. S. Environ. Prot. Agency, EPA-600/9-78-018. 126 p.
- Ross, L. T. 1990. Methods for aquatic biology. Fla. Dept. Environ. Reg. Tech. Ser. 10(1): 1-47.
- Weber, C. I. 1991. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. 4th edition. EPA/600/4-90/027. U.S. EPA, Cincinnati, Ohio. 216 pp.

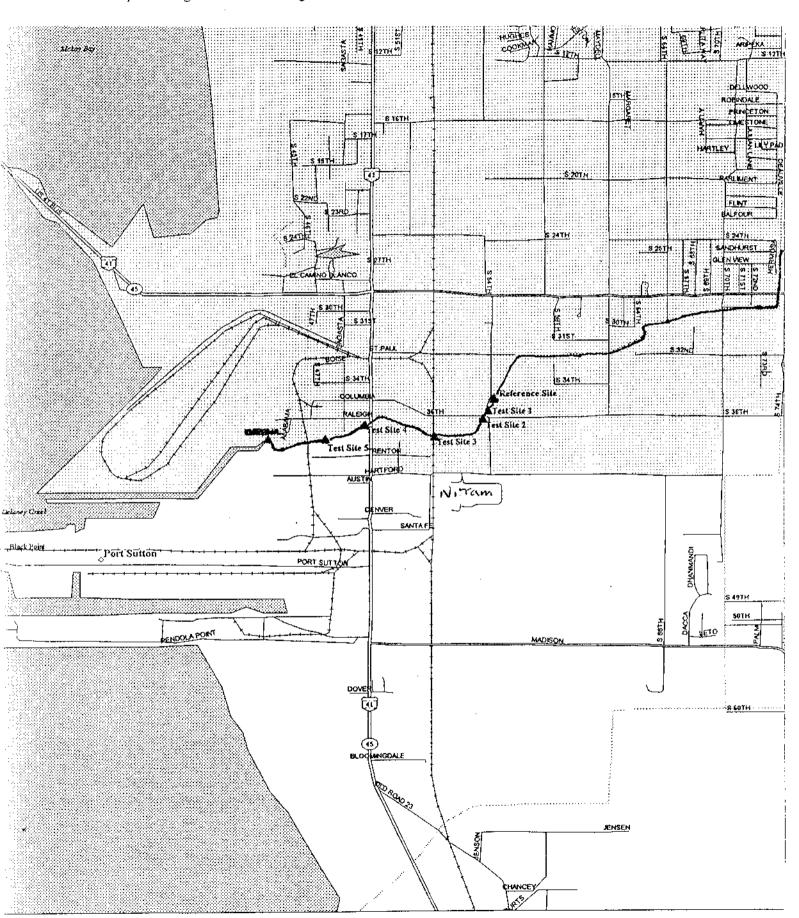
Whitmore, T. J. 1989. Florida diatom assemblages as indicators of trophic state and pH. Limnol. Oceanogr. 34(5): 882-895.

was much lower than those found in the receiving water sites, suggesting the phosphorus enrichment in Delaney Creek was due to inputs from other sources.

AGP at the reference site (24.7 mg dry wt/L), test site 1 (21.6 mg dry wt/L), and test site 2 (116.0 mg/L) $\,$ all exceeded the "problem threshold" of 5.0 mg dry wt/ L for freshwater. Considering the nutrient levels, effluent AGP (8.4 mg dry wt/L) was lower than expected, suggesting algal growth inhibition.


The Stream Condition Index (SCI) placed the reference site and test site 2 in the lower range of the "good" category, while test site 1 was placed in the upper range of the "poor" category. The Florida Index scores decreased between the reference site and test site 1 in both the Hester-Dendy and dip net samples. In summary, although Delaney Creek appeared stressed at all sampling sites, the benthic community at test site 1 was marginally worse, potentially related to the toxicity found in sediment elutriate from that location.

Periphyton algal density was higher at test site 1 than at the reference site, while all other algal indicators suggested no adverse effects from the discharge.


Literature Cited

- Barbour, M. T., J. Gerritsen, and J. S. White. 1996. Development of the Stream Condition Index for Florida. Prepared for the Fla. Dept. Environ. Protection, 105 p.
- Chang, S., F. W. Steimle, R. N. Reid, S. A. Fromm, V. S. Zdanowicz, and R. A. Pikanowski. 1992. Association of benthic macrofauna with habitat types and quality in the New York Bight. Mar. Ecol. Prog. Ser. 89: 237-251.
- EA Engineering, Science, and Technology and Tetra Tech, Inc. 1994. Bioassessment for the nonpoint source program (draft). Prepared for the Fla. Dept. Environ. Protection. Unpaginated.
- Environmental Protection Agency. 1974. Marine algal assay procedure: Bottle test. Nat'l Environ. Res. Center, Office of Res. and Dev., U.S. EPA, Corvallis, Oregon. 43 p.
- Engle, V. D., J. K. Summers, and G. R. Gaston. 1994. A benthic index of environmental condition of Gulf of Mexico estuaries. Estuaries 17(2): 372-384.
- Farrell, D. H. 1991. A community based metric for marine benthos. DEP Southwest District. Unpublished draft. 15 p.
- FDEP. 1994. Lake bioassessments for the determination of nonpoint source impairment in Florida. Fla. Dept. Environ. Prot. Biology Section, Tallahassee, Fla. 73 p.
- Hudson, P. L., D. R. Lenat, B. A. Caldwell, and D. Smith. 1990. Chironomidae of the Southeastern United States: A checklist of species and notes on biology,

- distribution, and habitat. U.S. Fish Wildl. Serv., Fish, Wildl. Res. 7. 46 pp.
- Hulbert, J. L. 1990. A proposed lake condition index for Florida. North Amer. Benth. Soc. 38th Ann. Mtg., Blacksburg, VA, 11 p.
- Lenat, D. R. 1993. A biotic index for the southeastern United States: derivation and list of tolerance values, with criteria for assigning water-quality ratings. J. N. Am. Benthol. Soc. 12(3): 270-290.
- MacDonald, D. D. 1993. Development of an approach to the assessment of sediment quality in Florida coastal waters. Report prepared for the Florida Department of Environmental Regulation, Tallahassee FL. 133 p.
- Mandrup-Poulsen, J. 1987. Delaney Creek WQBELs. Hillsborough County. Water Qual. Tech. Series 2, #109. 94 p.
- Miller, W. E., T. E. Maloney, and J. C. Greene. 1978. The Selenastrum capricornutum Printz algal assay bottle test. U. S. Environ. Prot. Agency, EPA-600/9-78-018. 126 p.
- Ross, L. T. 1990. Methods for aquatic biology. Fla. Dept. Environ. Reg. Tech. Ser. 10(1): 1-47.
- Weber, C. I. 1991. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. 4th edition. EPA/600/4-90/027. U.S. EPA, Cincinnati, Ohio. 216 pp.
- Whitmore, T. J. 1989. Florida diatom assemblages as indicators of trophic state and pH. Limnol. Oceanogr. 34(5): 882-895.

Map Showing the Six Monitoring Sites for the FYI-5 Conducted at Nitram on 17 March 1997

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION FACILITY SUMMARY

Facility Name: Name:	m, ac	Date Summary	Prepared: 3.30 (97					
Location (attach detailed map): County IF IT DOTE USA								
Federal Permit # FC COCIC and expiration date: 6/35 /	State expiration date	9: 1/30/2006	Facility Type: Industrial Municipal Federal Agricultural Other (list):					
Function of facility: Produ	nues liquid for	rhizer b	y dissolving rock					
condensate leak a 30,000 gallo acrated and and conting use treatment pand t assure transformed Receiving waters: Deta Design Flow: 41 mg - 20 mg/ Mounty mon, m Discharge is: Continuous Other (describe) therefore, the best time to sar	men Check Mean Flow: 4796 2 Mean Flow: 4796 2 Mitter Mean Flow: 479	the mast he are diversification:	waste water from the Incremt waste water waster is delicted, and cooling water water waster waster waster waster in the isomorated to belansy Court I II (III) Flow during survey:					
If facility has a mixing zone, g	is requesting	g anc	for temperature					
List effluent limits (if necessar	ry, attach relevant paperwor	7 1	cial permit conditions					
Parameter	Limit (units)	and permit m	loginications.					
see atta	chmants							
T	·		·					

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION FACILITY SUMMARY

(Facility)	
Description of permitted outfall(s):	•
Efficient of construct year are to Barriago Charles The own	at it hospited at Beth Frence
List permit violations (from MOR data or other source) and pyear: 10 exceptives on NODES permy 4/96 to present (when discharge persons sept 96, the monthy max and is excepted discharge the months of Jusept 96 to present has not yet been was recrived on why these violations. Describe previous impact bioassessments, WQBEL's, and playlas culter co Addresses 6W only issues in the co HAO been addressed cannot locate any other items,	MIT /OOKING at DATE TROM UMED) PREMIT, FROM APRIL 96 - ANG. FOR TOTAL NITHOGEN UNE, JULY HUGUST. DATE FROM EXCURRED. CON OF LETTER Attacked. DIEVEROUS OF CUTTENT ENTORGENERAL STATE OFFICE WATER SEVERAL YEARS AGO.
Discuss comparability of MOR results to past DER results a declining) in the data set:	
In the post ten cog bushe home been red on fall homeway, May	out still high.
Additional information:	Staff contributing to this review (signature):
	Candrea train & (Biologist)
	(Inspector)
	(Engineer)
	()

GMS ID No.: 4029P20054 Permit No.: 1029-254127

SPECIFIC CONDITIONS: (cont'd.)

15.b. TABLE I: Effluent Monitoring Requirements for Monitoring Station 001.

				^ ,	·	
	EFFLUENT		HARGE LIMITATION		SAMPLING	MONITORING
_		DAILY MIN	MONTHLY AVG	DAILY MAX	TYPE	FREQUENCY
	Flow (MGD) Total Nitrogen	N/A	.20	.41	Recorder	Continuous
-,	Concentration (mg/l)	N/A	7.	12	24-hr composite	Daily
	Total Nitrogen Load (lbs/day)	N/A	25 ू	50	24-hr composite	Daily
	Nitrate + Nitrit (mg/l) Total Suspended	N/A	Report	Report	24-hr composite	Daily
	Solids (mg/l) Total Ammonia	N/A	Report	20	24-hr composite	Daily
	Nitrogen (mg/l) Total Phosphorus	N/A	Report	Report	24-hr composite	Daily
	(mg/l) Unionized Ammonia	N/A	Report	Report	24-hr composite	Daily
	(mg/1)	N/A	Report	0.02	Calculation	Daily
	emperature (°F)	N/A	Report	90.0	In-Situ	Daily
•	pH (std units)	6.5	Report	8.5		Continuous
	Dissolved Oxygen			- · -		
	(mg/l)	6.0	Report	N/A	Grab	Daily
	Specific		-			
	Conductance					
	(umhos/cm)	N/A	Report	Report	Grab	Daily
	* Lined Pond		•	-		
	Water Level(ft)) Report	Report	Report	Gauge	Daily
	* Lined Pond					
	Available					
	Capacity		•			
	(inches of					
	rainfall)	Report	Report	Report	Calculation	Daily
	* Lined Pond					
	Available					
	Capacity	D	D	5	0-32	D= ()
	(gallons)	Report	Report	Report	Calculation	Daily
	Prilling Towers	NI / N	Danaut	Donomt	Logo	Dailu
	(Hrs. Operated)	N/A	Report	Report	Logs	Daily

^{*} Refers to the emergency overflow pond.

