

Biological Assessment of IMC Agrico Company-Port Sutton

Hillsborough NPDES #FL0000264 Sampled January1997

June 1997

Biology Section
Division of Administrative and Technical Services

Department of Environmental Protection

Results of Fifth Year Inspections

Discharger:

IMC Agrico. Port Sutton

County: NPDES Number: Hillsborough FL0000264

NPDES Permit Expiration Date:

September 30,1997

Toxics Sampling Inspection (XSI)

Date Sampled:

27 January 1997

Results:

The IMC-Agrico effluent was not sampled during this survey. Copper (15.6 µg/L) was detected at test site 1 at a concentration which exceeded the Class III standard of 2.9 µg/L for marine waters, a violation of Rule 62-302.530(24) FAC. With no effluent sampled, the source of the copper contamination could not be demonstrated. No organic pollutants were found at test site 1.

Compliance Biomonitoring Inspection (CBI)

Date Sampled:

27 January 1997

Results:

Water from test site 1 was toxic to Mysidopsis bahia, a violation of Rules 62-302.500(1)(d) and 62-302.530(62) FAC. The source of the toxicity

Impact Bioassessment Inspection (IBI)

Date Sampled:

could not be shown.

27 January 1997

indicate that extreme data macroinvertebrate The Results: degradation occurred at test site 1, including low taxa richness, dominance of pollution tolerant forms, and a violation of Rule 62-302.530(11) FAC, the biological The disturbed conditions there could be attributed to acute integrity criterion. toxicity, low dissolved oxygen, and elevated copper, as well as the poor habitat characteristics of an industrial canal. The phytoplankton population of test site 1, with elevated chlorophyll a and algal biomass, and dominance by an indicator of eutrophication, appeared to be imbalanced due to excess nutrients (Rule 62-302.530(48)(b) FAC). Since the IMC Agrico-Port Sutton effluent was not sampled, it cannot presently be determined what specific source was responsible for the several violations of water quality standards observed in Port Sutton Canal.

Water Quality Inspection (WQI)

Date Sampled:

27 January 1997

Mid-depth dissolved oxygen at test site 1 (3.8 mg/L) did not Results: comply with Class III water quality standards (Rule 62-302. 530(31) FAC). Ammonia (0.78 mg/L) and total phosphorus (2.8 mg/L) at test site 1 were particularly elevated. The concentrations exceeded those found in 95% of other Florida estuaries. Total phosphorus levels at the reference site (0.35 mg/L) and at test site 2~(0.37~mg/L) were higher than those found in approximately 85% of Florida's estuaries. As expected from the nutrient data, algal growth potential (AGP) at test site 1 (22.4 mg dry wt/L) was well above the problem threshold of 10.0 mg dry wt/L for marine waters (Ron Raschke, USEPA, pers. comm.). AGP at test site 2 (3.7 mg dry wt/L) and the reference site (1.8 mg dry wt/L) were not unusually elevated.

Introduction

Major characteristics of community structure of control and test sites.

Dofor

IMC-Agrico Company, Port Sutton facility, is engaged in the transfer, storage, and shipping of phosphate rock, phosphate fertilizers, and ammonia. The facility is located in the northeast corner of Hillsborough Bay on Port Sutton Canal (see map in Appendix). Phosphate rock and fertilizers enter the facility on trucks and rail cars, and these products are loaded onto freighters. The ammonia arrives on ships and is transported off-site via pipeline.

Contaminated stormwater runoff from the operations is pumped through a series of stormwater treatment ponds prior to overflowing into a two cell detention pond. Contaminated and non-contaminated stormwater from the ammonia storage area, scrubber overflow, and baghouse wash area, along with non-contact cooling water, is also routed to the two-cell detention pond. Overflow from this pond is discharged to Port Sutton Canal, a channelized, highly industrial waterway which connects with Hillsborough Bay. While the design flow of the wastewater treatment system is 10 MGD, the actual mean flow is 0.5 MGD.

Although the facility is required to measure and report many parameters (see Appendix), the only effluent limitations are as follows: fluoride (5.0 mg/L), dissolved oxygen (4.0 mg/L minimum, 5.0 mg/L as a daily average), combined radium ^{226 + 228} (5.0 pCi/L), and pH (6.5 SU to 8.5 SU). The facility has been granted a 125 m x 60 m mixing zone for radium ^{226 + 226}.

There is no record of past permit violations, previous bioassess-

	Refer- ence Site	Test Site 1	Test Site 2
Macroinvertebrate Ponar		"	
Number of Taxa	10	2	15
Shannon-Weaver Diversity	2.8	0.4	3.6
# Polychaete Taxa	4	1	7
% Tubificidae	32.6	93.4	0
% Polychaeta	23.9	6.6	50
% Amphipods	4.4	0	22.5
% Cumacea	28.3	0	8.2
% Gastropoda	2.2	0	8.2
% Pelecypoda	8.7	0	4.1
% Predator/Carnivores	8.7	0	20.4
% Above-Surface Deposit Feeders	0	0	10.2
% Below Surface Deposit Feeders	47.8	100	20.4
% Scavengers	2.2	0	13.3
% Suspension Feeders	37	0	15.3
Browser-grazers	2.2	0	12.3
Phytoplankton Algae			
Number of Taxa	8	7	10
Shannon-Weaver Diversity	1.2	1.9	1.7
Chlorophyll a (µg/L)	1.5 I	15.3	2.3 I
Algal Density (#/mL)	1306.6	2758	986.3
% Blue-green	1.6	.83	0
% Green	0	48.8	2.1
% Diatoms	98.4	50.4	97.9
Algal Growth Potential (mg dry wt/l)	1.8	22.4	3.7

ments, or enforcement actions associated with this facility.

Methods

The focus of this investigation was to determine the discharger's effects on the receiving waters. A comparison of biological community health was made between a reference site (located in Hillsborough Bay, approximately 1.5

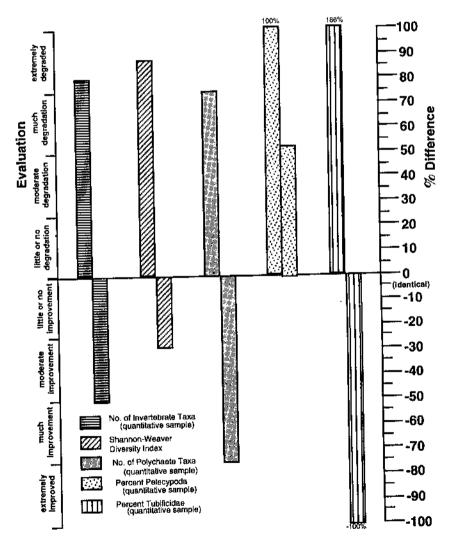
miles north of Port Sutton Canal, just below the 22nd Street bridge) and two test sites. Test site 1 was located in Port Sutton Canal, approximately 150 m east of the discharge, and test site 2 was located approximately 1000 m west of the discharge, at the mouth of Port Sutton Canal (see map in Appendix). Note that the reference ence site was located in an open water bay area, test site 1 was situated in a man-made canal, and test site 2 was located at the mouth of the canal where it enters the bay. A habitat assessment was performed in situ to establish comparability between sites.

The IMC Agrico-Port Sutton effluent was not sampled during this survey. Acute toxicity bioassays, using Mysidopsis bahia and Menidia beryllina as test organisms, were performed on water samples from test site 1. Test site 1 water was also analyzed for nutrients, metals, and organic constituents (base neutral and acid extractables, and pesticide extractables). Additionally, nutrient analyses were performed on the reference site and test site 2. Methods used for all chemical analyses are on file at the Tallahassee DER Chemistry Laboratory.

Benthic macroinvertebrate communities were evaluated at reference and test sites. Invertebrates were collected from three replicate petite Ponar grabs. Phytoplankton was sampled at both reference and test sites. Chlorophyll a was also determined for phytoplankton communities (Ross 1990). Algal Growth Potential tests, using Dunaliella tertiolecta for the marine receiving water sites, followed EPA (1974). Sediment from reference and test sites was analyzed for grain size and percent organic matter (Ross 1990).

Explanation of Measurements of Community Health

Several different measurements of macroinvertebrate and algal community health have been employed to determine the effects of a discharge. These are briefly discussed here.


Taxa richness: Stress tends to reduce the number of different types of organisms present in a system, although moderate nutrient

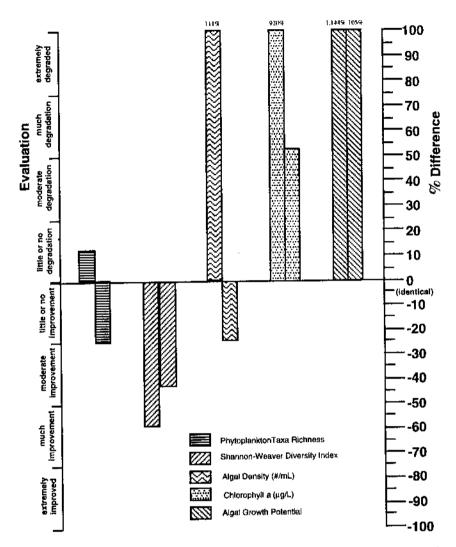
enrichment may sometimes be correlated with increased algal taxa richness.

