Florida

Department of Environmental Protection

Biological Assessment of

Pebble Creek Wastewater Treatment Plant

Hillsborough County NPDES #FL0039896 Sampled August 1993

December 1993

Biology Section
Division of Technical Services

Department of Environmental Protection Results of Fifth Year Inspections

Discharger:

Pebble Creek WWTP

County: NPDES Number: Hillsborough FL0039896

State Permit Expiration Date:

1 April 1994

Toxics Sampling Inspection (XSI)

Date Sampled:

16 August 1993

Atrazine and diazinon were detected in the effluent, at Results: estimated concentrations of 0.16 µg/L and 0.12 µg/L, respectively. While these concentrations are both below known toxic levels, the observed C. dubia toxicity could be related to synergistic interaction between the two biocides. No metals were detected in excess of Class III standards.

Compliance Biomonitoring Inspection (CBI)

Date Sampled:

16 August 1993

Results:

Acutely toxic to Ceriodaphnia dubia, in violation of Rule 17-302.530(62) FAC, Rule 17-302.500(1)(d) FAC, and Rule 17-4.244(3)(a). The discharge

was not toxic to Cyprinella leedsi.

Impact Bioassessment Inspection (IBI)

Date Sampled:

16 August 1993

Benthic macroinvertebrate communities were severely Results: disturbed at the test site. Taxa richness, the Florida Index, and the Shannon-Weaver diversity index were extremely low at the test site, representing very unfavorable conditions. The Pebble Creek WWTP violated the biological integrity criterion (Rule 17-302.530(11) FAC) and also the standard prohibiting nutrient induced imbalances in aquatic fauna (Rule 17-302-530(48)(b) FAC). The periphyton community at the test site had high taxa richness and low biomass. Diatoms made up the majority of the periphytic assemblage, although green and blue-green algae were present in Pebble Creek. The data suggest the algal community was not adversely impacted by the discharge.

Water Quality Inspection (WQI)

Date Sampled:

16 August 1993

Effluent dissolved oxygen (4.5 mg/L) violated the facility's Results: permit limit of 6.5 mg/L. Dissolved oxygen at the test site was depressed below Class III Water Quality Standards. Nutrients were elevated in the effluent, particularly nitrate-nitrite, total phosphorus, and ortho-phosphate. The influence of the nutrient rich discharge was apparent at the test site, where concentrations of the above three nutrient compounds were an order of magnitude higher than those measured in the reference site, as well as higher than 95% of other Florida streams. Algal growth potential exceeded the problem threshold throughout the study area. Fecal coliforms were found in the effluent at an estimated concentration of 8 organisms/100 mL, which is within the facility's permit limit (Rule 17-600 FAC). Fecal coliforms did not exceed Class III standards at the test site.

Introduction

The Pebble Creek Service Corporation provides advanced domestic wastewater treatment for a country club and the surrounding residential area in northern Hillsborough County. This 0.4 MGD facility utilizes a combined stage "RABCO" process, which involves ultraviolet disinfection prior to discharge. Effluent is discharged via a 10-12 inch diameter vertical standpipe to Pebble Creek, a Class III waterbody.

Effluent limits are as follows: BOD₅ (3 mg/L annual average), TSS (5 mg/L annual average), fecal coliforms (not detectable), total nitrogen (3 mg/L annual average), TKN (1 mg/L), flow (0.4 MGD), pH (6.0 to 8.5), and dissolved oxygen (minimum of 6.5 mg/L). During the past year, permit violations have included fecal coliforms (range 2 to 114 organisms/ 100 mL), TKN (range 1.04 to 3.8 mg/ L), pH (9.4 SU's), and residual chlorine (range 0.08 to 1.5 mg/L). Enforcement action was taken against the facility in 1992 for irrigating golf courses with treated effluent without a permit. Although the case was closed following payment of fines, the facility has applied for a permit to resume irrigation practices (see Facility Summary in Appendix).

Methods

The focus of this investigation was to determine the discharger's effects on the receiving waters. A comparison of biological community health was made between a reference

site (located in Rocky Creek) and a test site in Pebble Creek (downstream of discharge, which eventually flows to the Hillsborough River via Trout Creek) (see maps in Appendix). Clay Gully was originally chosen as a reference site, but the lack of flow and recent desiccation of the system disqualified it from serving this purpose. For this reason, data from Rocky Creek, which was sampled in April, 1993, was used as a reference site. A habitat assessment was performed in situ to establish comparability between sites. Supplemental physical/chemical data were also collected on the effluent and study sites. Acute screening toxicity bioassays, using Ceriodaphnia dubia and Cyprinella leedsi as test organisms, were performed on an effluent sample (Weber 1991). The effluent was analyzed for metals and for organic constituents (base neutral and acid extractables, and pesticide extractables). Additionally, nutrient analyses were performed on effluent, reference, and test sites. Methods used for all chemical analyses are on file at the Tallahassee DEP Chemistry Laboratory.