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET (5-10-90)

SUBMITTING AGENCY CODE: SUBMITTING AGENCY NAME:	1	TATION NUMBER: 40082	3/17/9	7 1 10 SO	RECEIVING BODY OF	WATER: Y Cres	ek.	
REMARKS: Low Tide Hills	- 1	TION: Vitra	n , 1	nc.	FIELD IDAME:	y Crea	i te	
RIPARIAN ZONE/INSTREAM FEATURE				-			1	
Predominant Land-Use in Watersh	· · ·	fy relative perc				المال المال		
	d/Pasture	Agricultura	, ,	ential Comm	mercial ν Ind		r (Specify)	
Local Watershed Erosion (check box	k): Nor	ne 🔲	Slight [Мо	derate 🔀	Heavy [
Local Watershed NPS Pollution (check box): No evidence Slight Moderate potential X Obvious sources								
Width of riparian vegetation (m) on least buffered side:	List & n	nap dominan lion on back			pth (m) /Velocit	<u> </u>	sect m wide m/s →	
Artificially Channelized Property Artificially Impounded yes	severe some	recovery mostly reco	vered	<u>o5</u> m/s ↑	<u>↑b.aq m/s</u>		14	
High Water Mark: +	o.3 present depth in	(m above	>+6)	m deep	√0.2 m c	186 <u>P</u>	m deep	
	Lightly Sh	aded (11-45%	6):	oderately Shac	ied (46 (80%):	X Heavily S	haded:	
SEDIMENT/SUBSTRATE								
Sediment Odors: Normal:	Sewage:	Petroleu	m: Che	emical: Ana	aerobic: Ot	her: 🔲		
Sediment Oils: Absent: X	Slight:			ofuse:		voto.		
000000000000000000000000000000000000000	Sand sm	- 5.141	it boyere	eilt smotheri		ere Outer.		
Substrate Types	# times			bstrate Types		times sampled		
Woody Debris (Snags)	1 3		San	d d/Muck/Silt	40	3	ne	
Leaf Packs or Mats 40	4 🗕	<u> </u>	Oth		10	<u> </u>	net	
Aquatic Vegetation	<u>-</u>	_	Oth				 	
Rock or Shell Rubble					ketch of habitat	s found in 100	m section	
Undercut banks/Roots						- 44		
	o. (°C)':	pH (SU): D		Cond. (µmho/cr or Salinity (ppt):	n) Salmity	Battery	Secchi (m):	
Top			3 83	MA EGA	<u>0 0,3</u>	9.5	VAR	
	.29	7.3	3.87	Mr 592.	<u>کاری ان </u>	1	رد ک ۲	
Bottom 1st - 2n	d order	5th - 6th order	<u> </u>	Mathandi	 Estuary: [Other:	<u> </u>	
System Type: Stream: 4 (3rd - 4	h order 7	7th orde <u>r or gre</u>						
Water Odors (check box): Norr	nal: 🗶	Sewage:		oleum:	Chemical:	Other:	<u> </u>	
Water Surface Oils (check box): No	ne: 💢	Sheen:	<u> </u>	Globs:	Slick:			
Clarity (check box): Cl	ear:	Slightly turb		Turbid:	Opaque:			
Color (check box): Tan	nic:	Green (alga		Clear: X	Other:		A1	
Weather Conditions/Notes:				A <i>bundarice:</i> eriphyton	Absent R	are Common 【】	Abundant	
Sunny, clear,	not h	sindy	Fis					
'' '			Ad	quatic Macroph	•	x i 🗀		
		<u> </u>	tro	on/sulfur Bacte	ria 🔽			
SAMPLING TEAM:			SIGNAT	TURE:	<u></u>	00-	3/17/4	
Andrea Grain	ger			norea	yan	~ Xer	2/11/1	
	U				\mathcal{O}	U		

FRESHWATER BENTHIC HABITAT ASSESSMENT FIELD DATA SHEET (4-22-96)

Habitat Parameter Optimal Suboptimal Suboptimal Suboptimal Suboptimal FELDENAME: Reference Site Marginal Poor It is to 30% snags, logs, tree roots, aquatic vegetation, leaf packs, equatic vegetation, leaf packs, etc. Lase than 5% snag stable habitat. Some substrates may be new fall (fresh leaves or snags). Vater Velocity Figure 1 Max. observed at typical transect: 20.25 m/sec. but < 1 m/sec. 20 1918 17 16 Max observed at typical transect: 20.25 m/sec. but < 1 m/sec. 20 1918 17 16 Artificial Channelization of dredging. Stream with normal, sinuous pattern Poor Max. observed at typical transect: 0.15 14 13 12 11 No artificial channelization or dredging. Stream with normal, sinuous pattern Poor Max. observed at typical transect: 0.15 14 13 12 11 No artificial channelization or dredging. Stream with normal, sinuous pattern Poor Max. observed at typical transect: 0.05 to 0.1 m/sec 0.05 to 0.0 m/sec 0.05 to 0.1 m/sec 0.05 to 0.0 m/sec 0.05 to 0.1 m/sec 0.	SUBMITTING AGENCY CODE: SUBMITTING AGENCY NAME:	storet station	Delaney	reel.		
Substrate Types & Availability Substrate Types & Availability Substrate Types & Availability Substrate Types & Availability Substrate Types & Availability Substrate Types & Availability Substrate Types & Availability Substrate Types & Availability Substrate Types & Availability Substrate Types & Availability Substrate Types & Availability Substrate Types Substrate In 30% snags, logs, tree roots, aquatic vegetation, leaf packs, etc. Las of habitats is obvious pattern Substrate Types Substrate In 30% snags, logs, tree roots, aquatic vegetation, leaf packs, etc. Las of habitats is obvious pattern Substrate In 30% snags, logs, tree roots, aquatic vegetation, leaf packs, etc. Las of habitats, frequent light surbed or removed. Substrate Types Max. observed at typical transect: 0.15 to 0.25 m/sec or typical transect: 0.15 to 0.25 m/sec or typical transect: 0.05 to 0.1 m/sec on typical transect: 0.05 to 0.0 m/sec or typical transect: 0.05		COUNTY: LOCATION:		FIELD IDNAME: Refere	nce Site	
Substrate Types & Availability Greater than 30% snags, logs, tree roots, aquatic vegetation, leaf packs (partially decayed), undercut banks, rock, or other stable habitat. 20 19 18 17 16 Water Velocity Artificial Channelization Channelization Artificial Channelization Habitat Smothering Bank Stability Habitat Smothering Bank Stability Bank Stability Greater than 30% snags, logs, tree roots, aquatic vegetation, leaf packs, etc. Laes than desirable habitat. Some substrates may be new fall (fresh leaves or snags). Water Velocity Max. observed at typical transect: >0.25 m/sec, but < 1 m/sec 20 19 18 17 16 Way have been channelization or dredging. Stream with normal, sinuous pattern 20 19 18 17 16 Water Velocity Artificial Channelization Channelization Channelization To 19 18 17 16 Way have been channelized in the past (20 yrs), but mostly recovered, fairly good sinuous pattern 20 19 18 17 16 Way have been channelized in the past (20 yrs), but mostly recovered, fairly good sinuous pattern 20 19 18 17 16 Stable. No evidence of erosion or bank failure. Little potential for future problems. 20 19 18 17 16 Riparian Buffer Zone Width Riparian Buffer Zone Width of native vegetation (least buffered side) greater than 18 m Riparian Buffer Zone Width Riparian Riparian Buffer Zone Width Riparian Riparian Riparian Riparian Riparian Ripa	Habitat Parameter	Optimal	Suboptimal	Marginal	Poor	
Water Velocity Wax. observed at typical transect: >0.25 m/sec. but < 1 m/sec 20 19 18 17 16 Artificial Channelization IS Habitat Smothering Bank Stability Bank Stability Bank Stability Riparian Buffer Zone Width Riparian Buffer Zone Width of native vegetation (least buffered side) greater than 18 m 20 19 18 17 16 Riparian Buffer Zone Width of native vegetation (least buffered side) greater than 18 m 20 19 18 17 16 Riparian Buffer Zone Width of native vegetation (least buffered side) 12 m to 18 m 20 19 18 17 16 Riparian Buffer Zone Width of native vegetation (least buffered side) 12 m to 18 m 20 19 18 17 16 Riparian Summer And Sone Sone Sone Sone Sone Sone Sone Sone		snags, logs, tree roots, aquatic vegetation, leaf packs (partially decayed), undercut banks, rock, or other	tree roots, aquatic vegetation, leaf packs, etc. Adequate habitat. Some substrates may be new fall (fresh leaves or snags).	tree roots, aquatic vegetation, leaf packs, etc. Less than desirable habitat, frequently disturbed	aquatic vegetation, leaf packs, etc. Lack of habitat is obvious, substrates unstable or smothered.	
Water Velocity Wax. observed at typical transect: variety in transect: variety varie		20 19 1 8 17 16	(15)14 13 12 11	10 9 8 7 6		
Artificial Channelization Channelization Channelization Channelization Channelization Channelization or dredging. Stream with normal, sinuous pattern 15	Water Velocity N 389	typical transect: >0.25 m/sec. but < 1 m/sec	typical transect: 0.1 to 0.25 m/sec	typical transect: 0.05 <u>to</u> 0.1 m/sec	typical transect <0.05 m/sec, or spate occurring; > 1 m/sec	
Habitat Smothering Less than 20% of habitats affected by sand or silt accumulation 20 19 18 17 16 Bank Stability Stable. No evidence of ferosion or bank failure. Little potential for future problems. 20 19 18 17 16 Riparian Buffer Zone Width Width of native vegetation (least buffered side) greater than 18 m 20 19 18 17 16 Civer 80% of riparian Less than 20% of habitats affected by sand or silt, pools shallow, frequent sediment movement 20 19 18 17 16 Smothering of 50%-80% of habitats with sand or silt, pools shallow, frequent sediment movement 10 9 8 7 6 Width of native vegetation (least buffered side) greater than 18 m 20 19 18 17 16 Civer 80% of riparian 20%-50% of habitats affected by sand or silt, pools shallow, frequent sediment movement 10 9 8 7 6 Width of native vegetation (least buffered side) 12 m to 18 m 20 19 18 17 16 Civer 80% of riparian 20%-50% of habitats with sand or silt, pools shallow, frequent sediment movement 10 9 8 7 6 Moderately unstable. Moderate areas of erosion, potential during floods. Width of native vegetation (least buffered side) 12 m to 18 m 20 19 18 17 16 Civer 80% of riparian 20%-50% of fibatiats with sand or silt, pools shallow, frequent sediment movement 10 9 8 7 6 Width of native vegetation 6 to 12 m, human activities still close to system 10 9 8 7 6		No artificial channelization or dredging. Stream with normal, sinuous	No artificial channelization or dredging. Stream with normal, sinuous May have been channelized in the past (>20 yrs), but mostly recovered, fairly good		Artificially channelized, box-cut banks, straight, instream habitat highly altered	
Habitat Smothering Less than 20% of habitats affected by sand or silt accumulation 20 19 1 8 17 16 Bank Stability Stable. No evidence of erosion or bank failure. Little potential for future problems. 20 19 1 8 17 16 Riparian Buffer Zone Width Riparian Buffer Zone Width Control Width of native vegetation (least buffered side) greater than 18 m 20 19 1 8 17 16 Control Width of parisan Control Wid		20 19 1 8 17 16				
Bank Stability Stable. No evidence of erosion or bank failure. Little potential for future problems. 20 19 1 8 17 16 Riparian Buffer Zone Width 20 19 1 8 17 16 Stable. No evidence of erosion or bank failure. Little potential for future problems. 20 19 1 8 17 16 Width of native vegetation (least buffered side) greater than 18 m 20 19 1 8 17 16 Stable. No evidence of erosion, Infrequent or small areas of erosion, mostly healed over. Width of native vegetation (least buffered side) 12 m to 18 m 20 19 1 8 17 16 Stable. No evidence of erosion, mostly healed over. Width of native vegetation (least buffered side) 12 m to 18 m 20 19 1 8 17 16 Stable. No evidence of erosion, mostly healed over. Width of native vegetation (least buffered side) 12 m to 18 m 20 19 1 8 17 16 Stable. No evidence of erosion, mostly healed over. Width of native vegetation 6 to 12 m, human activities still close to system 10 9 8 7 6 Stable. No evidence of erosion, mostly healed over. Width of native vegetation 6 to 12 m, human activities still close to system 10 9 8 7 6 Stable. No evidence of erosion, mostly healed over. 10 9 8 7 6 Stable. Moderately unstable. Moderate areas of erosion, high erosion potential during floods. Stable. No evidence of erosion, mostly healed over. 10 9 8 7 6 Stable. No evidence of erosion, mostly healed over. 10 9 8 7 6 Stable. No evidence of erosion, mostly healed over. 10 9 8 7 6 Stable. No evidence of erosion, mostly healed over. 10 9 8 7 6 Stable. No evidence of erosion, mostly healed over. 10 9 8 7 6 Stable. No evidence of erosion, mostly healed over. 10 9 8 7 6 Stable. No evidence of erosion, mostly healed over. 10 9 8 7 6 Stable. No evidence of erosion, mostly healed over. 10 9 8 7 6 Stable. No evidence of erosion, mostly healed over. 10 9 8 7 6 Stable. No evidence of erosion, mostly healed over. 10 9 8 7 6 Stable. No evidence of erosion, mostly healed over. 10 9 8 7 6 Stable. No evidence of erosion, mostly healed over. 10 9 8 7 6 Stable. No evidence of erosio	Smothering habitats affected by sand or silt		habitats affected by sand or silt	80% of habitats with sand or silt, pools shallow, frequent	>80% of habitats with sand or silt, a severe problem,	
Bank Stability Stable. No evidence of erosion or bank failure. Little potential for future problems. 20 19 1 8 17 16 Riparian Buffer Zone Width Width of native vegetation (least buffered side) greater than 18 m 20 19 1 8 17 16 Stable. No evidence of erosion areas of erosion, mostly healed over. Width of native vegetation (least buffered side) 12 m to greater than 18 m 20 19 1 8 17 16 Stable. No evidence of erosion areas of erosion, mostly healed over. Width of native vegetation (least buffered side) 12 m to lose to system 10 9 8 7 6 Width of native vegetation 6 to 12 m, human activities still close to system 20 19 1 8 17 16 Over 80% of riparian Over 80% of riparian Stable. No evidence of erosion, mostly healed over. Width of native vegetation (least buffered side) 12 m to lose to system 10 9 8 7 6 Stable. No evidence of erosion, mostly healed over. Width of native vegetation 6 to 12 m, human activities still close to system 10 9 8 7 6 Stable. No evidence of erosion, mostly healed over. 10 9 8 7 6 10		20 19 1.8 17 (6)	15 14 13 12 11			
Riparian Buffer Zone Width Width of native vegetation (least buffered side) greater than 18 m 20 19 18 17 16 Over 80% of riparian Width of native vegetation (least buffered side) 12 m to 18 m 10 9 8 7 6	Bank Stability	Stable. No evidence of erosion or bank failure. Little potential for	Infrequent or small areas of erosion,	Moderate areas of erosion, high erosion	areas. Obvious bank	
Riparian Buffer Zone Width Width of native vegetation (least buffered side) greater than 18 m 20 19 18 17 16 Over 80% of riparian Width of native vegetation (least buffered side) 12 m to least buffer zone due to intensive human activities 15 14 13 12 11 10 9 8 7 6 50% to 80% of riparian Less than 6 m of native vegetation 6 to 12 m, human activities still close to system 1	. 10	20 19 1 8 17 16	15 14 13 12 11	(10) 9 8 7 6	5 4 3 2 1	
Over 80% of riparian 50% to 80% of riparian 25% to 50% of riparian Less than 25% of		parian Buffer Width of native vegetation (least buffered side) Wi		vegetation 6 to 12 m, human activities still	native buffer zone due to intensive human activities	
	<u> </u>	20 19 1 8 17 16	15 14 13 12 11	1		
Riparian Zone Vegetation Quality Surfaces consist of native plants, including trees, understory shrubs, or non-woody macrophytes. Normal, expected plant community for given Surfaces consist of native plants are vegetated, and/or one or two one class of plants and/or one or two expected classes of plants are not represented. Patches of bare soil or closely vegetation removes the sunlight & habitat conditions is not represented. Some vegetated, and/or one is vegetated, and/or one or two expected classes of plants are not represented. Patches of bare soil or closely vegetation vegetated, and/or one or two expected classes of plants are not represented. Patches of bare soil or closely vegetated and vegetated and poor plant community for given vegetated.	Vegetation	plants, including trees, understory shrubs, or non-woody macrophytes. Normal, expected plant community for given	one class of plants normally expected for the sunlight & habitat conditions is not represented. Some	zone is vegetated, and/or one or two expected classes of plants are not represented. Patches of bare soil or closely	Less than 25% of streambank surfaces are vegetated and/or poor plant community (e.g. grass monoculture or exotics) present. Vegetation removed to stubble height of 2	
conditions. community evident. disruption obvious. inches or less.	g l	sunlight & habitat conditions.		l -	1	
20 19 1 8 17 16 15 14 13 12 11 10 9(8) 7 6 5 4 3 2 1			<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
Add 5 points if cross-sectional area of flow is estimated to be > one square meter during periods of normal flow.	Add to be	points if cross-sectionalone square meter during	area of flow is estimated g periods of normal flow.	Comments	·	
74 TOTAL SCORE	7 4 TO	TAL SCORE				
ANALYSIS DATE: ANALYST: ANALYST: SIGNATURE: SIGNATURE: SIGNATURE:	ANALYSIS DATE:	ANALYST:		due do		