Shannon-Weaver diversity: This index is specified in the Florida Administrative Code as a measure of biological integrity. Low diversity scores are undesirable. They represent conditions where only a few organisms are abundant, to the exclusion of other taxa. Excessive numerical dominance of a single type of organism (a high % contribution of the dominant tax-

on) is a related measure which is also associated with disturbance.

Numbers of pollution sensitive taxa: Some organisms become rare or absent as the intensity or duration of disturbance increases. For example, the Florida Index assigns points to stream-dwelling macroinvertebrates based on their sensitivity to pollution (see Ross 1990). A site with a high Florida Index score is considered healthy. Species sensitivity data from other sources, such as Hulbert (1990), Hudson et

Effect of discharge on the benthic macroinvertebrate community. The left bar for each parameter depicts differces between the reference site and test site 1. The right bar shows differences between the reference site and test site 2.


al. (1990), Lenat (1993), Farrell (1992), Chang et al. (1992), and Whitmore (1989), are used as appropriate.

Community structure: Substantial shifts in proportions of major groups of organisms, compared to reference conditions, may indicate degradation. In marine systems, an increase in the % tubificid oligochaetes, a decrease in the % pelecypods, and a decrease in the number of polychaete taxa are all considered indicators of disturbance (Engel et al. 1994).

Algal biomass: High algal biomass (algal density or chlorophyll a) implies nutrient stress. A decreased diatom to blue-green algae ratio (calculated by dividing the number of individuals in the Bacillariophyta by the number of individuals in the Bacillariophyta + Cyanophyta) is often indicative of nutrient enriched conditions in flowing streams.

Trophic composition/feeding guilds: Disturbance can shift the feeding strategies of invertebrates. In Florida for example, pollution may be responsible for reducing the numbers of filter-feeders (FDEP 1994) and shredders (EA Engineering 1994).

For graphical purposes, the percent differences between the reference and test sites involving the number of taxa, the diversity index, the diatom to blue-green algae ratio, the % filter-feeders, the number of polychaete taxa, and the % pelecypods are measured as the reference site minus test site divided by the reference site. The percent differences between sites involving the % tubificids, algal density, chlorophyll a, and algal growth potential are measured as the test site minus reference site divided by the reference site.

Effect of discharge on the algal community. The left bar for each parameter depicts differces between the reference site and test site 1. The right bar shows differences between the reference site and test site 2.

The following personnel were involved in this investigation: Brad Lamb (DEP Southwest District) and Lyn Burton, Jennifer Eichelberger, Marshall Faircloth, Russel Frydenborg, Joy Jackson, Elizabeth Miller, Bart Richard, Urania Quintana, Lisa Tamburello, David Whiting, Vicki Whiting, and Greg Wynn (Tallahassee Biology Laboratory). The report was reviewed by the Point Source Studies Review Committee, consisting of Wayne Magley, Jan Mandrup-Poulsen, and Michael Tanski, as well as District representatives.

Results and Discussion

There were major differences between the reference and test sites established for this study. The reference site was located in an open water bay area, while test site 1 was situated in a highly industrial, man-made canal, and test site 2 was located at the mouth of the canal where it enters the bay. Therefore, it was not surprising that habitat quality at the reference site

(with 60 points) was better than that of test site 1 (25 points) or test site 2 (40 points).

Mid-depth dissolved oxygen at test site 1 (3.8 mg/L) did not comply with Class III water quality standards (Rule 62-302, 530(31) FAC, but was acceptable at the other two sites (6.2 mg/L at the reference site and 6.8 mg/L at test site 2). Had bottom dissolved oxygen measurements been taken, values would possibly have been lower. The mid-depth pH values at test site 2 and the reference site were similar (7.8 SU and 7.5 SU, respectively) while the pH at test site one was reduced by greater than one Standard Unit (6.4 SU). Mid-depth salinity ranged from 40.1 ppt at the reference site to 40.6 ppt at test site 1.

The effluent was not sampled during this survey. Instead, a water sample from test site 1 was used for toxicity testing. Exposure to test site 1 water resulted in 5% mortality to the fish, Menidia beryllina, and 55% mortality to the mysid shrimp, Mysidopsis bahia. The toxicity demonstrated in the Mysidopsis bahia test is a violation of Rules 62 -62-302.500(1)(d) and 302.530(62) FAC. Because the IMC-Agrico effluent was not sampled, the toxicity can not be attributed to their discharge.

Copper (15.6 μ g/L) was detected at test site 1 at a concentration which exceeded the Class III standard of 2.9 μ g/L for marine waters, a violation of Rule 62-302.530(24) FAC. Again, the source of the copper contamination could not be demonstrated. No organic pollutants were found at test site 1.

Ammonia (0.78 mg/L) was particularly elevated at test site 1, where the ammonia concentration was higher than those found in 95%

of other Florida estuaries. Similarly, total phosphorus at test site 1 (2.8 mg/L) greatly exceeded the values found in 95% of other Florida estuaries. These results indicate undesirable nutrient enrichment in Port Sutton Canal, potentially due to IMC-Agrico or another source in the area. Total phosphorus levels at the reference site (0.35 mg/L) and at test site 2 (0.37 mg/L) were higher than those found in approximately 85% of Florida's estuaries.

As expected from the nutrient data, algal growth potential (AGP) at test site 1 (22.4 mg dry wt/L) was well above the problem threshold of 10.0 mg dry wt/L for marine waters (Ron Raschke, USEPA, pers. comm.). AGP at test site 2 (3.7 mg dry wt/L) and the reference site (1.8 mg dry wt/L) were not unusually elevated.

Quantitative measures of benthic macroinvertebrate community health suggested that even though the reference site was not pristine, extreme biological impairment was observed at test site 1. The figure on p. 2 indicates the degree of difference between the invertebrate populations of the reference and test sites. Larger differences (that is, higher percentages) correspond with greater degrees of degradation. Negative values mean the test site is better than the reference site.

Taxa richness at the reference site (10 taxa) was somewhat low for a Florida estuary (approximately 80% of other estuarine samples have better values) (see Table of Typical Water Quality Values in Appendix). While taxa richness at test site 2 (15 taxa) was closer to normal (near the 40th percentile of other Florida estuaries), test site 1, with only 2 taxa, was lower than 95% of other Florida estuary sys-

tems. Shannon-Weaver diversity at the reference site (2.8) was fairly average, decreasing to an unusually low level (0.4) at test site 1. Again the diversity at test site 1 was worse than the values found 95% of other Florida estuaries. This 86% reduction in diversity between the reference site and test site 1 indicates a violation of the biological integrity criterion there (Rule 62-302.530(11) FAC). Test site 2 diversity (3.6) was somewhat better than average for a Florida estuary.

A total of 4 polychaete taxa were recovered from the reference site, while only 1 polychaete taxon was found at test site 1. Seven polychaete taxa were recovered from test site 2. Pelecypods represented 8.7% of the reference site population, 0% of the test site 1 population, and 4.1% of the test site 2 benthic community. The relative lack of polychaete taxa and pelecypods at test site 1 is another indication of disturbance there. A few pollution sensitive (Farrell 1992) marine taxa, such as Ampelisca spp., Cyclaspis varians, and Eteone heteropoda, were found at both the reference site and at test site 2. In contrast, the taxa found at test site 1, Capitella sp. and Tubificidae, are known to be tolerant of polluted conditions.

In summary, the macroinvertebrate data indicate that extreme degradation (including a biological integrity violation) was observed at test site 1. The disturbed conditions there could be attributed to the acute toxicity, low dissolved oxygen, and elevated copper, as well as the poor habitat characteristics of an industrial canal. Since the IMC Agrico-Port Sutton effluent was not sampled, it can not presently be determined what specific source was responsible for the several violations of water quality standards observed in Port Sutton Canal.

The figure on p. 3 represents changes in the phytoplankton algal community. As was noted with the macroinvertebrates, larger differences (that is, higher percentages) correspond with greater degrees of degradation. Phytoplankton taxa richness ranged from 7 taxa at test site 1 to 10 taxa at test site 2. Algal Shannon-Weaver diversity was low at all sites, ranging from 1.2 to 1.9. Algal density at test site 1 (2,758 cells/mL) was over double that of the reference site (1,306 cells/mL) or test site 2 (986 cells/mL). Similarly, while chlorophyll a was low at the reference site and at test site 2, chlorophyll a at test site 1 (15.3 µg/L) was higher than the values found in approximately 85% of Florida's estuaries. Test site 1 was dominated by Cylindrotheca sp., an alga associated with eutrophic conditions (Lowe 1974). The phytoplankton population of test site 1, with elevated chlorophyll a and algal biomass, and dominance by an indicator of eutrophication, appeared to be imbalanced due to excess nutrients (Rule 62-302.530(48)(b) FAC).