Benthic macroinvertebrate communities were evaluated at reference and test sites. Invertebrate collections were accomplished using Hester-Dendy multiplate samplers which were incubated for 28 days (Ross 1990). Periphyton was sampled at both reference and test sites by incubating glass microscope slides in a standard periphytometer for 28 days (Ross 1990). Chlorophyll a was also determined for periphyton communities (Ross 1990). Bacterial populations were analyzed for fecal coliforms following the methods of APHA (1989). Algal Growth Potential tests, using Selenastrum capricornutum as the test organism, followed Miller et al. (1978).

Explanation of Measurements of Community Health

Several different measurements of macroinvertebrate and algal community health have been employed in this report. Many of these, such as the number of taxa, Shannon-Weaver Diversity Index, and chlorophyll a are well known. Others are briefly explained here. The Florida Index assigns points to stream-dwelling macroinvertebrates based on their sensitivity to pollution (see Ross 1990). A site with a high Florida Index score is considered healthy (i.e., many clean-water organisms are present). Excessive numerical dominance of a single type of organism (a high % contribution of dominant taxon) is usually associated with disturbance. A decreased diatom to bluegreen algae ratio (calculated by dividing the number of individuals in the Bacillariophyta by the number of individuals in the Bacillariophyta + Cyanophyta) is often indicative of nutrient enriched conditions. The determination of the Quantitative Stability Index (for taxonomic % composition) is a two step process. First, the relative proportions of major taxonomic groups are calculated for each site. Then, the lesser of the two percentages for each discrete taxonomic group is totaled. A QSI (for % composition) of 100% means that the two sites being compared are identical. This same type of procedure is used for calculating the QSI (for functional feeding groups).

For graphical purposes, the percent differences between the reference and test sites involving the number of taxa, the diversity index, Florida Index and the diatom to bluegreen algae ratio are measured as the reference site minus test site divided by the reference site. The percent

differences between sites involving the percent contribution of dominant taxon, chlorophyll a, and algal growth potential are measured as the test site minus reference site divided by the reference site.

The following personnel were involved in this investigation: Pat Fricano, Kathy Hicks, and Jim Snitgen (DEP Southwest District) and Lyn Burton, Marshall Faircloth, Russel Frydenborg, Kathleen Lurding, Elizabeth Miller, Urania Quintana, and Greg Wynn (Tallahassee Biology Laboratory). The report was reviewed by the Point Source Studies Review Committee, consisting of Wayne Magley, Jan Mandrup-Pouls-

en, and Michael Tanski, as well as District representatives.

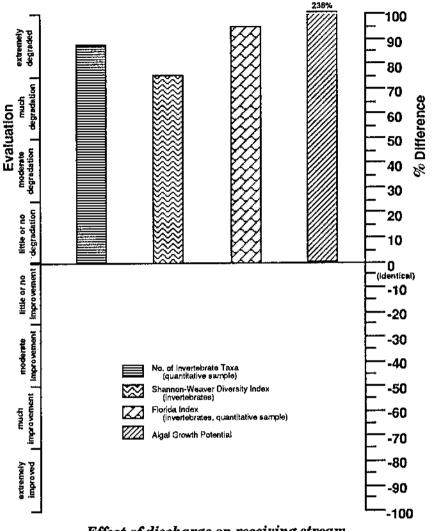
Results and Discussion

Habitat at the Pebble Creek test site (with 64 points) was somewhat more favorable for the establishment of biological populations than was the habitat present at the Rocky Creek reference site (with 44 points). While the two study areas were similar with regard to flow regime (velocity at both

Test Site

Rocky Ck.

Reference


Major characteristics of community structure of control and test sites.