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET (5-10-96)

SUBMITTING AGENCY CODE:SUBMITTING AGENCY NAME;	24040077	3/17/97 1020	Delaney Cr	eek
REMARKS: Low Tide Huls	LOCATION: NITra	m, Inc.	Test Sit	e I
RIPARIAN ZONE/INSTREAM FEATURES				
Predominant Land-Use in Watershed		nt in each category):		
Forest/Natural Silviculture Field/	Pasture Agricultural	50	Industrial 20 Deferate Heav	Other (Specify)
Local Watershed Erosion (check box):	None			
on least buffered side: 2	ist & map dominant vegetation on back	Typical Width (m)/D	rate potential X Obvi	Ous sources Transect 6 m wide
Artificially Impounded yes	vere some recovery mostly reco-	vered.	1	
High Water Mark: + torrely (pre	0.5 = 1.1/z		ded (46-80%): X Hea	o.u m deep
Canopy Cover %: Open: Lig	ghtly Shaded (11-45%) Moderately ona	ded (40 0079. [A] 1100	****)
SEDIMENT/SUBSTRATE Sediment Odors: Normal: Sediment Odors: Normal: Sediment Odors: Normal: Sediment Odors: Normal: Normal: Sediment Odors: Normal: Norm	ewage: Petroleun		naerobic: Other:	
	none	moderate (3) cmothor	ind none moderate Ot	her:
		thod Substrate Types		
Substrate Types % coverage Woody Debris (Snags)		Sand	30 5	
Leaf Packs or Mats 26	5	Mud/Muck/Silt	75 3	
Aquatic Vegetation 26	5	Other:		
Rock or Shell Rubble		Other:		
Undercut banks/Roots		Draw Berial views	sketch of habitats found i	n 100 m section
		Cond. (µmho/c	om) Salinity Batte	ny Carabi (m)
WATER QUALITY Depth (m): Temp.	(°C): pH (SU): D.(O. (mg/l): or Salinity (ppt)	- Salin (1)	Secchi (m):
Тор				-
Mid-depth 0.925	16 7.27 3	101 Par607.	0 0.3 9.1	VOB
Bottom				
System Type: Stream: 4 (1st - 2nd of 3rd - 4th	order 5th - 6th order order 7th order or grea	ter) Lake: Wetland	: Estuary: Other	r:
Water Odors (check box): Norma	il: 🔽 Sewage:	Petroleum:	Chemical: Othe	er:
Water Surface Oils (check box): None	e: Sheen: 🔀	Globs:	Slick:	
Clarity (check box): Clea	r: Slightly turbi	d: 🔀 Turbid: 📗	Opaque:	
Color (check box): Tannie	c: Green (algae	e): X Clear:	Other:	
Weather Conditions/Notes:		Abundance:	Absent Rare Co	mmon Abundant
Sunny, clear, r	o wind.	Periphyton Fish Aquatic Macropi Iron/sulfur Bacte	-	
SAMPLING TEAM:		SIGNATURE:	1	DATE:
Andrea Gra	unger	Condrece	2 frams	<u> 3/17/9</u>

FRESHWATER BENTHIC HABITAT ASSESSMENT FIELD DATA SHEET (4-22-96)

SUBMITTING AGENCY CODE;	storet station 24040	1. / / /	CEIVING BODY OF WATER:	reek.		
REMARKS: Low Troto	COUNTY: LOCATION:	train, Inc	FIELD IDMAME: Test	Site 1		
Habitat Parameter	Optimal	Suboptimal	Marginal	Poor		
Substrate Types & Availability Greater than 30% snags, logs, tree roots, aquatic vegetation, leaf packs (partially decayed), undercut banks, rock, or other stable habitat.		16% to 30% snags, logs, tree roots, aquatic vegetation, leaf packs, etc. Adequate habitat. Some substrates may be new fall (fresh leaves or snags).	5% to 15% snags, logs, tree roots, aquatic vegetation, leaf packs, etc. Less than desirable habitat, frequently disturbed or removed.	Less than 5% snags, logs, tree roots, aquatic vegetation, leaf packs, etc. Lack of habitat is obvious, substrates unstable or smothered.		
	20 19 1 8 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 Max. observed at		
Water Velocity	Max. observed at typical transect: >0.25 m/sec. but < 1 m/sec 20 19 1 8 17 16	Max. observed at typical transect: 0.1 to 0.25 m/sec 15 14 13 12 11	Max. observed at typical transect: 0.05 to 0.1 m/sec 10 9 8 7 6	typical transect <0.05 m/sec, or spate occurring; > 1 m/sec 5 4 3 2 1		
Artificial Channelization	Artificial channelization or dredging. Stream with normal, sinuous		No artificial May have been channelization or dredging. Stream with normal, sinuous May have been channelized in the past (>20 yrs), but mostly recovered, fairly good		Channelized, somewhat recovered, but > 80% of area affected	Artificially channelized, box-cut banks, straight, instream habitat highly altered
	20 19 1 8 17 16	15)14 13 12 11	10 9 8 7 6 Smothering of 50%-	5 4 3 2 1		
Habitat Smothering Less than 20% of habitats affected by sand or silt accumulation		habitats affected by sand or silt sand or silt		Smothering of >80% of habitats with sand or silt, a severe problem, pools absent		
	20 19 1 8 17 (16)	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1		
Bank Stability	Stable. No evidence of erosion or bank failure. Little potential for future problems.	Moderately stable. Infrequent or small areas of erosion, mostly healed over.	Moderately unstable. Moderate areas of erosion, high erosion potential during floods.	Unstable. Many (60%- 80%) raw, eroded areas. Obvious bank sloughing.		
	20 19 1 8 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1		
Riparian Buffer Zone Width	Width of native vegetation (least buffered side) greater than 18 m	Width of native vegetation (least buffered side) 12 m to 18 m	Width of native vegetation 6 to 12 m, human activities still close to system	Less than 6 m of native buffer zone due to intensive human activities		
	20 19 1 8 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2(1)		
Riparian Zone Vegetation Quality	Over 80% of riparian surfaces consist of native plants, including trees, understory shrubs, or non-woody macrophytes. Normal, expected plant community for given sunlight & habitat conditions.	50% to 80% of riparian zone is vegetated, and/or one class of plants normally expected for the sunlight & habitat conditions is not represented. Some disruption in community evident.	25% to 50% of riparian zone is vegetated, and/or one or two expected classes of plants are not represented. Patches of bare soil or closely cropped vegetation, disruption obvious.	Less than 25% of streambank surfaces are vegetated and/or poor plant community (e.g. grass monoculture or exotics) present. Vegetation removed to stubble height of 2 inches or less.		
	20 19 1 8 17 16	15 14 13 12(11)	10 9 8 7 6	5 4 3 2 1		
Add to be	5 points if cross-sectional > one square meter during	area of flow is estimated g periods of normal flow.	Comments			
76. TO	TAL SCORE					
ANALYSIS DATE: 3/17/97	Andrea G	rainzer Cana	area gro	injer		

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET (6-10-90)