Conclusions

Mid-depth dissolved oxygen at test site 1 (3.8 mg/L) did not comply with Class III water quality standards (Rule 62-302, 530(31) FAC).

The IMC-Agrico effluent was not sampled during this survey. Acute toxicity was demonstrated in water from test site 1, a violation of Rules 62-302.500(1)(d) and 62-302.530(62) FAC.

Copper (15.6 µg/L) was detected at test site 1 at a concentration which exceeded the Class III standard of 2.9 µg/L for marine waters, a violation of Rule 62-302.530(24) FAC. With no effluent samples, the source of the copper contamination could not be demonstrated. No organic pollutants were found at test site 1.

Ammonia (0.78 mg/L) and total phosphorus (2.8 mg/L) at test site 1 were particularly elevated. The concentrations exceeded those found in 95% of other Florida estuaries. Total phosphorus levels at the reference site (0.35 mg/L) and at test site 2 (0.37 mg/L) were higher than those found in approximately 85% of Florida's estuaries.

As expected from the nutrient data, algal growth potential (AGP) at test site 1 (22.4 mg dry wt/L) was well above the problem threshold of 10.0 mg dry wt/L for marine waters (Ron Raschke, USEPA, pers. comm.). AGP at test site 2 (3.7 mg dry wt/L) and the reference site (1.8 mg dry wt/L) were not unusually elevated.

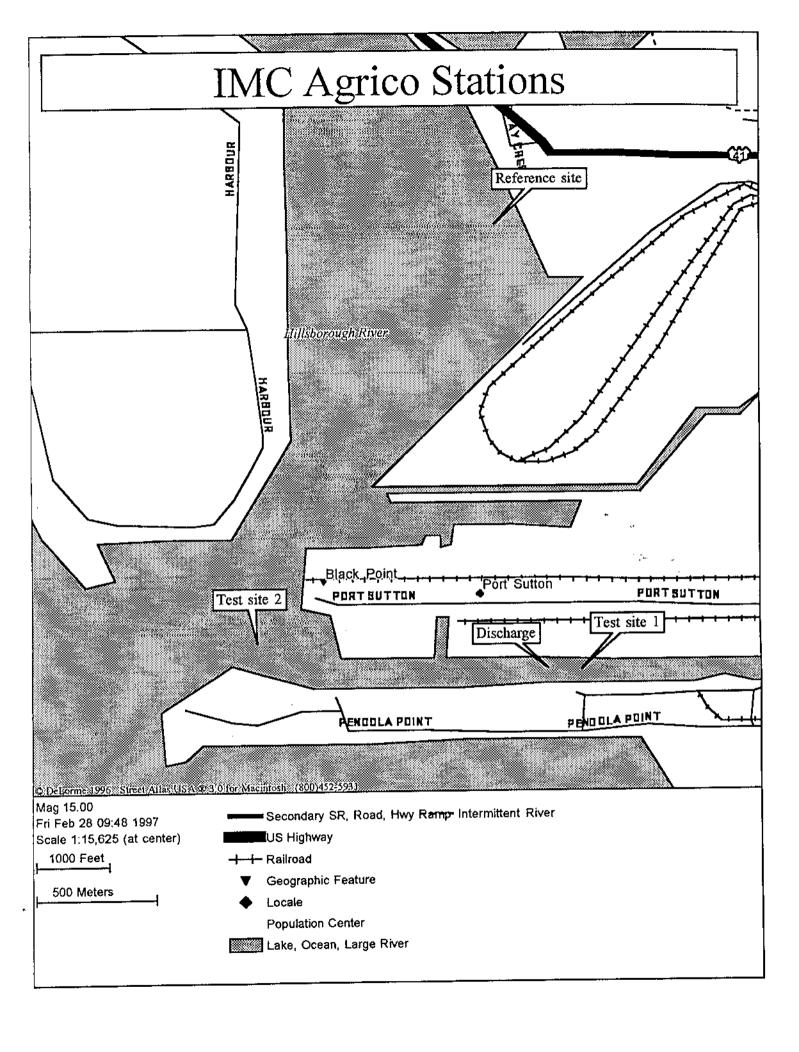
The macroinvertebrate data indicate that extreme degradation occurred at test site 1, including low taxa richness, dominance of pollution tolerant forms, and a violation of Rule 62-302.530(11) FAC, the biological integrity criterion. The disturbed conditions there could be attributed to acute toxicity, low dissolved oxygen, and elevated copper, as well as the poor habitat characteristics of an industrial canal.

The phytoplankton population of test site 1, with elevated chlorophyll a and algal biomass, and dominance by an indicator of eutrophication, appeared to be imbalanced due to excess nutrients (Rule 62-302.530(48)(b) FAC). Since the IMC Agrico-Port Sutton effluent was not sampled, it can not presently be determined what specific source was responsible for the several violations of water quality standards observed in Port Sutton Canal.

Literature Cited

- American Public Health Assoc., American Water Works Assoc., and Water Pollution Control Federation. 1989. Standard Methods for the Examination of Water and Wastewater, 17th ed. New York, N.Y. 1268 p.
- Aquatic Toxicity Information Retrieval Data Base (AQUIRE). 1991. U.S. EPA Environmental Research Laboratory, Duluth, Mn.
- Butts, G. and D. Ray. 1986. An investigation of upper Escambia Bay during drought conditions: July-August 1986. Fla. Dept. Environmental Regulation, Northwest District. 11 pp.
- Chang, S., F. W. Steimle, R. N. Reid, S. A. Fromm, V. S. Zdanowicz, and R. A. Pikanowski. 1992. Association of benthic macrofauna with habitat types and quality in the New York Bight. Mar. Ecol. Prog. Ser. 89: 237-251.
- EA Engineering, Science, and Technology and Tetra Tech, Inc. 1994. Bioassessment for the nonpoint source program (draft). Prepared for the Fla. Dept. Environ. Protection. Unpaginated.
- Environmental Protection Agency. 1974. Marine algal assay procedure: Bottle test. Nat'l Environ. Res. Center, Office of Res. and Dev., U.S. EPA, Corvallis, Oregon. 43 p.
- Engle, V. D., J. K. Summers, and G. R. Gaston. 1994. A benthic index of environmental condition of Gulf of Mexico estuaries. Estuaries 17(2): 372-384.
- Farrell, D. H. 1992. A community based metric for marine benthos. Fla. Dept. Environ. Reg. SW Dist. Office. unpublished rept. 15 p.

- FDEP. 1994. Lake bioassessments for the determination of nonpoint source impairment in Florida. Fla. Dept. Environ. Prot. Biology Section, Tallahassee, Fla. 73 p.
- Hudson, P. L., D. R. Lenat, B. A. Caldwell, and D. Smith. 1990. Chironomidae of the Southeastern United States: A checklist of species and notes on biology, distribution, and habitat. U. S. Fish Wildl. Serv., Fish. Wildl. Res. 7. 46 pp.
- Hulbert, J. L. 1990. A proposed lake condition index for Florida. North Amer. Benth. Soc. 38th Ann. Mtg., Blacksburg, VA, 11 p.
- Lenat, D. R. 1993. A biotic index for the southeastern United States: derivation and list of tolerance values, with criteria for assigning water-quality ratings. J. N. Am. Benthol. Soc. 12(3): 270-290.
- Lowe, R. L. 1974. Environmental requirements and pollution tolerance of freshwater diatoms. USEPA. EPA-670/74-005. 334 p.
- Miller, W. E., T. E. Maloney, and J. C. Greene. 1978. The Selenastrum capricornutum Printz algal assay bottle test. U. S. Environ. Prot. Agency, EPA-600/9-78-018. 126 p.
- Raschke, R. L. and D. A. Schultz. 1987. The use of the algal growth potential test for data assessment. J. Wat. Poll. Cont. Fed. 59(4): 222-227.
- Ross, L. T. 1990. Methods for aquatic biology. Fla. Dept. Environ. Reg. Tech. Ser. 10(1): 1-47.
- Weber, C. I. 1991. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. 4th edition. EPA/600/4-90/027. U. S. EPA, Cincinnati, Ohio. 216 pp.
- Whitmore, T. J. 1989. Florida diatom assemblages as indicators of trophic state and pH. Limnol. Oceanogr. 34(5): 882-895.