Site Macroinvertebrate Hester-Dendy 8 Number of Taxa 64 1 Florida Index 20 1.04 Shannon-Weaver Diversity 4.21 84.1 % Gastropoda 6.7 11.7 60.2 % Diptera % Malacostraca 8.7 4.1 0.8 0 % Oligochaeta 1.2 0 % Odonata 17.9 $\overline{0}$ % Ephemeroptera 88.5 15.7 % Scrapers % Deposit Feeders (above surface) 46.1 4.1 6.5 2.8 % Predator/Carnivores % Shredders 2.6 5.7 % Suspension feeders/Collector-filterers 0 20.7 0 % Deposit feeders (below surface) 0.7 3.0 2.0 % Scavengers Reference Site Periphyton Algae Samplers Lost Number of Taxa 37 % Contribution of Dominant Taxon 13.8 Chlorophyll a (mg/sq. m) 0.41Diatom/Diatom + B-G Abundance Ratio 0.86 78.3 % Diatoms % Blue-green 12.3 % Green 9.4 Algal Growth Potential (mg dry wt/l) 25.8 85.4

was 0.05 m/sec to 0.1 m/sec), more available substrate (e.g., leaf packs, roots, and undercut banks) was found at the test site. Land was used completely for residential purposes near the test site, while the surrounding land use at the reference site included industrial (60%), agricultural (30%) and residential (10%). Dissolved oxygen was marginally acceptable at the reference site (5.1 mg/L), but D.O. at the test site (4.3 mg/L) was depressed below Class III Water Quality Standards. Dissolved oxygen of the effluent (measured in the field) was 4.5 mg/L, in violation of the facility's permit limit of 6.5 mg/ L. Water was fairly neutral at both study stations (pH was 7.4 and 7.0 at reference and test sites, respectively). Conductivity at the reference site (270 µmho/cm) was normal, but was elevated for a freshwater system (1250 µmho/cm) at the Pebble Creek test site (Appendix).

The sample of final effluent was acutely toxic to *Ceriodaphnia dubia*, causing 100% mortality in the 48 hour bioassay. This level of toxicity is in violation of Class III standards, Rule 17-302.530(62) FAC, Rule 17-302.500(1)(d) FAC, and Rule 17-4.244(3)(a). Only one organism died in the *Cyprinella leedsi* test, indicating that the effluent was not acutely toxic to that test organism.

Results of organics analyses on the Pebble Creek effluent revealed presumptive evidence of the presence of atrazine and diazinon, at estimated concentrations of 0.16 µg/L and 0.12 µg/L, respectively. While these levels are both below known toxic levels, the observed *C. dubia* toxicity could possibly be related to synergistic interaction between the two biocides. The following metals were found in the effluent above detection limit: copper (12 µg/L), iron (11 µg/L), and zinc (24 µg/L). None of these

Effect of discharge on receiving stream (measured as difference between control and test sites).

levels are in excess of Water Quality Standards.

Nutrients were elevated in the effluent, particularly nitrate-nitrite (1.4 mg/L), total phosphorus (1.5 mg/L), and ortho-phosphate (1.4 mg/L). The influence of the nutrient rich discharge was clearly apparent at the test site, as these same three compounds were greater than 95% of typical streams in Florida (see Table of Typical Water Quality Values in Appendix). In contrast, ammonia and TKN were either very low or undetected at the test site. The reference site water was somewhat higher than a typical Florida stream with respect

to nutrients, however, concentrations of nitrate-nitrite, total phosphorus, and ortho-phosphate were close to an order of magnitude lower than those measured in Pebble Creek (see chemistry summary table in Appendix).

Algal growth potential (AGP) indicated problems throughout the study area. A problem threshold of 5 mg dry wt/L was established by Raschke and Schultz (1987) to predict the likelihood of the detrimental consequences of nutrient enrichment, such as excessive algal or macrophyte growth, D.O. sags, and fish kills. Effluent AGP was 113 mg dry wt/L, while AGP of the reference and test

sites was 25.9 mg dry wt/L and 85.4 mg dry wt/L, respectively. The nearly fourfold increase in AGP observed at the test site is an obvious result of the WWTP discharge into Pebble Creek. Higher than expected AGP at the reference site was probably related to agricultural run-off and WWTP discharges in the area.

Fecal coliforms were found in the effluent at an estimated concentration of 8 organisms/100 mL, which is within the facility's permit limit (Rule 17-600 FAC). Fecal coliforms were within Class III standards at the test site (640 organisms/100 mL), but were substantially greater than those found in the effluent.

Benthic macroinvertebrate communities were severely stressed at the test site. The figure on this page indicates the degree of difference between the control and test sites. Larger differences (that is, higher percentages) correspond with greater degrees of degradation. Negative values usually mean that the test site is better than the control. The figure on p. 4 summarizes similarities between the sites. Smaller similarities (lower percentages) generally correspond with greater degradation, unless the test site is better than the reference site. The average abundance of each individual taxon appears in the Appendix.