	PHY		EMICAL CHA			L DOTTING	CEIVING BODY OF	WATED:	
SUBMITTING AGENCY CODE SUBMITTING AGENCY NAME:			ORET STATION NUM ?404 007	.	1000: TIME	20	Delane	لم صوه	r.
			909007	0 1-0/	-111			y Cree Site 2	
REMARKS:		OUNTY:	LOCATION:	•	1		FIELD IDNAME:	Sito 2	
Low Tid	e 1	Hills.	NITTO	in,	inc.		1621	ے ۱۱ <i>۱</i>	
L RIPARIAN ZONE/INST		TURES	<u></u>						
Predominant Land-			(specify relative	percent in e	each category): 			
	lviculture	Field/Pa			Residential	Comme	rcial ind	ustrial Othe	er (Specify)
		30			20		_ [2	ပ ၂	
		<u> </u>	Niene [Sligi		Mode	rate	Heavy	
Local Watershed Er			None						
Local Watershed NI	PS Pollutio				Slight		potential	Obvious s y (m/sec) Tran	
Width of riparian veg	getation (r	n) <i>Lis</i> :	t & map dom egetation on b		урісаі ұлып	(m/Depti	t (III) / velocit	7	m wide
on least buffered signature			getation on L	/acx	⊘.22 m/s 1		10.04n/s	10.	02 m/s
Artificially Channeliz		recent, sever	e towe tecovery mo	stly recovered	; — — — ;		 	- 	
Artificially Impounde	eu ∟ yes			1.5	<u> </u>	, 	1	· ·	3m deep
High Water Mark:	owa present wate	r level) (preser	ot depth in m)	Bbove bod)	ؕY m dee		∀⊘.5 m c		
Canopy Cover %:	Open :	Ligh	tly Shaded (11	-45%): 🔲	Moderate	ly Shaded	(46 -6 0%): [X Heavily S	haded:
SEDIMENT/SUBSTRA	ATF								
Sediment Odors:	Norma	ıl: X Sev	wage: Pet	roleum:	Chemical:	Anaei	robic: 🔲 Of	ther:	
Sediment Oils:	Absen	_'		derate:	Profuse:			77 01	- Sides of
		 -	d smothering:	none mo	derate Silt en	<u> </u>	none mode	orate Other:	
Sediment Deposition			times sampled	_slight se method	Substrate			times sampled	method
Substrate Types			3	111001100	Sand	1,700	50	5	
Woody Debris (Sn Leaf Packs or Mat		0	5		Mud/Muck/	Silt	20	5	
			2		l Other:				
Aquatic Vegetation Rock or Shell Rub					Other:				
Undercut banks/Re					Draw aerial	view sket	ch of habitat	s found in 100	m section
Ondercut parks/N	0013 1			<u> </u>	0			0 11-	
WATER QUALITY D	epth (m):	Temp. (%	c): pH (SU)	: D.O. (m	g/l): Cond. (or Salini	μπιπο/cπι) : ty (ppt):	Salinity	Battery	Secchi (m):
Тор				 					
	3.25	20.36	7.09	4.78	30	0.0	[+]	9.50	VOS
Bottom									
System Type : Stre	eam: Ul/ 1	st - 2nd or	der 5th - 6th der 7th order	order)	Lake: W	etland:	Estuary: [Other:	
Water Odors (chec		3rd - 4th or Normal:			Petroleum:	С	hemical:	Other:]
Water Surface Oils				en:X	Giobs:		Slick:	alot of	gas
	<u> </u>	Clear:		y turbid: X			Opaque:		
Clarity (check box):			-	(algae):			Other:		
Color (check box):		Tannic:	LJ Green	(aigae).	Abunda	'	<u> </u>	are Commo	n Abundant
Weather Condition	s/Notes:			1	Periphyto		Absent II		" ADG. 100."
clear,	Sunn	٠, ٢٠	no vin	7 .	Fish				
,		• `			Aquatic N				
					Iron/sulfu	r Bacteria	<u> </u>		
SAMPLING TEAM:	~				SIGNATURE:	A	1~		3/17/
I /	TYMI	nzen			cono	يدوه	J/17 CL	mpls	15/1/6

FRESHWATER BENTHIC HABITAT ASSESSMENT FIELD DATA SHEET (4-22-96)

SUBMITTING AGENCY CODE: SUBMITTING AGENCY NAME:	storet station 2 40 400	l	DE LONG BODY OF WATER:	eek.
REMARKS: Low hole	LOCATION:	itram, Inc		Site 2
Habitat Parameter	Optima!	Suboptimal	Marginal	Poor
Substrate Types & Availability	Greater than 30% snags, logs, tree roots, aquatic vegetation, leaf packs (partially decayed), undercut banks, rock, or other stable habitat.	16% to 30% snags, logs, tree roots, aquatic vegetation, leaf packs, etc. Adequate habitat. Some substrates may be new fall (fresh leaves or snags).	5% to 15% snags, logs, tree roots, aquatic vegetation, leaf packs, etc. Less than desirable habitat, frequently disturbed or removed.	Less than 5% snags, logs, tree roots, aquatic vegetation, leaf packs, etc. Lack of habitat is obvious, substrates unstable or smothered.
	20 19 1 8 17 (16)	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 Max. observed at
Water Velocity	Max. observed at typical transect: >0.25 m/sec. but < 1 m/sec 20 19 1 8 17 16	Max. observed at typical transect: 0.1 to 0.25 m/sec 15 14 13 12 11	Max. observed at typical transect: 0.05 to 0.1 m/sec	typical transect <0.05 m/sec, or spate occurring; > 1 m/sec 5 4 3 2 1
Artificial Channelization	No artificial channelization or dredging. Stream with normal, sinuous pattern	May have been channelized in the past (>20 yrs), but mostly recovered, fairly good sinuous pattern	Channelized, somewhat recovered, but > 80% of area affected	Artificially channelized, box-cut banks, straight, instream habitat highly altered
	20 19 1 8 17 16	15 4 13 12 11	10 9 8 7 6	5 4 3 2 1
Habitat Smothering	Less than 20% of habitats affected by sand or silt accumulation	20%-50% of habitats affected by sand or silt accumulation	Smothering of 50%- 80% of habitats with sand or silt, pools shallow, frequent sediment movement	Smothering of >80% of habitats with sand or silt, a severe problem, pools absent
15	20 19 1 8 17 16	(15)14 13 12 11	10 9 8 7 6	5 4 3 2 1
Bank Stability	Stable. No evidence of erosion or bank failure. Little potential for future problems.	Moderately stable. Infrequent or small areas of erosion, mostly healed over.	Moderately unstable. Moderate areas of erosion, high erosion potential during floods.	Unstable. Many (60%- 80%) raw, eroded areas. Obvious bank sloughing.
	20 19 1 8 17 16	15 14 13 12 11	(10) 9 8 7 6	5 4 3 2 1
Riparian Buffer Zone Width	Width of native vegetation (least buffered side) greater than 18 m	Width of native vegetation (least buffered side) 12 m to 18 m	Width of native vegetation 6 to 12 m, human activities still close to system	Less than 6 m of native buffer zone due to intensive human activities
	20 19 1.8 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2(1)
Riparian Zone Vegetation Quality	Over 80% of riparian surfaces consist of native plants, including trees, understory shrubs, or non-woody macrophytes. Normal, expected plant community for given sunlight & habitat	50% to 80% of riparian zone is vegetated, and/or one class of plants normally expected for the sunlight & habitat conditions is not represented. Some disruption in	25% to 50% of riparian zone is vegetated, and/or one or two expected classes of plants are not represented. Patches of bare soil or closely cropped vegetation,	streambank surfaces are vegetated and/or poor plant community (e.g. grass monoculture or exotics) present. Vegetation removed to stubble height of 2
8	conditions.	community evident.	disruption obvious.	inches or less. 5 4 3 2 1
Add	20 19 1 8 17 16 5 points if cross-sectional	area of flow is estimated		
to be	> one square meter during	g periods of normal flow.	HD was	andalized
	TAL SCORE	SIGNATURE:	po 1 ms o	·
3/17/97	Grans	er cane	rea gra	mger

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET (5-10-60)

SOBMITTING AGENCY COOL	HO 40079	DATE (MOM): TIME 3/17/97 0830	RECEIVING BODY OF WATER: Dolaney Creek
REMARKS: COUNTY: HULS	NItran	, Inc.	Test Site 3
RIPARIAN ZONE/INSTREAM FEATURES		<u>. </u>	
, , , , , , , , , , , , , , , , , , , ,	specify relative percen		in the formation to the first of the section of the
Forest/Natural Silviculture Field/Pas	sture Agricultural	Residential Com	mercial Industrial Other (Specify)
Local Watershed Erosion (check box):	None	Slight Mo	oderate X Heavy
Local Watershed NPS Pollution (check bo	ox): No evidence		rate potential 🔽 Obvious sources 🗌
Width of riparian vegetation (m) List	& map dominant getation on back		epth (m) /Velocity (m/sec) Transect 7 m wide
Artificially Channelized no present every	some recovery mostly recover more sinuot	D-45 m/s ↑	↑ 6.05 m/s
Artificially Impounded ☐ yes High Water Mark: ☐ + ☐	·7 = 1.7	D·2 m deep	₩ deep
(m above present water level) (present	depth in m) (m above bed		
Canopy Cover %: Open: Light	y Shaded (17) 45%):	Moderately Shace	ded (40-80%): Theavily Shaded.
SEDIMENT/SUBSTRATE	D-tlar	Chamical: An	aerobic: X Other:
Deditterit Coots.	age: Petroleum:	<u>- </u>	aerobic. [A] Other.
	ight: Moderate:		uous moderate Other.
	smothering: none slight	moderat Silt smotheri	
Substrate Types % coverage # tir	mes sampled meth		% coverage # times sampled method
Woody Debris (Snags)		Sand Mud/Muck/Silt	
Leaf Packs or Mats		Other:	
Aquatic Vegetation Rock or Shell-Rubble		Other:	
Undercut banks/Roots		Oraw aerial view si	ketch of habitats found in 188 m section
WATER QUALITY Depth (m): Temp. (°C)	pH (SU): D.O	. (mg/l): Cond. (µmho/cr or Salinity (ppt):	m) Salmy Battery Secchi (m):
Тор			
Mid-depth 0.15 19.33 Bottom	7.07 2.	86 2400.0	1.3 9.00 VOB
System Type: Stream: 1st - 2nd orde	or 5th - 6th order or 7th order or greate	Lake: Wetland:	Estuary: X Other:
Water Odors (check box): Normal:		Petroleum:	Chemical: Other:
Water Surface Oils (check box): None:	Sheen:∡	Globs:	Slick:
Clarity (check box): Clear:	Slightly turbid	: Turbid: 🗶	Opaque:
Color (check box): Tannic:	Green (algae)	: 🗹 Clear: 🗌	Other:
Weather Conditions/Notes: Sunny, clear,	م ساء سط	Abundance: Periphyton Fish Aquatic Macroph Iron/sulfur Bacte	
SAMPLING TEAM:		SIGNATURE:	OATE:
Andrea Grame	<i></i>	Candres	Jren 3/17/9

DEPARTMENT OF ENVIRONMENTAL REGULATION 5.0 ppt solvely
MARINE BENTHIC HABITAT ASSESSMENT FIELD DATA SHEET

SUBMITTING AGENCY CODE:SUBMITTING AGENCY NAME:	storet station NUM		eveng body of water: Che	عاد
REMARKS:	LICCATION	am, Inc.	FIELD DONAME: Tests	ite 3
Habitat Parameter	Excellent	Good	Fair	Poor
Littoral Alterations	None—Unaltered shoreline. 9-10 points	Mostly natural shoreline, but with occasional riprap. 6-8 points	Shoreline consisting mostly of riprap and vertical seawalls. 3-5 points	Shoreline consisting almost entirely of vertical seawalls. 0-2 points
Community Types Observed	At least four communities observed from the following list: mangrove swamp, marsh, oyster bar, grass bed, reef, saltern, natural beach, or tidal creek. 38-50 points	Two or three communities observed from those listed. 26-37 points	One community observed from those listed. 13-25 points	No communities observed from those listed. 0-12 points
Tidal Fluctuation	>0.75 m. 4-5 points	0.5 - 0.75 m. 3 points	0.25 - 0.5 m. 2 points	<0.25 m. 0-1 point
Freshwater Discharges/ Alterations	Only natural runoff 9-10 points	Mostly natural runoff, but with a few, small stormwater sources. 6-8 points	Considerable stormwater discharge from local roads, parking lots, etc. 3-5 points	Extensive manmade discharges, especially from canals draining large tracts of land. 0-2 points
Flow and Wave Action	Light to moderate wave action present except under the harshest weather conditions. Flow unrestricted by manmade structures. 9-10 points			Heavy wave action sometimes present even during average weather conditions, or flow restricted by manmade structures so that velocities are very high. 0-2 points
Sediment Type	Combination of sand, gravel, and shell. 12-15 points	Primerily sand, with small areas of mud. 8-11 points	Mixture of sand and mud, or well-aerated mud only. 4-7 points	Anaerobic mud. 0-3 points
	TOTAL	SCORE		•

alone side. This

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET (5-10-90)