Chemistry Ssummary Table for IMC Agrico - Port Sutton.	Reference Site	Test Site 1	Test Site 2
--	-------------------	-------------	-------------

Organic Constituents (ug/L)			
	-	None detected	-
Metals (ug/L)			
Aluminum	-	270	-
Arsenic	-	2 U	-
Cadmium	-	2 U	-
Copper	-	15.6	-
Chromium		20 U	-
Iron	-	249	-
Lead	_	10 U	-
Mercury	-	0.1 U	-
Nickel	· ·	4 U	-
Selenium	-	2 U	_
Silver	!	0.4 U	-
Zinc	-	16 Ī	-
Nutrients (mg/L)			
Ortho-phosphate	0.24	0.13	0.2
Total phosphorus	0.35 A	2.8	0.37
Ammonia	0.057	0.78	0.054 A
Nitrate+Nitrite	0.005 I	0.02 U	0.004 I
TKN	0.53 A	1.5	0.5
General Phys-Chem Parameters			
Habitat Assessment	60	25	40
Mid-depth dissolved oxygen (mg/L)	6.2	3.8	6.8
Mid-depth pH (SU)	7.8	6.4	7.5
Mid-depth Specific Conductance (µmhos/cm)	51,780	6,030	54,300
Mid-depth Salinity (ppt)	40.1	4.2	40.4
Mid-depth Temperature (°C)	18	15	19
Algal Growth Potential (mg dry wt/L)	1.8	22,4	3.7
Poxicity			
Bioassay Fish	-	5% mortality	_
Bioassay Invertebrate	-	55% mortality- Acutely Toxic	-

A - Value reported is the mean of two or more determinations

I - Value reported is less than the minimum quantitation limit, and greater than or equal to the minimum detection limit

U - Material analyzed for but not detected; value reported is the minimum detection limit

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION FACILITY SUMMARY

Facility Name: Inc-Agr	rico Co. Pl Sutton	Prepared by:	Brad Lamb						
Location (attach detailed ma		•	District						
attached	Hillsburungh		SWD						
Federal Permit # and expiration date:	State GMS # and State expiration da 19,1998 FL0000264		Facility Type: Industrial Municipal Federal Agricultural Other (list):						
Function of facility:									
Facility transfers, &	tores and ships phe	sephate nocos, ph	sephate lest and ammonia.						
Description of treatment pro	ocess:	operations ar	e pumped through a						
series of stormwater pands prior to overflowing into a two cell detention pand. Untermined and man-contaminated stormwater along with noncontact carling water from the ammonia storage area and servebber underflow and bashows wash water to also routed to the two-cell detention pand. Overflow from the pand is discharged from out full oot to fort sutton charmel.									
Receiving waters: Tampa	Bay via Pt. Sutton	Classification:	ClassIII, Marine						
Design Flow: > 10 mgd		Actual Mean Flow:							
Discharge is: continuous Other (describe)	Intermittent Seasonal	Rainfall depender	*****						
therefore, the best time to sa	imple is: anytime								
If facility has a mixing zone, give details (size, parameters affected, etc.): Yes, Mixing your is for Combined Radium 226+228. The size is 125 m length by the width of the Channel (125m x 60 m).									
List effluent limits: See	Attached	Describe spec	cial permit conditions						
Parameter	Limit (units)		odifications:						
	·								

Page 2 of Z
Ine PT-Surrow

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION FACILITY SUMMARY

(Facility)
Description of permitted outfall(s):
One primary outfall -001: 5004- Enoguey outfall 5006- anosency outfall
5004- Energiey outfall
50010-anargency outfall
List permit violations (from MOR data or other source) and plant upsets that occurred within past
year: na
Describe previous impact bioassessments, WQBEL's, and previous or current enforcement actions:
nla
A SECOND CONTRACTOR OF
Discuss comparability of MOR results to past DER results and whether there are trends (improving, declining) in the data set:
overally, Tampa Bay is improving through the continued efforts of
FDEP and TBNEP.
Additional information:

Typical Values for Selected Parameters in Florida Waters Adapted from Joe Hand, FDER, personal communication, 1991 (data was collected between 1980 and 1989)

Percentile Distribution

Demonstan	5%	10%	0.00	30%	40%	F00	60%	70%	80%	90%	050
Parameter	5%	10%	20%	30%	40%	50%	60%	70%	80%	90%	95%
STREAMS											
(1617 stations)											
Phytoplankton											
Chlorophyll a	0.22	0.52	0.94	1.60	3.02	4.63	6.72	9.87	14.68	27.35	48.70
Periphyton											
Chlorophyll a	0.31	0.43	0.77	1.04	2.16	2.94	6.45	10.51	17.00	39.51	60.85
H-D Diversity	0.84	2.12	2.48	2.74	2.88	3.09	3.25	3.40	3.52	3.76	3.90
Qualitative Taxa											
Richness	9.00	12.00	17.00	20.00	22.00	24.50	26.00	28.00	31.00	37.00	53.00
H-D Taxa		2 50			10.00		15.00	01 50	20.00	00.00	22.00
Richness	6.00	6.50	9.00	11.50	13.00	15.00	17.00	21.50	26.00	29.00	32.00
TKN	0.30	0.39	0.56	0.73	0.87	1.00	1.11	1.26	1.49	1.93	2.80
Ammonia	0.02	0.02	0.04	0.05	0.06	0.08	0.11	0.14	0.20	0.34	0.60
NO2-NO3	0.01	0.01	0.03	0.05	0.07	0.10	0.14	0.20	0.32	0.64	1.05
Total Phosphorus	0.02	0.03	0.05	0.06	0.10	0.13	0.18	0.25	0.39	0.74	1.51
Ortho Phosphorus	0.01	0.01	0.03	0.04	0.05	0.08	0.11	0.17	0.27	0.59	1.37
Turbidity	0.60	0.90	1,20	1.45	2.10	2.80	3.60	4.50	6.65	10.45	16.30
LAKES											
(477 stations)											
Phytoplankton											
Chlorophyll a	0.80	1.71	2.88	4.28	10.06	13.40	20.00	30.10	47.20	65.44	113.90
Dredge Diversity	0.71	0.97	1.43	1.74	1.98	2.12	2.21	2.59	2.85	3.15	3.17
Dredge Taxa											
Richness	3.00	5.00	6.50	7.00	9.00	10.00	11.00	13.00	15.00	_17.00	21.00
TKN	0.36	0.49	0.67	0.83	1.08	1.26	1.40	1.51	1.68	2.11	3.46
NH3+NH4	0.01	0.02	0.02	0.03	0.04	0.06	0.08	0.12	0.15	0.21	0.28
NO2-NO3	0.00	0.00	0.01	0.01	0.01	0.02	0.04	0.05	0.10	0.14	0.23
Total Phosphorus	0.01	0.02	0.02	0.03	0.05	0.07	0.09	0.11	0.14	0.23	0.42
Ortho-Phosphorus	0.00	0.01	0.01	0.02	0.03	0.04	0.05	0.06	0.08	0.21	0.32
Turbidity	1.00	1.25	1.55	2.05	2.75	4.50	6.45	9.60	14.10	26.00	40.00
ESTUARIES						•	•	•			***************************************
(690 stations)											
Phytoplankton	T	1				1					
Chlorophyll a	2.14	3.28	4,49	5.13	6.00	6.93	7.94	9.60	12.40	17.60	22.20
Dredge Diversity	1.34	1.53	1.91	2.28	2.56	2.90	3.15	3.59	4.01	4.53	4.98
Dredge Taxa			-10-2		-+			0.00		2,00	
Richness	4.00	6.00	9.00	11.00	15.00	18.50	25.00	35.00	41.00	62.00	90.00
TKN	0.26	0.34	0.42	0.50	0.59	0.69	0.76	0.82	0.95	1.30	1.49
NH3+NH4	0.01	0.02	0.03	0.04	0.05	0.06	0.08	0.09	0.13	0.22	0.28
NO2-NO3	0.00	0.00	0.01	0.01	0.01	0.02	0.03	0.05	0.08	0.17	0.23
Total Phosphorus	0.01	0.02	0.06	0.07	0.10	0.11	0.14	0.17	0.23	0.43	0.59
Ortho-Phosphorus	0.01	0.02	0.03	0.04	0.04	0.05	0.07	0.09	0.12	0.21	0.44
Turbidity	3.50	4.00	4.50	5.05	5.40	5.60	6.30	6.80	8.00	11.40	11.75
1 Turnities 1	0.00	4.00	3.00	0.00	0.40 [0.00	0.00	0.00	0.00	* Y1.4FQ]	21,10

Units:

Phytoplankton Chlorophyll a (ug/L), Periphyton Chlorophyll a (mg/m²), Nutrients (mg/L), Turbidity (NTU), Taxa richness and diversity values are for macroinvertebrates

Existing Pollution Abatement Facilities

Contaminated stormwater runoff from the phosphate rock, fertilizer unloading, storage and loading areas are pumped through a series of stormwater treatment ponds prior to overflowing into a two cell detention pond. Contaminated and non-contaminated stormwater along with non-contact cooling water from the ammonia storage area and scrubber underflow and baghouse wash water is also routed to the two cell detention pond. Overflow from the pond is discharged from Outfall 001 to Port Sutton Channel. Storm water runoff from various areas of the facility may be discharged during emergency or upset conditions to the Channel through Outfalls S-004 and S-006.

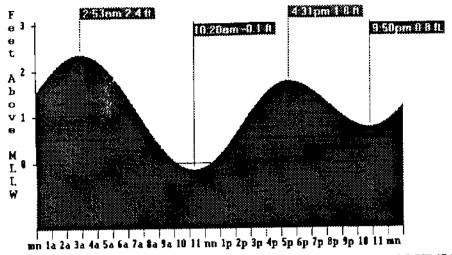
Proposed Construction

Scrubber underflow water and baghouse wash water will be treated with a flocculant prior to being routed to two new scrubber settling ponds arranged in series. Wastewater from the second settling pond will be returned to the scrubbers for reuse. In the event of mechanical failure or excessive rainfall wastewater from the second settling pond may overflow into the two cell detention basin which contains non-process stormwater runoff, and non-contact cooling water. Overflow from the two cell detention basin is discharged via Outfall 001. Storm water runoff from various areas of the facility may be discharged during emergency or upset conditions to the Channel through Outfalls S-004 and S-006.

2. PROPOSED EFFLUENT LIMITATIONS

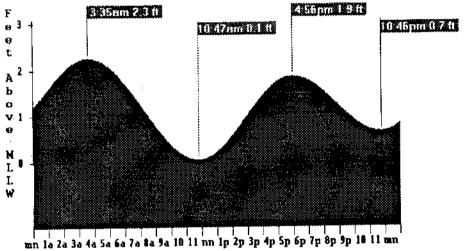
Serial 001 - Combined once-through non-contact heat exchange water, and treated stormwater.

idi oot	Daily	Daily	Daily
Effluent Characteristics	<u>Minimum</u>	<u>Average</u>	<u>Maximum</u>
Flow, MGD	N/A	Report	Report
Total Suspended Solids (TSS), mg/l	N/A	Report	Report
Total Non-volatile, Non-filterable Residue	N/A	Report	Report
(FS), mg/l Total Phosphorus (as P),	N/A	Report	Report
mg/l	N/A	Report	Report
Total Nitrogen (as N) mg/l Un-ionized Ammonia (as N), mg/l	N/A	Report	Report
Total Ammonia (as N),	N/A	Report	Report
mg/l			
Fluoride, mg/l	N/A	Report	5.0
Specific Conductance,	N/A	Report	Report
micromhos/cm			D .
Temperature, °C	N/A	N/A	Report
pH, std. units	6.5	N/A	8.5
Dissolved Oxygen, mg/l	4.0*	N/A	N/A
Combined Radium 226 & 228, pCi/l	N/A	N/A	5.0


^{*24-}hr. average must not be less than 5.0 mg/l

I. Effluent Limitations and Monitoring Requirements:

A. Surface Water Discharges


1. During the period beginning on the effective date and lasting through the expiration date of this permit, the permittee is authorized to discharge from Outfall 001 contaminated and uncontaminated storm water along with non-contact cooling water from various areas of the facility. Such discharge shall be limited and monitored by the permittee as specified below:

Parameters (units)		Discharge Lim	Monitoring Requirements		
Site I.D. 12576	Daily Min.	Monthly Avg	Daily Max.	Frequency	Sample Type
Flow, MGD	N/A	Report	Report	Continuous	Recorder
Total Suspended Solids (TSS), mg/l	N/A	Report	Report	Weekly	24-Hour Composite
Total Non-volatile, Non-filterable Residue (FS), mg/l		Report	Report	Weekly	24-Hour Composite
Total Phosphorus (as P), mg/l	N/A	Report	Report	Weekly	24-Hour Composite
Total Nitrogen (as N) mg/l	N/A	Report	Report	Weekly	24-Hour Composite
Un-ionized Ammonia (as N), mg/l	N/A	Report	Report	Weekly	Calculated
Total Ammonia (as N), mg/l	N/A	Report	Report	Weekly	Grab
Fluoride, mg/l	N/A	Report	5.0	Weekly	24-Hour Composite
Specific Conductance,	N/A	Report	Report	Weekly	Grab
Temperature, °C	N/A	Report	Report	Weekly	Grab
pH, std. units		ic Condition I.A			
Dissolved Oxygen, mg/l		ic Condition I.A			
Combined Radium 226 & 228, pCi/l	See Specif	ic Condition I.A			

Tampa Hillsborough Bay SUN Jan 26, 1997 EST TideMaster - (C) Zephyr Services, Pittsburgh PA

12:00H	1.6 ft	5:00a	1.9 ft	10:00a	-0.1 ft	3:00p	1.5 ft	8:00p	1.1 ft
			1.5 ft					9:00p	0.9 ft
			0.9 ft					10:00p	0.8 ft
3:00a	2.4 ft	8:00a	0.5 ft	1:00p	0.6 ft	6:00p	1.6 ft	11:00p	0.9 ft
4:00a	2.3 ft	9:00a	0.1 ft	2:00p	1.1 ft	7:00p	1.4 ft	12:00M	1.3 ft

Tampa Hillsborough Bay Mon Jan 27, 1997 EST

TideMaster - (C) Zephyr Services, Pittsburgh PA

12:00M	1.3 ft	5:00a	2.1 ft	10:00a	0.2 ft	3:00p	1.5 ft	g00:8	1.3 ft
							1.8 ft	g:00p	1.0 ft
							1.9 ft		
		1	0.8 ft	1:00p	0.6 ft	6:00p	1.8 ft	11:00p	0.7 ft
			0.4 ft	2:00p	1.1 ft	7:00p	1.6 ft	12:00M	0.9 ft

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET (5-10-80)

TEL INC:

	1200
	ane
also	,-
11000	

SUBMITTING AGENCY CODE:	STORET SYATION NUMBER:	DATE (M/D/Y): TIME	RECEIVING BODY OF WATER:			
BUBLITTING AGENCY NAME:		1/27/97 11:00	TAMPA BAY			
REMARKS: COUNTY: (7	7일) LOCATION:		FIELD IDMANE: /LIGS	heene)		
Hills!	"	5 5 m = BA-1	Reference Sita	1 -		
RIPARIAN ZONEANSTREAM FEATURES		S EASTON	HEREINER SICK			
Predominant Land-Use in Watershe		ont in each esterony.				
			mercial Industrial Other	or (Specify)		
	Pasture Agricultura	nesidermai Com	70	- (Opena))		
30		<u> </u>				
Local Watershed Erosion (check box)			scienate Heavy	<u> </u>		
Local Watershed NPS Pollution (chec			rate potential Obvious (*****		
	ist & map dominant	Typical Width (m)/Di	epth (m) /Velocity (m/sec) Trap	m wide		
on least buffered side: 3	vegetetion on back	m/s	A m/s	m/s →		
Artificially Channellzed	Mote again teconoly weerly take 	vered !	<u> </u>			
Artificially impounded ☐ yes	35 /36		;	m deep		
High Water Mark: + + tori tori	ecent depth in my (m above)		₩ mdeep			
Canopy Cover %: Open: L	ghtly Shaded (11-45%	.): Moderately Shar	ded (46-80%): Heavily 8	haded:		
SEDIMENT/SUBSTRATE						
Sediment Odors: Normal:	Sewage: Petroleu		naerobic: Other:			
Sediment Olls: Absent:	Slight: Moderat					
Sediment Deposition: Sludge: S	and smothering: non	moderate Silt smother				
		thod Substrate Types	% coverage # times sample			
Woody Debris (Snags)		Sand	100%	Pener		
Leaf Packs or Mats		Mud/Muck/Silt				
Aquatic Vegetation		Other:				
Rock or Shell Rubble		Other:				
Undercut banks/Roots		Oraw serial view s	ketch of habitats found in 100	n section		
WATER QUALITY Depth (m): Temp.	(°C): pH (SU): D	O. (mg/l): Cond. (umho/o or Salinity (ppt)		Secchi (m):		
Top						
Mid-depth . 6 151	3 7.79	6.72 51.780		1 N/A		
Bottom						
System Type: Stream: (1st - 2nd order 5th - 6th order 7th order or greater) Lake: Wetland: Estuary: Other:						
Water Odors (check box): Norm	al: Sewage:	Petroleum:	Chemical: Other:]		
Water Surface Olls (check box): None: Sheen: Globs: Slick:						
Clarity (check box): Clea	ar: Slightly turb	ld: Turbid:	Opaque:			
Color (check box): Tann	ic: Green (alga		Other:			
Weather Conditions/Notes: Absent Rare Common Abundant Periphyton						
Clear, Sunny, Amb.	Jamp 170°F	Fish		- H		
,		Aquatic Macrop	hytes 🗒 💆 🗒	Ħ		
		Iron/sulfur Bacte	· · ·			
SAUPLING TEAU:		SIGNATURE:		DATE:/		
J. Spencer, B. Lamb		77.3.4		2/17/9		