SUBMITTING AGENCY CODE:SUBMITTING AGENCY NAME:		DATE (MOM): TIME 03/17/97 0730	Delany	reek.
REMARKS: Tide COUNTY:	LOCATION: Nam	ijlac	Test Si	te 4
RIPARIAN ZONE/INSTREAM FEATURE		·		
Predominant Land-Use in Watersh	ed (specify relative percer		. Sal 1 . Landoustria	i Other (Specify)
TOTOSPITATORE -	d/Pasture Agricultural	Residential Com	nmercial Industria	
Local Watershed Erosion (check box	c): None	Slight M	oderate 🔀 💮 H	eavy
Local Watershed NPS Pollution (ch		Slight Mode	rate potential 📉 O	bvious sources 🔲
Width of riparian vegetation (m) on least buffered side:	List & map dominant vegetation on back	Typical Width (m)/D	epth (m) /Velocity (m/s	& w wide
satisfication Channelized 100	severe some recovery mostly recow	ered us	↑ ☆ - ☆ S m/s	↑ (D-05 m/s)
High Water Mark: 1 +	0.5 = 1.5	6. m deep	√0.3 m deep	O-1 m deep
(m above present water lever)	present depth in m) (m above be Lightly Shaded (11) 45%)	-		leavily Shaded:
SEDIMENT/SUBSTRATE	<u></u>		Lie Control	
Sediment Odors: Normal: X	Sewage: Petroleum	<u> </u>	naerobic: Other:	
Sediment Oils: Absent: X	Slight: Moderate	: Profuse:	- desired	
Sediment Deposition: Sludge:	Sand smothering: none slight	moderate Silt smother	ring: none moderate	Other:
	ge # times sampled met	hod Substrate Type	s % coverage # times	sampled method
Woody Debris (Snags)		Sand		
Leaf Packs or Mats		Mud/Muck/Silt		
Aquatic Vegetation		Other:		
Rock or Shelf Rubble		Other:		11 100
Undercut banks/Roots		Oraw aerial view	sketch of habitats fou	nd in 100 m section
WATER QUALITY Depth (m): Tem	p. (°C): pH (SU): D.C	O. (mg/l): Cond. (µmho/ or Salinity (ppt	(cm) Solinhy 19	Secchi (m):
Тор				190 VOB
Mid-depth 0.2 9	101 7.02 2	·94 3850·	० ४.। ।	vois
Bottom				
System Type: Stream: (1st - 2r	nd order 5th - 6th order th order 7th order or great	ter) Lake: Wetland	d: Estuary: 🗶 O	ther:
Water Odors (check box): Nor	mal:X Sewage:	Petroleum:		Other:
Water Surface Oils (check box): No	one: Sheen: X	Giobs:	Slick:	
Clarity (check box): Cl	ear: Slightly turbi		Opaque:	
Color (check box): Tar	nnic: Green (algae		Other:	
Weather Conditions/Notes: 5hill early in up, with coo	AM, SUN	Abundance: Periphyton Fish	Absent Rare	Common Abundant
up, will coo	· (•	Aquatic Macro Iron/sulfur Bac		
SAMPLING TEAM:		SIGNATURE:	01	B/17/
Korach / CI	rainger	condies	Karpe	P(17)

MARINE BENTHIC HABITAT ASSESSMENT FIELD DATA SHEET

MA	RINE BENTHIC HABIT			
SUBMITTING AGENCY CODE:	2404007		ElVING BODY OF WATER:	real.
REMARKS: Low tide	LOCATION: N;t	ram, Inc	FIELD IONAME: Test	Site 4
Habitat Parameter	Excellent	Good	Fair	Poor
Littoral Alterations	None—Unaltered shoreline. 9-10 points	Mostly natural shoreline, but with occasional riprap. 6-8 points	Shoreline consisting mostly of riprap and vertical seawalls. 3-5 points	Shoreline consisting almost entirely of vertical seawalls. 0-2 points
Community Types Observed	At least four communities observed from the following list: mangrove swamp, marsh, oyster bar, grass bed reef, saltern, natural beach, of tidal creek. 38-50 points	Two or three communities observed from those listed. 26-37 points	One community observed from those listed. 13-25 points	No communities observed from those listed. 0-12 points
Tidal Fluctuation	>0.75 m. 4-5 points	0.5 - 0.75 m. 3 points	0.25 - 0.5 m. 2 points	<0.25 m. 0-1 point
Freshwater Discharges/ Alterations	Only natural runoff 9-10 points	Mostly natural runoff, but with a few, small stormwater sources. 6-8 points	Considerable stormwater discharge from local roads, parking lots, etc. 3-5 points	Extensive manmade discharges, especially from canals draining large tracts of land. 0-2 points
Flow and Wave Action	Light to moderate wave action present except under the harshest weather conditions. Flow unrestricted by manmade structures. 9-10 points			Heavy wave action sometimes present even during average weather conditions, or flow restricted by manmade structures so that velocities are very high. 0-2 points
Sediment Type	Combination of sand, gravel, and shell. 12-15 points	Primarily sand, with small areas of mud. 8-11 points	Mixture of sand and mud, or well-aerated mud only. 4-7 points	Anaerobic mud. 0-3 points
		. SCORE		***
COMMENTS: This site	is east of	a RCRAs	ite known	. as
ANALYSIS DATE:	ANALYST:	SIGNATURE:		. •

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET (6-10-96)

SUBMITTING AGENCY COOE: STORET STATION NUMBER: DATE (M/DM): TIME RECEIVING BODY OF WATER: SUBMITTING AGENCY NAME: 2404 6080 3/17/97 0645 Delaney Cheek.
REMARKS: LOCATION: LOCATION: LOCATION: Test Site 5
RIPARIAN ZONE/INSTREAM FEATURES
Predominant Land-Use in Watershed (specify relative percent in each category): Facet/Natural Silviculture Field/Pasture Agricultural Residential Commercial Industrial Other (Specify
Forest/Natural Silviculture Field/Pasture Agricultural Residential Commercial Industrial Other (Specify
Local Watershed Erosion (check box): None Slight Moderate 🔏 Heavy
Local Watershed NPS Pollution (check box): No evidence Slight Moderate potential 🔀 Obvious sources
Width of riparian vegetation (m) List & map dominant on least buffered side: Vegetation on back Vegetation on back
Artificially Channelized no Daym/s Artificially Channelized no Daym/s Artificially Channelized no Daym/s
Artificially Impounded yes more sinuous
High Water Mark:
Canopy Cover %: Open: Lightly Shaded (1945%): Moderately Shaded (46-80%): Heavily Shaded:
SEDIMENT/SUBSTRATE
Sediment Odors: Normal: X Sewage: Fetroleum: Chemical: Anaerobic: Other:
Sediment Oils: Absent: X Slight: Moderate: Profuse: 7 on Sides of bo
Sediment Deposition: Sludge: Sand smothering: none moderate Silt smothering: slight severe Other:
Substrate Types % coverage # times sampled method Substrate Types % coverage # times sampled method
Woody Debris (Snags) Sand
Leaf Packs or Mats Mud/Muck/Silt Debag
Aquatic Vegetation Other:
ROCK OF SILLAT RUDDLE
Undercut banks/Roots Praw Bertal view sketch of habitats found in 100 m section
WATER QUALITY Depth (m): Temp. (°C): pH (SU): D.O. (mg/l): Cond. (umho/cm) Salinity (ppt): Battery Secchi (n
Top Mid-depth 0.5 24.69 6.92 0.34 25.100.0 15.9 9.50 0.6
Mid-depth 0.5 29.69 8.92 0.39 8 3,100.01 13 1
Bottom
System Type: Stream: 3rd - 4th order 7th order or greater / 3rd - 4th order 7th order or greater / 3rd - 4th order 7th order or greater / 3rd - 4th order 7th order or greater / 3rd - 4th order 7th order or greater / 3rd - 4th order 7th order or greater / 3rd - 4th order 7th order or greater / 3rd - 4th order 7th order or greater / 3rd - 4th order 3rd - 4th order 7th order or greater / 3rd - 4th order 3rd - 4th
Water Odors (check box): Normal: X Sewage: Petroleum: Chemical: Other:
Water Surface Oils (check box): None: Sheen: Globs: Slick:
Clarity (check box): Clear: Slightly turbid: Turbid: Opaque:
Color (check box): Tannic: Green (algae): X Clear: Other:
Weather Conditions/Notes: Sun just came up 15 minutes eriphyton ale, still little cloudy, cool. Fish Aquatic Macrophytes
SAMPLING TEAM: SIGNATURE: SIGNATURE: 1 9ATE 3/17

MARINE BENTHIC HABITAT ASSESSMENT FIELD DATA SHEET

SUBMITTING AGENCY CODE:SUBMITTING AGENCY NAME:	storet station num	BER: DATE (MOM): REC	EIVING BODY OF WATER: C	eer.
REMARKS:	Lination	ram, Inc.		sites.
Habitat Parameter	Excellent	Good	Fair	Poor
Littoral Alterations	None—Unaltered shoreline. 9-10 points	Mostly natural shoreline, but with occasional riprap. 6-8 points	Shoreline consisting mostly of riprap and vertical seawalls. 3-5 points	Shoreline consisting almost entirely of vertical seawalls. 0-2 points
Community Types Observed	At least four communities observed from the following list mangrove swamp, marsh, oyster bar, grass bed, reef, saltern, natural beach, or fidal creek. 38-50 points	from those listed. 26-37 points	One community observed from those listed. 13-25 points	No communities observed from those listed. 0-12 points
Tidal Fluctuation	>0.75 m. 4-5 points	0.5 - 0.75 m. 3 points	0.25 - 0.5 m. 2 points	<0.25 m. 0-1 point
Freshwater Discharges/ Alterations	Only natural runoff 9-10 points	Mostly natural runoff, but with a few, small stormwater sources. 6-8 points	Considerable stormwater discharge from local roads, parking lots, etc. 3-5 points	Extensive manmade discharges, especially from canals draining large tracts of land. 0-2 points
Flow and Wave Action	Light to moderate wave action present except under the harshest weather conditions. Flow unrestricted by manmade structures. 9-10 points	· 		Heavy wave action sometimes present even during average weather conditions, or flow restricted by manmade structures so that velocities are very high. 0-2 points
Sediment Type	Combination of sand, gravel, and shell. 12-15 points	Primarily sand, with small areas of mud. 8-11 points	Mixture of sand and mud, or well-aerated mud only. 4-7 points	Anserobic mud. 0-3 points
		SCORE	74	• : - :
	is next to	a mondori Chlande L	ng site for	a
ANALYSIS DATE:	ANALYST:	SIGNATURE:	1. ~	