MARINE BENTHIC HABITAT ASSESSMENT FIELD DATA SHEET

STORET STATION NUMBER: | DATE (M/DY): | RECEIVING BODY OF WATER:

SUBMITTING AGENCY CODE: SUBMITTING AGENCY NAME:	STORET STATION NUM	BER: DATE (M/DY):	TAMA			
REMARKS:	LOCATION:	preo - Pt. Su	tten	FIELD ID/NAME:	oure #1	
Habitat Parameter	Excellent	Good	F	air	Poor	
Littoral Alterations	None—Unaltered shoreline. 9-10 points	Mostly natural shoreline, but with occasional riprap. 6-8 points			Shoreline consisting almost entirely of vertical seawalls. 0-2 points	
Community Types Observed	At least four communities observed from the following list: mangrove swamp, marsh, oyster bar, grass bed, reef, saltern, natural beach, or tidal creek. 38-50 points	Two or three communities obser from those listed. 26-37 points	One commodered observed listed.	from those	No communities observed from those listed. 0-12 points	
Tidal Fluctuation	>0.75 m. 4-5 points	0.5 - 0.75 m. 3 points	0.25 - 0.5 2 point		<0.25 m. 0-1 point	
Freshwater Discharges/ Alterations	Only natural runoff 9-10 points	Mostly natural run but with a few, sm stormwater source 6-8 points	all stormwa	ter discharge il roads, lots, etc.	Extensive manmade discharges, especially from canals draining large tracts of land. 0-2 points	
Flow and Wave Action	Light to moderate wave action present except under the harshest weather conditions. Flow unrestricted by manmade structures. 9-10 points				Heavy wave action sometimes present even during average weather conditions, or flow restricted by manmade structures so that velocities are very high. 0-2 points	
Sediment Type	Combination of sand, gravel, and shell. 12-15 points	Primarily sand, was small areas of muce 8-11 points			Anaerobic mud. 0-3 points	
TOTAL SCORE						
COMMENTS: Shipping Channel						
ANALYSIS DATE:	Brad Lamb	SIGNATURE:	3-4			

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET (5-10-86)

SUBMITTING AGENCY CODE: SUBMITTING AGENCY NAME:	STORET STATION NUMBER: D	27/47 1230	RECEIVING BODY OF WATER:	9
REMARKS: COUNTY: 9	LOCATION:	Sudlen	FEID FRANCE:	SITE "!
RIPARIAN ZONE/INSTREAM FEATURES				
Predominant Land-Use in Watersher	(specify relative percent	In each category):		
	Pasture Agricultural	Residential Comm	nercial Industrial C	Other (Specify)
10		30	60	
Local Watershed Erosion (check box)	None S		lerate Heavy	
Local Watershed NPS Poliution (chec	k box): No evidence	. •		se sources 🔲
Width of riparian vegetation (m) Lon least buffered side:	ist & map dominant vegetation on back	Typical Width (m)/Dep	th (m) (Velocity (m/sec) 1	rensect m wida
Artificially Channellzed no		m/s ↑	↑ m/s	m/s
Artificially impounded yes	vete some recovery mostly monven		į	
High Water Mark: + + (m above present water level) (br	earl depth in m) = (m ebowe bed)	m deep	m deep [m deep
Canopy Cover %: Open: Li	htly Shaded (11-45%):	Moderately Shade	ed (46-80%): Heavil	y Shaded:
SEDIMENT/SUBSTRATE				
Sediment Odors: Normal: S	ewage: Petroleum:	Chemical: Ana	erobic: Other:	
Sediment Olls: Absent:	Slight: Moderate:	Profuse:		
Sediment Deposition: Sludge: S	and smothering: none (Silt smothering	g: none moderate Othe	7:
Substrate Types	xitem belgmaz aemit #	od Substrate Types	% coverage # times samp	boritem belo
Woody Debris (Snags)		Sand		
Leaf Packs or Mats		Mud/Muck/Silt	100 3	Porte
Aquatic Vegetation		Other:		
Rock or Shell Rubble		Other:		100
Undercut banks/Roots		Oraw serial view ski	eich of habitats found in	100 m section
WATER QUALITY Depth (m): Temp.	(°C): pH (\$U): D.O.	(mg/l): Cond. (µmho/cm) or Salinity (ppt):		Secchi (m):
Top				
Mid-depth 15	6.433.	84 50,500		
Bottom				
System Type: Stream: (1st - 2nd 3rd - 4th	order 5th - 6th order order 7th order or greater	,) Lake: Wetland:	Estuary: Other:	
Water Odors (check box): Norma	l: Sewage:	Petroleum: (Chemical: Other:	17 SO4
Water Surface Olls (check box): None	: Sheen:	Globs:	Slick:	
Clarity (check box): Clea	Slightly turbid:	Turbid:	Opaque:	
Color (check box): Tannic	: Green (algae):		Other:	
Weather Conditions/Notes:	• 4	Abundance: Periphyton	Absent Pare Comm	non Abundant
Cun, 10°F, lt	. wwa	Fish		i Hi
,		Aquatic Macrophy	tes 🗖 🗍	
<u> </u>		Iron/sulfur Bacteria		
SAMPLING TEAM:		SKINATURE;	<u> </u>	₽E: /
Sporcer, Lamb		A. TO	<u>dus</u>	7/17/9

MARINE BENTHIC HABITAT ASSESSMENT FIELD DATA SHEET

SUBMITTING AGENCY CODE: STORET STATION NUMBER: DATE (M/DY): RECEIVING BODY OF WATER: SUBMITTING AGENCY NAME: 12797 Tampa BAY							
REMARKS: LOCATION: FIELD FOUNDAME: TEST SITE # Z South Side of Pt Sutton Reference Site # Z							
Habitat Parameter	Excellent	Good	Fair	Poor			
Littoral Alterations	None—Unaltered shoreline. 9-10 points	Mostly natural shoreline, but with occasional riprap. 6-8 points	Shoreline consisting mostly of riprap and vertical seawalls. 3-5 points	Shoreline consisting almost entirely of vertical seawalls. 0-2 points			
Community Types Observed	At least four communities observed from the following list: mangrove swamp, marsh, oyster bar, grass bed, reef, saltern, natural beach, or tidal creek. 38-50 points	Two or three communities observed from those listed. 26-37 points	One community observed from those listed. 13-25 points	No communities observed from those listed. 0-12 points			
Tidal Fluctuation	>0.75 m. 4-5 points	0.5 - 0.75 m. 3 points	0.25 - 0.5 m. 2 points	<0.25 m. 0-1 point			
Freshwater Discharges/ Alterations	Only natural runoff 9-10 points	Mostly natural runoff, but with a few, small stormwater sources. 6-8 points	Considerable stormwater discharge from local roads, parking lots, etc.	Extensive manmade discharges, especially from canals draining large tracts of land. 0-2 points			
Flow and Wave Action	Light to moderate wave action present except under the harshest weather conditions. Flow unrestricted by manmade structures. 9-10 points			Heavy wave action sometimes present even during average weather conditions, or flow restricted by manmade structures so that velocities are very high. 0-2 points			
Sediment Type	Combination of sand, gravel, and shell. 12-15 points	Primarily sand, with small areas of mud. 8-11 points	Mixture of sand and mud, or well-aerated mud only. 4-7 points	Anaerobic mud. 0-3 points			
TOTAL SCORE							
COMMENTS: ESTUARY - SANDY AREA ADT. TO Industrial Part							
ANALYSIS DATE:	ANALYST: Bred Lamb	SIGNATURE:	1 1				

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET
SUBMITTING AGENCY CODE: STORE STATION NOWSELL.
UBMITTING AGENCY NAME: 127197 1:30 Auga Bay
LOCATION: FIELD ID/NAME: To start to the start of the sta
REMARKS:
Double State of 17. Suitare 1.
RIPARIAN ZONE/INSTREAM FEATURES
Predominant Surrounding Land-Use (specify relative percent in each category): Predominant Surrounding Land-Use (specify relative percent in each category):
Forest Field/Pasture Agricultural Hesidential Continuercial
Local Watershed Erosion (check box): Notice Woodrate Obvious sources
Local Watershed NPS Pollution (check box): No evidence
Point-Source Pollution (list location and describe):
Audustrial Port, Power Plants nearby le
Estimated Stream Width (range, m): 200 Estimated Stream Depth (range, m): 1775 Impounded
High Water Mark (m above bed):
Canopy Cover % (check box): Open: Lightly Shaded: Moderately Shaded: Heavily Shaded:
SEDIMENT/SUBSTRATE Detroloum: Chemical: Anaerobic: Other:
Sediment Odors: Normal: Sewage: Petroleum: Chemical: Anaerobic. Other.
Sediment Oils: Absent: Slight: Moderate: Moderate:
Paper Fiber: Mud: Sand: Shell: Other:
Substrate Types % coverage # times sampled melliou
Substrate Types // Governor // Woody Debris (Spags)
Rock or Shell Rubble Leaf Packs/Roots Leaf Packs/Roots
Aquatic Vegetation
Sand
Other: Mud/Muck
WATER QUALITY
Term (sc): D.O. (mg/l): Secchi Depth (m):
pH (SU):
Top Conductivity (ymbo/cm):
Mid-deptil Other Parameters:
Stream Type (check box): Blackwater: Deep Aquifer Fed: Surficial Aquifer Fed: Alluvial: Other: Estuan
Petroleum W Chemical: W Other.
Water Odors (check box): Normal: Sewage. Globs: None: Water Surface Oils (check box): Slick: Sheen: Globs:
Clarity (check box): Clear: Slightly turbid: Turbid: Opaque:
Clarity (check box). Green (algae): Clear: Other:
Color (check box). Abundance: Absent Rare Common Abundan
Weather Conditions: Periphyton
Ceeau, Lt. wma, Fish III III III III III III III III III I
SIGNATURE:
ANALYSIS DATE: 127 97 B. Lamb

MARINE BENTHIC HABITAT ASSESSMENT FIELD DATA SHEET

SUBMITTING AGENCY CODE:SUBMITTING AGENCY NAME:	STORE STATION NOW	1/27/97 HEC	Tanpa Boy			
REMARKS:	LOCATION:	i EASTBAY	FIELDIDNAME: Referen	ved Setr .		
Habitat Parameter	Excellent	Good	Fair	Poor		
Littoral Alterations	None—Unaltered shoreline. 9-10 points	Mostly natural shoreline, but with occasional riprap. 6-8 points	Shoreline consisting mostly of riprap and vertical seawalls. 3-5 points	Shoreline consisting almost entirely of vertical seawalls. 0-2 points		
Community Types Observed	At least four communities observed from the following list: mangrove swamp, marsh, oyster bar, grass bed, reef, saltern, natural beach, or tidal creek. 38-50 points	Two or three communities observed from those listed. 26-37 points	One community observed from those listed. 13-25 points	No communities observed from those listed. 0-12 points		
Tidal Fluctuation	>0.75 m. 4-5 points	0.5 - 0.75 m. 3 points	0.25 - 0.5 m. 2 points	<0.25 m. 0-1 point		
Freshwater Discharges/ Alterations	Only natural runoff 9-10 points	Mostly natural runoff, but with a few, small stormwater sources. 6-8 points	Considerable stormwater discharge from local roads, parking lots, etc. 3-5 points	Extensive manmade discharges, especially from canals draining large tracts of land. 0-2 points		
Flow and Wave Action	Light to moderate wave action present except under the harshest weather conditions. Flow unrestricted by manmade structures. 9-10 points			Heavy wave action sometimes present even during average weather conditions, or flow restricted by manmade structures so that velocities are very high. 0-2 points		
Sediment Type	Combination of sand, gravel, and shell. 12-15 points	Primarily sand, with small areas of mud. 8-11 points	Mixture of sand and mud, or well-aerated mud only. 4-7 points	Anaerobic mud. 0-3 points		
TOTAL SCORE						
COMMENTS: ESTUARY						
ANALYSIS DATE:	ANALYST: Brad Lamb	SIGNATURE:				

FDEP Biology Section — Acute Bioassay Bench Sheet IMC Agrico-Port Suffor Sample Collection: Date //17/77 Time /035 Test Beginning: Date //18/17 Time /525 Test Ending: Date /-30-97 Time /525 Sample Source: Hills borough County: Brad LAMB / Southeast Contact / District: Organism Batch #: 25 Diluent Batch #: 1 Organism Age: 3dry NPDES Permit #: FL0000264 LIMS Sample #: 1665.24 LIMS Job #: 97—JAN - 29-08 Test Organism: Americanysis buhia sample log: -D.O. mg/L Conductivity µmhos/cm Test Type: Screening | Definitive Calibrations: pH Temperature °C (Static 1 Static Renewal | Flow-through meter # 7851 90H018262 90H018262 G9005749 Temperature range: room 24.0°C-25.0°C 0 hr 7.0 @ 7.0 27.7@ 24.4 8.1 @ 25.8 °C 103.6 @ 101.8 incubator NA 5.0 @ 5.0 \\ 24 hr 7.0 @ 7.0 \\ 24 hr 7.0 @ 7.0 \\ 24 hr 7.0 @ 7.0 \\ 24 hr 7.0 \\ 24 hr 7.0 \\ 25.5 \\ 25.5 \\ 26.5 \\ 27.7 \\ 27.8 Test Number: 1 of 2 Remarks: D = dead, M = missing 90 @ 9.0 48 hr 7:0 @ 7.0 233 @ 23.3 3.2 @ 24.9 °C 94.1 @ 201 9/300 @94971 @248 °C 9.0 @9.0 UNCORRECTED Cond. (mmhos/cm) **D.O.** (mg/L) Temperature (°C) рΗ Number Live Cond. (µmhos/cm) 48 h 24 h 48 h 48 h 0 hr 24 h 48 h 0 hr 0 hr 24 h 48 h 0 hr 24 h Chamber # Conc. 23.4 23.5 48,2 736.9 6.7 49.2 8.2 8.2 23.4 6.6 8.3 CRA B13 48.2 23.9 23.5 6.9 6.8 49.1 49.2 5 23.4 6.7 8.3 B. 2 8.2 on B 014 48.2 23.9 23.6 6.9 6.6 49.1 49.3 6.6 5 6.2 <u> 23.3</u> 8.3 8.2 5 ch c B15 48.2 23.3 23.9 23.7 49.1 49.4 69 6.7 6.6 5 5 8.2 8.2 8.3 1316 cた 15.0 24.0 23.4 5.0 6.3 6.6 50.4 49.7 47.6 2 100% A 731 7.8 8.0 6.9 317 24.0 23.4 6.3 6.7 49,5 49.3 25.1 50.5 4.0 5.0 4 7.8 8.0 1318 6.9 100% B 6.3 50.5 49.5 49.4 2 30 25.1 24.0 23.4 5.0 6.6 8.0 2 6.5 7,8 B19. 100% C 505 2 30 19.6 47.6 24.0 22.6 6.3 5.1 6.6 6.9 25.1 0.3 7.8 B20 100% D A - bubble trapped on Parks false

Measured/Loaded by: MF	NO ME ME NO MI	J DW 3	5 DW DW	133 13	Wa ku	J 000
Recorded by: m.F.	ND MC OW IS ON	Salt Water	3 30- 2	ality Paran		
Investigators' Signatures	<u> </u>				Method	Measured by
			20% Min Water	Sample	L 7	17
Marshall Faircloth	Field Total Residual Cl2 (mg/L):		A + 7	100		sured
Julio dhai so	Lab Total Residual Cl2 (mg/L):	40.63	20.03	0.04	DR-100	<u> </u>
(M. 1 1.1	Alkalinity (mg/L as CaCO ₃) \$	137125 MS		195	Hach	N'D
Jan Jan	Hardness (mg/L as CaCO3)	33 NA				
	Tatal ammonia (mail as N)	1 <0.01 /	·	<0.01	Driver	Wa
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	A-monia Ammonia	A	mmonia C	ontroi	Sa	ample at the
reviewer form updated 4/01/96	uppare Mater Clans	-29,10 B	lank: <u>20,01 1</u> S	alinity: <u>30</u>	4 ppt Sa	alinity: 324 pr
			•• -			