FDEP Biology Section — Acute Bioassay Dench Sheet

	- 4.3		•					٠.	la C	`allaat	ion: D	ata 3/2	4/97	Tin	ne (95	C	
Sample Source Count								36	T 4 F	·	ina. Il	תות אות			11: 17:17		
Countact / Distric		151016	<u></u>	. , /	South	wast		_ ^	Te	st End	ling: D	ate5_1	Z + J.	了 Tin ent Bat	ne <u> 76 3</u>	<u></u>	
ontact / Distri NPDES Permit		01643	<u>- (C) / (4)</u> 3	<u></u>	<u></u>		`	U	rganisi Orga	nism /	Age: - <u>-</u>	24004	<u> - (-८५</u>	स्र <u>स्रि</u>	3.23	(H)	166
LIMS Sample	# 12368	4 11	 MS .10!	· · · · 9	7-MA	R - 25	1-01					101/25 101/10	Certic Carlo	ezanetik <u>Histori</u>	Bulin	α .	3.26 * .
LIMS Sample	7. 17.55 9. 3.25.5	7 55	WO 00.	J ₩. 모	Instru	ment								· ·			
Tact Tune: (Sc	reening i De	HIHHHAC			Calib	ations	: pH		peratur					uctivity;		l	
	I Distin Dan	annal I E	こしついん サウエ	rough ያፋፊ ፲፻	meter #	78	851	90H	018262		90H018			900574		j	
Statio Temperature ra	ange: room: <u>-</u> incuba	tor 24	1.4	25.60	01	nr <u>7.0</u>	@ 7.0	ZA	<u> </u>	4.6	<u> 25.45</u> (@ <u>20. 1</u>		<u>101.8</u> @	906 a	<u>.</u> - 25. 1	°C
Test Number:	1 of 2		4 (3717	TIA 1	0.14	9.0	@ <u>4</u> C	2		س م	,) 3		700	<u> </u>	7857_@	<u> </u>	
Remarks: D =	dead, $M = m$	nissing	، برا میلاس	M-3,	11) ⁸¹ 24	nr <u>7.0</u>	_@ 7.0	24.6	@ <u>_</u> Z	4,5	0.4	@ <u>45.4</u>	_°C /	<u> </u>	<u> </u>	ੂ - 26 ਜ	BC
Test javal					,	9.0	@ <u>9</u> 0	 -	n.,	,,	e u	32.0	<u>700</u>	<u>기 @ </u> 경기 은 5	7002 @		
PARCESS VE Superky Sta Power Ester 2					48	nr <u>බංව</u>	_@ 7.0	<u>94.3</u>	<u>-</u> @∠		<u>e 1</u>	(0, <u>1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1</u>	ר₀כ (ו		∾(_ .33 L	۰.
March Assert &	endadaled	h with	740 Al 17	تأسان		900	_@ <u>૧</u> ٠	<u>.}</u>					<u> е С. С.</u>	ب (@\	<u>्र</u> ्र	<u> </u>	. "
Somple was . or or Toshir	notes songl	ro	W KE	3 7te	1)*										ORRECT		
and section of					· · · · · · · · · · · · · · · · · · ·	pН		Temp	erature	(°C)	D.	O. (mg/l	L)		<u>(mmhos)</u> پرسhos)		
/ ·//:	DI4	Nu	mber Li			· · · · ·	40.15	0 hr	24 h		0 hr	24 h	48 h	0 hr		18 h	
Conc.	Chamber #	0 hr	24 h	48 h	0 hr	24 h	48 h					7.2	7.2	10 IO	0 40	1164	
CTL. A	A13	5	5_	5	8.6	8.0		24.2 24.2	249 246		7 <u>9</u> 79	71		10 10			
CR. B	FLA_	5"	230	0:0		81	8.0	24.Z	25 4		7.8	7. i	7.2		10 65		
CTL. C	A15	5. 1	.5320 410		86	8.0	6,0	24.2	248			71	7.2		1000		
CTL. D	AIC	<u></u>	4.	4	8.6 7.7	8.7		24.0	251	25.1	79	71	2.0	10 23	0 80	11.03	
ICOLO A	A 17	.5 .5	320	7	77	8.2		23.9	250		7.9	7.1	7.0		10 75		
100% B	A 19		40	4	77	8 Z	8.4	23.9	25.3	24.7	79	7.1	7.1		10 85		
100 h D	A20	.57	230	2	7.7	8.7	8.4	23 9	25 4	24.6	8.0	70	7.1	10.30	10.80	10.68	
100 12			<u> </u>						<u> </u>	<u></u>		ļ. <u> </u>	<u> </u>	<u></u> .	 -		
											<u> </u>	_	ļ. <u> </u>	 			
··		<u> </u>					<u> </u>	ļ	<u> </u>	 	<u> </u>	ļ. <u></u>	├ -	<u> </u>	1		l
				ļ	<u> </u>		<u> </u>	<u> </u>			 	 -	┼ -	 			1
			ļ	<u> </u>		 	ļ <u>-</u> -	 -		 	 -	 	 		-		
_	ļ		<u> </u>	ļ—	·		 		+	 -							
 	<u> </u>	-	 		╂-	<u> </u>	-	1	<u> </u>	1	1	 					•
<u> </u>		 	<u> </u>			-	1	1	-	<u> </u>			ļ. <u>.</u>	<u> </u>	<u> </u>		ļ
	 	╂	 	+		<u> </u>		1	_				<u> </u>	<u> </u>	<u> </u>	ļ <u>.</u>	
-	<u>-</u>	+-		 	 -	 							ļ		ļ. <u> </u>		1
<u> </u>	-	┨		1	T						<u> </u>	<u> </u>	 	- -	 -	 	┨
		1 -					<u> </u>		.			-		<u> </u>	- -	<u> </u>	-[
		Ϊ					<u> </u>	 	ļ. <u></u>	-		ļ. <u> </u>		╁┈	_		1
				<u> </u>	-					+	 		+	1-			1
	4-4-5	105	KR	6.1	55	I F	. LR	5.5	KA	K.K.	5.5	irt	TE	33	7. VD	Y.F	-}
	d/Loaded by: orded by:	Give			<u>0</u> W	N.	15 35	<u> </u>	_ N.D	35	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		:27	N D		144	
	ors' Signatui	res	/					Salt W			ater Qu					المان	
	will fee		<					Well W	ater 2	0% Mi	n Water	Sam	iple	Method	i Mea	sured	ру
-11.	111	1	Field	t Total	Residu	al CI2 (mg/L):		<u>, , , , , 1</u>			Not 1	71 36 /2 L	<u>~#</u> 3%\U\()	TK.	·	_
70011	Karani	1:/_	/ Lat	Total	Residu	al C12 ((mg/L):	<u> ۲۰ (ر)</u>	5 m	<u> </u>		V. V		Merch Hart			
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	7		Alkalini	ty (mg/l	as CaC	: (600		Cui .			59		1100 CM			-
- Kalin	hit has	<u> </u>	· I	Hardne	ess (ma/	L as Ca	CO ₃) :				 -	10 ced		Orier	<u> </u>		-
Julio	Thans	2			mmonia	a (mg/L	as N)	~0.01	1 :			 Control					_
0 A1	Flighte									monia	0.617	Salinity	. 5	9 ppt	Salinity:	5,4	ppt
reviewer	torm undali	ed 4/01/9	₁₆ N	/leter#	98136	Meter	Slope:		Blai	пк: 🚣	<u>~</u> ! {	Jamsuy			Juni mry		

reviewer

form updated 4/01/96

FDEP Biology Section - Acute Bioassay Bench Sheet Sample Source: Witcum Rotest W/55 in Old saret Sample Collection: Date 3/14/9/ Time 9 05
Test Beginning: Date 3/14/9/ Time 16:00 Test Ending: Date 37.5.47 Time 151.54 Andrew Springer Contact / District: Organism Batch #: 77 Diluent Batch #: 6 NPDES Permit #: FL000/65/3 Organism Age: באיני פונים Organism Age: עונים אינים א LIMS Sample #: 1/2589 LIMS Job #: 97-144 -72-01 Test Organism: Arrest convers inchia Instrument sample log: ---Calibrations: pH Temperature °C D.O. mg/L. Conductivity µmhos/em Test Type: Screening I Definitive Static Static Renewal | Flow-through meter # 90H018262 G9005749 90H018262 7851 Temperature range: room 2470-2460 Ohr 7.3 @ 7.0 246 @ 245 F.L @ 251.00 425 @ 10118 incubator and C-2910 Test Number: | of | 70 020 24 hr 7-6 @ 7.0 24 2 @ 24 8 4 @ 238 0 183 5 @ 161 8 Remarks: D = dead, M = missing Test raproked expressions somply due b 90 @90 <u>1(402 @ 1(401 @ 305 1</u> ℃ content markethy in 3/25/99 History had. 48 hr 7.0 @ 7.0 23.6 @ 23.6 \ \(\frac{\xi\tau}{2}\) @ 24.1 °C 102.6 @ 101.8 submity shock at the course por William. 7.0 @9.0 UNCORRECTED Cond.(mmhos/cm) οН Temperature (°C) D.O. (mg/L) Cond. (µmhos/cm) Number Live 0 hr | 24 h 24 h | 48 h 24 h 48 h 24 h 46 h 0 hr 24 h 48 h 0 hr Conc. Chamber # <u></u> ¶Q hr 0.0 25.0 252 6.5 6.5 10.44 10.84 心形 4 1 87 **ፈ**ዛ.ሄ Cantrol A 1.8 10.7 6.9 1050 1044 10% 24.5 25 2125.0 В 7.269 1047 | 1071 | 14:01 8.7 81 7.7 24.9 25.2125.0 C 249 249 266 7.3 6.4 10 46 10 60 10.52 D 10.46 10.61 1/102 7. 2 ictile A 7-15 7.6 8.0 te.41 10.46 10.78 1/09 8.2 8.2 350 255 25-4 100 10 B 74 26 10.46 to 73 11.07 7.3 76 8.2 8.2 35.0 35.H24.9 8.1 64 woll C 7-16 10.46 1061 10.59 12:2 79 740 110 0 D Newton pt in Holive Column 3/4/87 pm 5 5 ~ 000 Measured/Loaded by: 000 Recorded by: **Water Quality Parameters** Investigators' Signatures Salt Water Well Water | 20% Min Water | Sample | Method | Measured by Field Total Residual Cl2 (mg/L): Lab Total Residual Cl2 (mg/L): ___ Alkalinity (mg/L as CaCO3) : Hardness (mg/L as CaCO₃)

form updated 4/01/96

reviewer

Total ammonia (mg/L as N) . Control Ammonia Sample Ammonia Ammonia: ppi ppt Meter #98136 Meter Slope: ______ Blank: _____ Salinity: ____ Salinity:

FDEP Biology Section — Acute Bioassay Bench Sheet

Sample Soul Coul Contact / Distr NPDES Permi LIMS Sample	nty: Herict: And rict: FLOC	115 be ea C 16164	orungh (Lexide) 3	, 				c	Test T Organis Org	Begin est En sm Bat anism	ding: I ich #: Age:	Date <u>多</u> Date <u>多</u> ロート	125/9 127/9 Dill Mys	7 Til 7 Til 7 Til uent Ba	me <u>/し</u> tch #: cかろど	35 35 3-f))	- - - -
sample I	log: 3-25-1	4 <i>7 گ</i> efinitive المساما	e Eloweth	rough	Instr Calib	ument ration:	s: pH	Tem	nperatu	re °C	D.0	0. mg/l.	Con	: ductivity	µmhos/e	em	_
Test Number Remarks: D =	: <u>Z</u> _ of <u>_2</u>		A. Cerr	act this	ι,	40 hr <u>7,0</u>	~ ~ 2i) 24.4					_°C /	ലെ	185 104	@ <u>.25,</u> <u>1.5</u>	
					48		፲ @ ዓ. <u>የ</u>) <u>24</u>)	<u> </u>	<u>14.3</u>	8-4	<u>@23 {</u>		@ درع: <u>۱۲۲۲۰۱۰</u> علالم	C 789 OAREC	@ <i>9</i> 5. \ 35 TED	<u>v</u> •c
		Νu	mber L			рН		ļ	erature	,		.O. (mg/		Cond:	(mmho (µmho	s/em	A Cicles
Conc.	Chamber #	0 hr	24 h	48 h	0 hr ジェ	24 h	48 h	0 hr	ļ	:	0 hr	24 h	48 h		24 h ஆம்.ர	3.95	musure musure
CTL B	15j 7 B19	_ 5	<u>5</u>	<u> </u>	3.5 3.5	7.5	1.5 1.5	24.9 24.9		25.2 25.0		7.4	7.4				3 27/1
CTL, C	Biq	5	5	5	35	7.5	7.5	24.9	250		7. j		7.4	375		_	
CTL. D	BZC	5_	5	_5	<i>3.5</i>	7.5	7.5	24.8		24.6		7.4 7.4	7.4	373 368			
100% A	B21 B22	<u>5</u>	<u>5</u>	<u>5</u>	7 <u>3</u> 73	81	8.2 8.3	23.9 23.8	25. j 25. j		7.5 7.6	 	7.4	1	370		
100% B	B2 3	5	5	5	7.3		8.3				76		7.3	327		7 ' I	
100% D	824	5	5	5	7.3	81	8.3	23.8	25 j	24.8		74	7.4	367	3.70	3.94	
				,					<u>;</u>	<u>:</u>		i ∔	<u> </u>	ļ			
			<u> </u>		<u> </u>			<u> </u>	!			<u> </u>	 			: 	
			ļ <u>-</u>	<u> </u>						· 	<u></u>	<u> </u>	<u> </u>				
										! :	. <u></u> .		!				
			 									†	 				
						<u></u>	ļ 		<u> </u>			ļ .				· 	
			<u> </u>		i		-	 		:			: 	 		-	
	<u></u>		ļ					ļ	 	· 		! !		[···································		ļ	
			<u> </u> 		 		-						:	<u> </u>		!	
			:						<u> </u>			ļ	. .				1
					<u> </u>				<u> </u>			ļ		ļ	Ĺ	<u> </u>	
			! !	· · ·	_		! :	_ _			<u> </u>	ļ		 		<u>:</u>	
						 			<u>. </u>	 	 -			 -		 -	
Measured	Loaded by:	DW	מט	νD	35	ER	KR	33	k R	KR	53 ND	LA	(R	35 ND	LR	X.R.	
	rded by	NS	ИD	40	ם אַ	IND	J5	가 D	, ND	درب: Wa	ter Qua	·	 		~~	<u></u>	J
	rs Signature	M						alt Wat Vell Wat						Method	i Meas	sured h	ν
11 White	I family	<u>"' \</u>	Field "	Total E	lesidua!	Claim		ven vva	ÇI 20	70 IVIII	-vater		majisi		wieds	MINOU D	<i>‡</i>
Villial	and -		rieiu⊸ ∕ _Lah1	fotal P	esidnai	Cl2 (m	io/L):	(0.03	(W)			<u> 4,03</u>		R100	KJ		_
Summer	1//	X	All	kalinity	(mg/L a	is CaCC) ₃) :	25	h9			108		bun	KR		
¥ \	14hm 1 10m	\overline{C}_{i}			s (mg/L							590		-huh	1 X.R		
Juli of	haras		To	tal ami	monia (mg/L as	N) <u>∠</u> (2017					ч 5 О		· WE		-
reviewer	torn undered	4/01/96		monia ter #98		mmoni: leter Sk		5 <u>54</u>	Amm Blank			ontrol alinity:	1,5	ppt	imple alinity:	1,9	ppt