	FDE	P Bio	olog	y Se	ectio	n —	- Ac	ute]	Bioa	ssay	у Ве	nch	Sh	eet			
Sample Sourc	e: TM	2 A.	ه مدی	Port	Sitt	WO	·	_			_	. 11	17/9	フ Tim	e_/0.	35	
Sample Source Count	1v: 1)		IOYCU	sh					mple Co Test Be Test ganism	ginnii Fodi	ng: Da	te <u>//2</u> te /-22	<u> </u>	Tim	e_/52	<u></u> }	
Contact / Distric	·	~~~ L	mmb	150	uthea	ي \mathcal{T}_{-}^{-} ي		- Or	es۱ ganism	. ∈nd⊪ Batch	.ig. ∪a 1#: 🎜	31	Dilue	nt Bato	:h #:	/	
NPDES Permit	#: FI.00	000	64						Organ	ism A	ge: 💆	130	Jays				
LIMS Sample		<u>- √ ∽.</u> }// III•	<u>~</u> .∠ {S Job	, #: 9"	Z-JA	N-29	1-08	/	Test Or	ganie	m: 1	Menid.	5	07/11/	<u> </u>		
EIMO Gample	9: 1-30-	97			Insuui	meni								uctivity µ		n	
Tank Tunner Sc	reening LDRI	unitive			Calibra	ations:			erature	بار. ا	D.O. 0H0182		GS	9005749	9		
Static	1 Static Rene	ewallfi	low-thr シンピュ	ough _n		~ · ·	351	34.4)18262 @_ 3 4	.4	811 @	25.8	°C /	03.6 @	101.8	2	
Temperature ra	incubat	tor	_ <u></u>		0 h	ır <u>7.0</u>	@ 7.0 - <i>-</i>	<u> </u>	_@ <u>^</u>		<u></u> (a)		100	7 @ /	001 6	15.5	°C
Test Number:	$\underline{2}$ of $\underline{2}$	<u>=-</u> :				7.0	@ <u>7.0</u>	- au l	_@ _@ <i>2</i> 4	1 5	8/3 ~	248	°C 9330	06 8 4V	911/01.	Σ <u>'</u>	
Remarks: D =					24 h	nr <u>7.0</u>	@ 7.0	24/6	_ @ <i>_</i> ~\	v	(0	<u>, ,, o,</u>	. ∠ _∆ 990	× سسس× ان ها	00/ 6	24.6	_ °C
						$\underline{q_{\mathcal{O}}}$	@ <u>4.0</u>	د وور	្រូការា	2	⊘) .	. ე ს 9	_ '9 ,	1900 & 9	4971	, —	-
					48 h	nr 70	<u>7</u> @ 7.0	23,3	@ 23,	<u>ノ_ :</u>	() A.C.	145	0/1	<u> 19ь </u>	14971 1	_ a 24.8	.°C
						9.0	@ <u>9.0</u>	_					<u>/13</u>				
									=					UNCC	ORREC)
	r					рН		Temp	erature ("C)	D.C), (mg/L		Cond.	(µmho	s/cm)	
]	· —	mber Li			24 h	48 h	0 hr	24 h 4		0 hr	24 h	48 h	0 hr	24 h	48 h]
Conc.	Chamber #	0 hr	24 h	48 h	0 hr				23.9			6.6	6.7	48.3	49.1	49.0	
CTLA	BI	5		<u> </u>			8.2	23.5	23.8 2	22 1		6.6	6.7	48.2	49.0	48.7	1
CTZ B	BZ	<u> </u>	5	2	813	8.2	8.2		23.8		6.9	6.6	6.8	48.2	44.0	489	1
CTLC	33	5	5	5	8.3	8.2	8.2		23.B	23.5	6.9	6.6	6.6	48.2	49.1	49.1	
C/2D	134	5	<u>۔</u> -	5	6.5	7.8	_	25.3	23.9	23.3	4.3	6.4	1.6	50.7	44.7	45.7	-
100 PA	35	5	5	<u>ا د</u> ا	6.7	7.8	8.0	25.1	23.9	23.3	4.8			50.6	144.6	400	1
100%B	136	5	5	5	69	7.8		25.1	23.9	23.4		6.4	6.7	 	44.5		1
130 % C	87	<u> </u>	8		6.9	7.8	80	25.1	23.9	23.5	4.8	6.4	6.6		49.6	77.7	1
100% D	B8	- ح			<u> </u>			L	<u> </u>			:	<u> </u>	 			1
	<u> </u>	 -	 	 		1_		<u></u>			 	<u> </u>	 	 			-
	 	 	 	1			ļ	<u> </u>	 		<u> </u>	 		 	 		1
,		1	+				<u> </u>	 	<u> </u>	<u></u>	 	 	 	 	+	 -	
·	1	T			1		ļ	-	 	 	 	 	 	1	 	·	_
			ļ	-	1	-		 	-	<u></u> .—	†	<u>i. ———</u> ;	 -				1
			<u> </u>	 	 		-1			<u>—</u>	1					. ‡	-
		_	<u> </u>		 					į	ļ	T			_ 	<u>. i</u>	_
		<u>-</u>	· 					- i		;	1	<u></u>			_		
	<u> </u>				 -				- <u>- </u>	1	<u> </u>	[4-	,	:	İ
		-	+	+	1		+- · · · ·	1	· · · · · · · · · · · · · · · · · · ·		_	<u> </u>					
		-		+	†	· i		1			.	 		+-			
		+		-	1				_ }	: 	_	+ -	+-		-	-	
			†	 				 .	-		 		-		-	_	1
	- +					_+		ME	· TND	M (-	ME	ND	ME		N.	MF	
Measure	ed/Loaged by:	DW		מע מא כ	ME	J 35	DW			DW	CW	75	DW		<u>کل ر</u>	Sipru	<u></u>
Red	corded by:	<u> T ivi</u>		410 410	<u> </u>	۰۲:مد: م	iál	Sall W	-	W	ater Qu			eters		_	j k
Investiga	ators' Signatu	1		T ehl	17 PAGE	MANPI (AUCRC)	ime ivust ir umterul		Vater 20	0% M ij	n Water	Sam	ple	Metho	ME ME	easured	ру
		THE PERSON	<u></u>	'd Total	Residu	ual CI2	(mg/L):					NO		pasa			
parol	watthan	<u>Luai</u>	√ Fiei	iu Total	, Jusial Raeidi	Jal Cla	(ma/L):	20.03		0.0	3	0.0		DR-10		ν <u>1</u> 2	
Julio (Xraif-		– La	otal النا أمثله	itv (ma/	L as Cat	COa)	19.				195		<u>i) h</u>	<u></u>	<u>τ</u> δ	<u> </u>
1	1. longe	_				_J /L as Ca			·					0.0		rif	
						ia (mg/L		<00				20.0	3_1	ous			
· · · · · · · · · · · · · · · · · · ·						A	0013		Ami	monia		Control	່ ງາ.	A ppt	Samp Salini	11'N	, <mark>\↓</mark> pp
Ath	10×12		36	Meter #	¢98136	Meter	Slope.	-34,1	Blan	nk: <u>40</u>	0.0[]	Salinity	/: <u>~</u>	_	oaiini	-y - <u>. y y -</u>	•
-GARMIST	form upda	ated 4/01/	ЭÞ												كندو		

Benthic macroinvertebrate taxa list for IMC-Agrico Co., collected via Ponar grab samples in Tampa Bay, on 27 January, 1997. Densities, in number/m², represent the mean of three replicates.

	Reference Site	Test Site 1	Test Site 2
Polychaeta	40		111
Eteone heteropoda	42	-	♣ ,∦, ±
Mystides borealis	14	-	28
Nereis succinea	-	-	26 14
Laeonereis culveri	-	-	28
Undetermined Orbiniidae	14	-	14
Leitoscoloplos sp.	-	•	28
Prionospio heterobranchia	-	-	14
Streblospio benedicti		-	42
Capitella sp.	83	153	56
Capitella capitata	-	-	<i>w</i>
Oligochaeta	202	2167	
Undetermined Tubificidae	208	2107	-
Gastropoda			56
arGamidella sp.	14	-	28
Pelecypoda	-	-	-
Parastarte triquetra	56	-	
Cumacea	. 49		_
Oxyurostylis sp.	42	-	14
Cyclaspis sp.	-	-	42
Cyclaspis varians	139	-	
Tanaidacea		_	28
Hargeria rapax	-	_	
Isopoda		_	14
Edotea montosa	-	-	
Amphipoda	90	_	42
Ampelisca sp.	28	_	56
Ampelisca abdita	-	_	56
Ampelisca vadorum	-	_	14
Opĥiuridae	-	-	

Phytoplankton taxa list and densities (#/mL) for IMC-Agrico Co., collected via subsurface grabs in Tampa Bay, on 27 January, 1997.

	Refernce Site	Test Site 1	Test Site 2
Cyanophyceae			
Oscillatoria sp.	21		-
Spirulina sp.	- .	11	-
Anabaena sp.	-	11	-
Bacillariophyceae			
Paralia sp.	-	-	55 55
Skeletonema sp.	1054	-	705
Cyclotella sp.	-	-	<u>1</u> 4
Coscinodiscus sp.	-	-	7
Chaetoceros sp.	11		-
Undetermined Pennales	21	80	48
Fragilaria sp.	32		-
Asterionella sp.	63	-	27
Cocconeis sp.	21	-	14
Navicula sp.	42	34	27
Gyrosigma sp.	-	11 5	-
Nitzschia sp.	-	-	48
Cylindrotheca sp.	42	1161	21
Chlorophyceae			04
Chlorella sp.	-	-	21
Oocystis sp.	-	724	-
Crucigenia sp.	-	62 1	-

	ection For All Surface Water Dischar	ger Inspections (CEI, CSI, C	BI, PAI, XSI - RI Optional)
Transaction Code	NPDES NUMBER	YR/MO/DA	insp Type Inspector Fac Type
1 N 2 5	3 FL000026411	12 9 7 0 1 2 7 17 emarks	18 X 19 5 20 2
21			66
Fill Out This S	ection For All Surface Water Dischar	ger Inspections (CEI, CSI, C	BI, PAI, XSI RI Optional)
Transaction Code	NPDES NUMBER	YR/MO/DA	Insp Type Inspector Fac Type
1 N 2 5	3 F L 0 0 0 0 2 6 4 11	12 9 7 0 1 2 7 17 emarks	18 B 19 5 20 Z
21			66