form updated 4/01/96

		DER E1	otogy	Section	A.I	pacia 5	perm	Cen re	s: ben	cn Sne	et	
-			2 52	SRT ;	+ No	Tram.	Sedenis	£	u Dat	2-19-9	7 Hage. 4	1405
5	Sample Sc		n say	<u> </u>	<u>/. / </u>	, , , , , , , , , , , , , , , , , , , ,	Setr	relle Collec Get Begin	tion: Dat Ger Hate	3-21-97	11746	3.45
	Address	ounty:	11:60	consta				Test En	ding: Date	<u>3-2/-9</u>	<u>7, Yimo 📈</u>	4 CS
		unty:/_/_	11260	ong inge	5:47	44157		Cont Organ	dem: A	Irtacia 14	putaleta	Sandes
Ç	qntact/Di	strict:	0001	11/2	Outfall #*	·/ • - <u></u>		ast Condit	ions: Satini	ty :30 ± 2%. Sensture : 20	± 1°C	•
				<u> </u>		Err	`		Instrun	ent Calib	rations:	
Т	est Numb	er(s): <u>1-8</u> of	<u>8</u> _ :	Test Type:	Screening	I Catiniliv	9)	ρH	DC		Cond	Temp
		SRT Result	<u> </u>		Stat	ic	0 hr		altri	hed at	as the	
F	lemarks:	SRT Result	16/2				Ų III		· career	7	<u> </u>	
	8%	CI(14.16 -	20.27)		TOTAL	and UNFER	TILIZED EG	G Count at Ef	ID of TEST			
		-					Repi	cate Vial				
		1		1	2				4		5	
	Sample ID	Concentration	Total L	Infertilized	Total U	nfertilized		Infertilized		ifertilized		fertilized
	Cysoy	Control	101	17	103	15	106	18	105	13	102	10
		1041/C	100	20	101	21	100	77	100	32	100	27
	SRT	2045/1	101	34	101	36	101	3 7	100	3/	100	36
	Cu	4Qu/L	100	52	100	58	102	60	100	49	100	53
		60mg/L	100	87	102	90	102	96	100	68	100	75
		80m,/L		My gl	100	100	100	11/2/98	100	8 <u>5</u>	100	87
				· · · · · · · · · · · · · · · · · · ·								<u> </u>
	sizm I	control	100	36	100	40	100	38	100	25	100	28
	SITE I Test	100%	100	36	160	4042	100	4858	100	32	100	34
_	SiTe	cantral	100	40	105	16	100	25	100	X 8(88)	100	34
	idap	100%	100	28	103	29	100	30	100	35	100	34
	test :	Control	100	24	101	24	100	78	100	25	100	30
	Site 2	100%	107	26	100	25	100	30	100	34	100	37
		10076	70 ,	X 10	700	رم	,,,,,					
	-A-	c +-/	100	16	100	24	100	24	100	22	100	27
	TOJ 3	Control			100	36	100	38	100	36	100	40
		100%	100	30				22	100	26	100	28
	test Site 4	Control	100	30	100	24	100		100	32	100	46
	<u> </u>	100%	100	30	100	33	100	36 21	100	28	100	28
	19.1	Control	100	ļ	100	28						33
	Site 5	100%	100	26	100	34	100	26	700	37	100	3
				0.77	 	.47	100	20	/ 00	26	100	29
	127 RDC 5, TR	Control	100	24	100	26	100	34	100		100	
	3,70	100%	100	25	100	26	100	32	100	31	100	20_
	&		.	<u> </u>			<u> </u>				<u> </u>	
		ļ <u>. </u>	[ļ	ļ				<u> </u>			 · -
				<u></u>	<u>}</u>		 -	 			 	-
					 	ļ <u>-</u>	-	<u> </u>			 	ļ
			·	ا 		<u> </u>	 _		74 (1
		Measured by:	M		<i>M</i> :	F	1/1		WŁ	,	Nit	-
		Recorded by:	Dr	<u> </u>		72	01	<u>/</u>	01-		04	J
	nvestigat	ors' Signatur	es					Wate	er-quality i	Parameter	rs	
	Mank	A fairly	th-			^	ndumi 18fad -		-			
		ه ۱۳۰۰ <u>۱۳۰۰ می</u>			J T = L P = -		ntrol Wate	r Samp		Meas	ured by	
	<u></u>	111	15	-	d Tot. Res			$4 \rightarrow$	NA	+		
				Lai -	b Tot. Res			_ `				
		. 1		نه مد مو	S: adjuetmen	alinity:						
		. //		Caliaitu	aduletman	T 11//5331					į.	

NITEAN INT FILL - 1111

100b -

Summer Index Period: Stream Condition Index for Florida (SCI) (April 1996)	eriod:	Stream	n Cond	ition	Index	or Flo	rida (S	CI) (1	April 19	(96)			
Macroinvertebrate Dip Net (20	1771		Panhandle	dle			Peninsula	ıula			Northeast	neast	
sweeps of most productive substrates)	value	πo	က		Score	ro	က	-	Score	်က	; eo	г	Score
Total Number of Taxa	53	. ≥ 3 <u>1</u>	30-16	91>	Pr	> 5 8	25-14	<u> </u>	. I	≥ 22	21-12	<12	
EPT Index		: ' I→ : ∧I	6-4	4	 	\ 4	3-2	87	: M	. •	× ×	%	
# Chironomid Taxa	ક	6	က်	<u>ئ</u>	1	7<	6-4	. *	· . ~~ 	. Al	6-4	₹	
% Contribution of Dominant Taxon	ક્ક	<22	23-61	>61	! 	≥29	30-64	×64	m	<31	32-66	99<	
% Diptera	73	•	≥50	>50	 	: : • 	\$37	>37		· •	<47	> 47	
Florida Index	4	> 16	15-8	\$			4	*	h	i oo ∶∧l	7-4	ŝ	
% Suspension feeders/Filterers	38	≥ 12	11-6	9>			>7	₹	Ŋ	! •	.∠	2	
Total Score		Panh	Panhandle			P	Peninsula	Œ	7	Z	Northeast	Şţ.	
		Exce	Excellent		27-33		Excellent	+	26-32		Excellent	. L	25-29
		5	Good		21-26		Good		20-25		Good		19-24
Interpretation of Score		P.	Poor		14-20		Poor		13.19		Poor		13.18
	Sev	erely]	Severely Degraded	ed	7-13	S C	Severely Degraded	, T	7-12	92 E	Severely Degraded	ت ′	7-12

Summer Index Period: Stream Condition Index for Florida (SCI) (April 1996)	riod: St	ream	Cond	lition	Index 1	for Flo	rida (S	CI) (7	April 19	(96			
02 02	Walso	Д.	Panhandle	dle			Peninsula	ınla			Northeast	neast	
sweeps of most productive substrates)	, anne	rO.	က	ī	Score	5	က	-	Score	ıc	3	П	Score
Total Number of Taxa	\ \ \	≥ 31	30-16	<16	ļ	> 26	25-14	<14		> 22	21-12	<12	
EPT Index	 	Į,	6-4	\$		> 4	3-2	7	:	: •	7 7	7	
# Chironomid Taxa	^ 	.— €	8	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		2≺	6.4	4	:	À	9	4	
% Contribution of Dominant Taxon	VI	<22≥	23-61	×61		67	30-64	>64		×31	32-66	99<	
% Diptera			≥50	>50	!	,	<37	>37	- :		≥47	> 47	
Florida Index	۸۱	> 16	15.8	\$: ! :	i N	6.4	4		• 00	7.4	Ö	
% Suspension feeders/Filterers	ΛΙ	12	11-6	9>			<u>L</u> Z	2	. i	•	. ∠<	1 >	
Total Score	P	anha	Panhandle	٠		À	Peninsula	· c t		Z	Northeast	;;	
	E	Excellent	lent		27-33		Excellent	ţ.	26-32	E	Excellent		25-29
l		Good	'n	! ! !	21-26	 !	Good		20-25		Good		19-24
Interpretation of Score		Poor	or.		14-20		Poor	<u>i</u>	13-19	•	Poor		13-18
	Severely Degraded	ely L	egrad	led	7-13	S C	Severely Degraded	: . च	7-12	.co 🖰	Severely Degraded	. 15	7.12

NITRAM INC FYI - 1997 TEST SITE 1 - POOR

Summer Index Fe	Period: Suream Commission interaction of the Peninsula	Julean F	Panhandle	dle	T WOMEN		Peninsula	ula			Northeast	east	
sweeps of most productive	Value	ıc	cc		Score	22	က		Score	ro	က		Score
Substraces) Total Number of Taya	2.7		30-16	<16		> 26	25-14	<14	ŀŋ	> 22	21-12	<12	į
EPT Index		<u> </u>	6-4	4		≥4	3-2	₹	m	•	22	.27	
# Chironomid Taxa	ہرا	6 ≺	8-5	94	i	7<	6-4	4.	~	Σ.	6-4	4	
% Contribution of Dominant Taxon	40	<22	23-61	>61	:	≥25	30-64	>64	M	≤31	32-66	99<	:
% Diptera	62		≥50	>50	i	 	<37	>37	~~	•	<u>\$47</u>	> 47	!
Florida Index	4	> 16	15-8	8		\ 12	6-4	*	Ŋ	α ΛΙ :	4.	۲ <u>۰</u>	
% Suspension feeders/Filterers	23	> 12	11.6	9	!	•	≥7	L >	M	•	. ≥7	">	ļ
Total Score	1.4.4	Panhandle	andle			Ā	Peninsula	<u>.a</u>	61	<i>-</i>	Northeast	st	
	× (8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8	Exce	Excellent	# * *	27-33	Y	Excellent	t t	26-32		Excellent	14	25-29
		ဗိ	Good		21-26		Good		20-25		Good		19-24
Interpretation of Score		P	Poor		14.20	i i	Poor		13.19		Poor		13-18
	Se	rerely	Severely Degraded	led	7-13	SO CI	Severely Degraded	y ed	7-12		Severely Degrade <u>d</u>	<u>ي</u> ر د	7.12

Summer Index Period: Stream Condition Index for Florida (SCI) (April 1996)
Panhandle
value
> 31 30-16
7 <
€
<22 23-61
•
> 16 15-8
≥ 12
Panhandle
Excellent
Good
Poor
Severely Degraded

NTRAM INC FYI - 1997 TEST SITE 2 - 600D

Summer Index Pe	Period: Stream Condition Index for Florida (SCI) (April 1996)	Stream	a Cond	ition	Index f	or Flo	rida (S	CI) (A	pril 19	- (96)			
Macroinvertebrate Dip Net (20		"	Panhandle	dle			Peninsula	sula			Northeast	east	
sweeps of most productive substrates)	Value ⊦ i	2	က		Score	5	က	-	Score	က	က	- 1	Score
Total Number of Taxa	32	> 31	> 31 30-16	91>		> 26	≥ 26 25-14	<14	h	> 22	C)	<12	
EPT Index	4	L-	6-4	4		≥ 4	3-2	2	w)	•	27	87	
# Chironomid Taxa	Ч	- ₹i	8- 10-	10°		72	6-4	4		Z	6-4	₹ .	1
% Contribution of Dominant Taxon	57	<22	23-61	>61		<29	30-64	×64	m	\$31	32-66	>. >.	. İ
% Dintera	82		≥50	>20		•	<37	>37		•	≥47	× 47	į.
Florida Index	0/	≥ 16	15-8	&		7	6-4	4 >	Ŋ	χ. ΛΙ	4.	10	;
% Susnension feeders/Filterers	36	> 12	11-6	9>		,	74	۲- ۲	Ŋ	1	7	۲.	
Total Score		Panh	Panhandle		············	Ā	Peninsula	ष्ट	12	Z	Northeast	st	
		Exc	Excellent		27-33		Excellent	nt	26-32] (Excellent	يد أ	25-29
	Ì	Ğ	Good		21-26	 	Good		20-25		Good		19-24
Interpretation of Score	ļ 	ď	Poor		14-20		Poor		13-19		Poor		13-18
	Sev	erely	Severely Degraded	ded	7.13	L	Severely Degrade <u>d</u>	y ed	7-12	,,,	Severely Degraded	>ত্র	7-12

Summer Index Period: Stream Condition Index for Florida (SCI) (April 1996)	eriod: St	ream	Condi	tion I	ndex f	or Flo	rida (S	CI) (A	pril 19	(96			
Macroinvertebrate Dip Net (20		10	Panhandle	ile			Peninsula	ula]		Northeast	neast	.
sweeps of most productive substrates)	Value	່ານ	ص س	H	Score	5	က	-	Score	ភ	က	T :	Score
Total Number of Taxa		> 31	30.16	<16		> 26	> 26 25-14	<14		> 22	> 22 21-12	<12	;
EPT Index		<u>-</u>	4-9	4	†····-	≥4	3-5	গ		•	77	₹	
# Chironomid Taxa		6 %	8 70	\$		12 AI	64	<4		1	6-4	4	
Contribution of Dominant Taxon		222	23-61	>61	 	675 576	30-64	>64		<31 231	32-66 >66	99^	
% Outsituding of Dintora		•	550	>50		 	<37	>37			<47	> 47	:
Florida Index		≥ 16	15-8	&	 '	2≤	6-4	4		∞ .	7-4	· 22	
% Systemation feeders/Filterers		> 12	11-6	9>	! !	Ì ,	. ≥7	2>		•	≥7	7	:
Total Score		Panhan	Ð	****		Ã	Peninsula	æ		Z	Northeast	st	
		Excellent	lent		27-33	, A	Excellent	##	26-32		Excellent	<u>_</u>	25-29
	<u> </u>	Good	po		21-26		Good		20-25		Good	:	19-24
Interpretation of Score	<u> </u>	Poor	or		14.20		Poor		13-19		Poor		13.18
4	Seve	rely]	Severely Degraded	ed	7-13	N C	Severely Degraded	, Tg	7-12	2	Severely Degraded	اقع	7-12

Benthic macroinvertebrate taxa list for Nitram Inc., collected via Hester-Dendy artificial substrates in Delaney Creek, on 17 March, 1997. Densities, in number/m², represent the mean of four replicates.

number/m , represente and	•	
	Test Site 1	Reference Site
Amphipoda		æΩ
Hyalella azteca	198	52
Coleoptera		10
Dineutus sp.	2	10
Hydroporus sp.	1	-
Macronychus glabratus	<u></u>	1
Neoporus sp.	1	1
Stenelmis sp.	7	1
Decapoda		
Cambaridae	1	-
Diptera		
Ablabesmyia mallochi	4	10
Ablabesmyia rhamphe grp.	10	33
Astrono bashas	3	5
Asheum beckae	42	13
Chironomus sp.	8	5
Cladotanytarsus	8	8
Dicrotendipes sp.	830	562
Dicrotendipes modestus	128	96
Dicrotendipes neomodestus	4	5
Glyptotendipes sp.	14	23
Goeldichironomus sp.	2	-
Goeldichironomus fluctuans	13	5
Goeldichironomus holoprasinus		=
Labrundinia sp.	$rac{4}{3}$	_
Paratanytarsus sp. A Epler	o	$\begin{array}{c} - \\ 2 \\ 3 \\ 5 \\ 2 \end{array}$
Polypedilum sp.		$ar{ar{3}}$
Polypedilum halterale grp.	4	5
Polypedilum scalaenum grp.	10	2
Polypedilum sp. A Epler	_	. <u>-</u>
Simulium sp.	1	$\frac{-}{2}$
Stenochironomus sp.	Ξ	38
Tanytarsus SD.	7	2
Tanytarsus sp. A Epler	-	-
Tanytarsus sp. C Epler		$\frac{2}{\epsilon}$
Tanytarsus sp. G Epler	2 0	5
Tanytarsus sp. L Epler	3	3
Tanytarsus sp. S Epler		2
Tanytarsus sp. T Epler	_	136
Thienemanniella xena	_	3
Chironomidae	34	19
Gastropoda	5	1
Dastropoua	101	33
Pyrogophorus platyrachis		
Isopoda	2	
Caecidotea sp.	_	

Grandidierella bonnieroides	1	34
Uromunna sp.	67	66
Odonata		9
Argia sp.	_	2
Argia fumipennis	_	$\frac{2}{2}$
Argia sedula	3	5
Enallagma sp.	_	$\frac{2}{2}$
Enallagma cardenium	_	3
Epitheca princeps regina	1	_
Ischnura sp.	1	-
Trichoptera	_	1
Hydroptila sp.	-	1 3

Benthic macroinvertebrate taxa list for Nitram Inc., collected via 20 discrete dip net sweeps in Delaney Creek, on 17 March, 1997.

	Test Site 1	Test Site 2	Reference Site
Acarina			
Atractides sp.	1	_	-
Amphipoda	2	-	_
Grandidierella bonnieroides	3	10	5
Hyalella azteca	91	71	43
Coleoptera			
Celina sp.			1
Dubiraphia vittata	1	1	_
Microcylloepus pusillus	1	<u></u>	_
Neoporus sp.	_	1	_
Peltodytes sp.	4	1	_
Stenelmis sp.	4	9	3
Tropisternus sp.	_	3	-
Curculionidae		1	*
Elmidae		1	-
Decapoda			
Cambaridae	-	1	_
Diptera			
Ablabesmyia mallochi		7	_
Ablabesmyia rhamphe grp.	· 	_	9
Chironomus sp.	18	28	9
Clinotanypus sp.	3		-
Culicoides sp.	_	_	1
Dicrotendipes sp.		42	22
Dicrotendipes modestus	179	494	381
Dicrotendipes neomodestus	1 0	111	40
Dicrotendipes simpsoni	_	7	
Goeldichironomus sp.	8	_	4
Goeldichironomus holoprasinus	5	_	_
Helius sp.	1	_	· –
Odontomyia sp.	1	1	_
Palpomyia/Bezzia grp.	5	3	3
Polvpedilum sp.	3	_	-
Polypedilum halterale grp.	5	-	4
Polypedilum illinoense grp.	5	14	_
Polypedilum scalaenum grp.	3	-	9
Procladius sp.	8	21	9
Stenochironomus sp.	44	_	4
Tanytarsus sp.	3	_	27
Tanytarsus sp. G Epler	8	_	-
Chironomidae	8	28	12
Culicidae	1		_
Tabanidae	1		

Ephemeroptera			
Baetis intercalaris	1		_
Caenis sp.	1	-	-
Gastropoda	_	-	2
Melanoides tuberculata	1	_	_
Planorbella duryi	_	1	_
Pyrogophorus platyrachis	28	26	33
Hydrobiidae	_		4
Hemiptera	2	_	_
Hebrus sp.	1	_	1
Mesovelia sp.	_	1	
Ranatra sp.	1	_	
Belostomatidae	1	2	_
Saldidae	3	_	_
Isopoda			40
Caecidotea sp.	-	_	19
Cyathura polita	u —	_	1
$ \widetilde{U}romunn\widehat{a} \text{ sp.} $	9	9	24
Odonata		_	4
Argia sp.	_	1	1
Argia sedula	_	1	_
Enallagma sp.	-	1	_
Enallagma cardenium	1	_	
Ischnura sp.	4	_	_
$Ischnura\ hastata$	1	_	
$Pachy diplax\ longipenn is$	_	1	 1
Coenagrionidae	5	5	1 1
Macromiidae	- ·	1	1
Oligochaeta			
Aulodrilus pigueti	1	_	1
Haber sp.	_	_ 1	1 3
$Limnodrilus\ hoffmeisteri$	3	1.	o
Pelecypoda			42
Corbicula fluminea	1	_	4 2
Polychaeta		1	
$Boccardia \; { m sp.}$	_	1	-
Trichoptera		3	1
$Hydroptila ext{ sp.}$	de maio	3 1	_
Nectopsyche sp.	-	1	1
Nectopsyche pavida	_	<u>-</u> 6	4
Oecetis sp.	_	Ū	1
Hydroptilidae	_	<u>-</u> 4	5
Trichoptera	_	+	Ū

Periphyton taxa list and densities (#/cm²) for Nitram Inc., collected via glass microscope slides in Delaney Creek, on 17 March, 1997.

	Test Site 1	Reference Site
Bacillariophyceae		
Achnanthes exigua	1,583	726
Achnanthes hauckiana	528	242
Achnanthes hustedtii	528	242
Achnanthes lanceolata	5,145	2,299
Achnanthes linearis	132	· -
Amphora sp.	396	242
Bacillaria paradoxa	1,451	726
Cocconeis placentula	7,652	11,009
Cyclotella meneghiniana	660	363
Diploneis sp.	132	M
Eunotia sp.	132	
Frustulia sp.	132	_
Gomphonema parvulum	132	121
Gyrosigma acuminatum		121
Gyrosigma sp.	132	121
Navicula sp.	528	121
Navicula auriculata	132	_
Navicula capitata	132	605
Navicula cincta	923	484
Navicula cryptocephala	660	96 8
Navicula exigua	264	605
Navicula lanceolata	132	_
Navicula minima	1,847	242
Navicula pupula	132	121
Navicula radiosa	_	121
Navicula tenera	132	_
Navicula viridula	1,451	121
Nitzschia amphibia	132	_
Nitzschia filiformis	_	121
Nitzschia fonticola	187	726
Nitzschia palea	660	_
Nitzschia thermalis	52 8	_
Pleurosigma sp.	132	· —
Synedra sp.	_	12 1
Pennales	1,583	$1,\!452$
Chlorophyceae	,	
Chlorococcum sp.	396	-
Stigeoclonium sp.	396	242
Chrysophyceae		
Dinobryon sp.	660	36 3
Cyanophyceae		
Merismopedia sp.		121
merismopeata sp.		

Oscillatoria sp. Spirulina sp.	528 396	484
Euglenophyceae Euglena sp. Eutreptia sp.	132	 121

Phytoplankton taxa list for Nitram, Inc., collected via subsurface grabs in Delaney Creek on 17 March 1997.

Ĕ	Test Site 1	Test Site	Test Site 3	Test Site	Test Site 5	Reference Site
Cyanophyceae						
Lyngbya sp.	ı	83	4	I	1	1
Óscillatoria sp.	9	1	ı	1	ı	œ
Bacillariophyceae					,	Ş
Achnanthes sp.	82	88	œ	I	မှ မ	71
Amphora sp.	ı	ı	ı	1	9	1
Bacillaria sp.	ı	œ	41	I	1	ı
Capartogramma crucicula	ı	4	1	I	l	1 ,
Cocconeis sp.	က	ধ্য	12	1	1 :	4
Cyclotella sp.	I	I	I	9/	605	1
Eunotia sp.	1	4	1	1	I	1
Navicula sp.	9	88	49	ಸಂ	9	17
Nitzschia sp.	13	21	16	19	9	4
Nitzschia longissima	ı	1	4	I	Ħ	l
Surirella sp.	1	œ	1	1	1	I
Centrales		œ	i	1	1	I
Pennales	ಣ	13	∞	!	1	L
Chlorophyceae	l	1	1	က	1	(
Carteria sp.	ı	ļ	21	1	Ι	41
Chlorococcum sp.	279	4	ı	ಬ	යි	12
Dinophyceae	ı	I	I	483	465	ı
Cryptophyceae	1	4,	1	l	1	ı
Chroomonas sp.	က	ı	1	14	ı	I
Cryptomonas sp.	1	4 '	4	υ	I	I

Fill Out This S	ection For All Surface Water Dischar	ger Inspections (CEI, CSI, C	BI, PAI, XSI - RI Optional)
Transaction Code	NPDES NUMBER	YR/MO/DA	Insp Type Inspector Fac Type
1 N 2 5	3 F 4000 16 43 11	12 9 7 0 3 1 7 17	18 🗴 19 \Bigg 20 🔁
		emarks 	11111111111111
		_	<u> </u>
21			66
-	ection For All Surface Water Discha	rger Inspections (CEI, CSI, C	BI, PAI, XSI - RI Optional)
Transaction Code	NPDES NUMBER	YR/MO/DA	Insp Type Inspector Fac Type
1 N 2 5	3 74000164311	12 9 7 0 3 1 7 17 emarks	18 8 19 5 20 2
1111111			
21			66