Taxa richness was indicative of healthy conditions at the reference site (with 64 taxa) decreasing by 87.5% at the test site (only 8 taxa present). The observed taxa richness at the test site was 85% less than that of other streams throughout Florida. The 95% decrease in the Florida Index score at the test site also demonstrated that grossly unfavorable conditions were present downstream of the discharge. The reference site received 20 Florida Index points, while the test site scored only 1 point. A

minimum Florida Index value of 15 points is generally expected from this part of the state. Shannon-Weaver diversity was reduced by 75.3% from the reference to test site, dropping from 4.2 to 1.0. The test site diversity value is less than 94% of other Florida stream systems. Furthermore, the qualitative stability indices for percent composition and functional feeding groups indicated very large differences between the healthy reference site biota and the perturbed test site populations. Since favorable habitat and flow were present at the test site, the problems found in Pebble Creek were related to the nutrient-rich, toxic discharge, as well as to the low D.O. conditions. These data clearly indicate degradation at the test site, and that the Pebble Creek WWTP violated the biological integrity criterion (Rule 17-302.530(11) FAC) and also the standard prohibiting nutrient induced imbalances in aquatic fauna (Rule 17-302-530(48)(b) FAC).

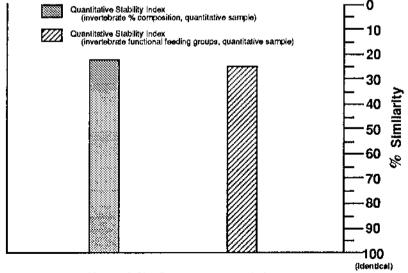
Although no reference site periphyton community data were available, the test site attached algal community did not appear to be disturbed. For example, 37 taxa (an acceptable number) were identified from the test site. Diatoms made up the majority of the community, although green and blue-green algae were also present. Given the elevated nutrient levels and AGP of the test site, the low chlorophyll a value (0.41 mg/m²) was surprising. The data suggest the algal community was not adversely impacted by the discharge.

Conclusions

The sample of final effluent from the Pebble Creek WWTP was acutely toxic to Ceriodaphnia dubia, causing 100% mortality in the 48 hour bioassay. This toxicity is in violation of Class III standards, Rule 17-302.530(62) FAC, Rule 17-302.500(1)(d) FAC, and Rule 17-4.244(3)(a). The discharge was not toxic to Cyprinella leedsi.

Effluent dissolved oxygen (4.5 mg/L) violated the facility's permit limit of 6.5 mg/L. Dissolved oxygen at the test site was depressed below Class III Water Quality Standards.

Atrazine and diazinon were detected (presumptive evidence) in the effluent, at estimated concentrations of 0.16 µg/L and 0.12 µg/L, respectively. While these concentrations are both below known toxic levels, the observed *C. dubia* toxicity could be related to synergistic interaction between the two biocides. No metals were detected in excess of Class III standards.


Nutrients were elevated in the effluent, particularly nitrate-nitrite, total phosphorus, and ortho-phosphate. The influence of the nutrient rich discharge was apparent at the test site, where concentrations of the above three nutrient compounds

were nearly an order of magnitude higher than those measured in the reference site, as well as higher than 95% of other Florida streams.

Effluent and test site algal growth potential (113 mg dry wt/L and 85.4 mg dry wt/L, respectively) were three to five times greater than that of the reference site, an obvious result of the WWTP discharge into Pebble Creek.

Fecal coliforms were found in the effluent at an estimated concentration of 8 organisms/100 mL, which is within the facility's permit limit (Rule 17-600 FAC). Fecal coliforms did not exceed Class III standards at the test site.

Benthic macroinvertebrate communities were severely disturbed at the test site. Taxa richness, Florida Index and the Shannon-Weaver diversity index were extremely low at the test site, representing very unfavorable conditions. The Pebble Creek WWTP violated the biological integrity criterion (Rule 17-302.530(11) FAC) and also the standard prohibiting nutrient induced imbalances in aquatic fauna (Rule 17-302-530(48)(b) FAC).

Effect of discharge on receiving stream (measured as similarity between control and test sites).

The periphyton community at the test site had high taxa richness and low biomass. Diatoms made up the majority of the periphytic assemblage, although green and blue-green algae were present in Pebble Creek.

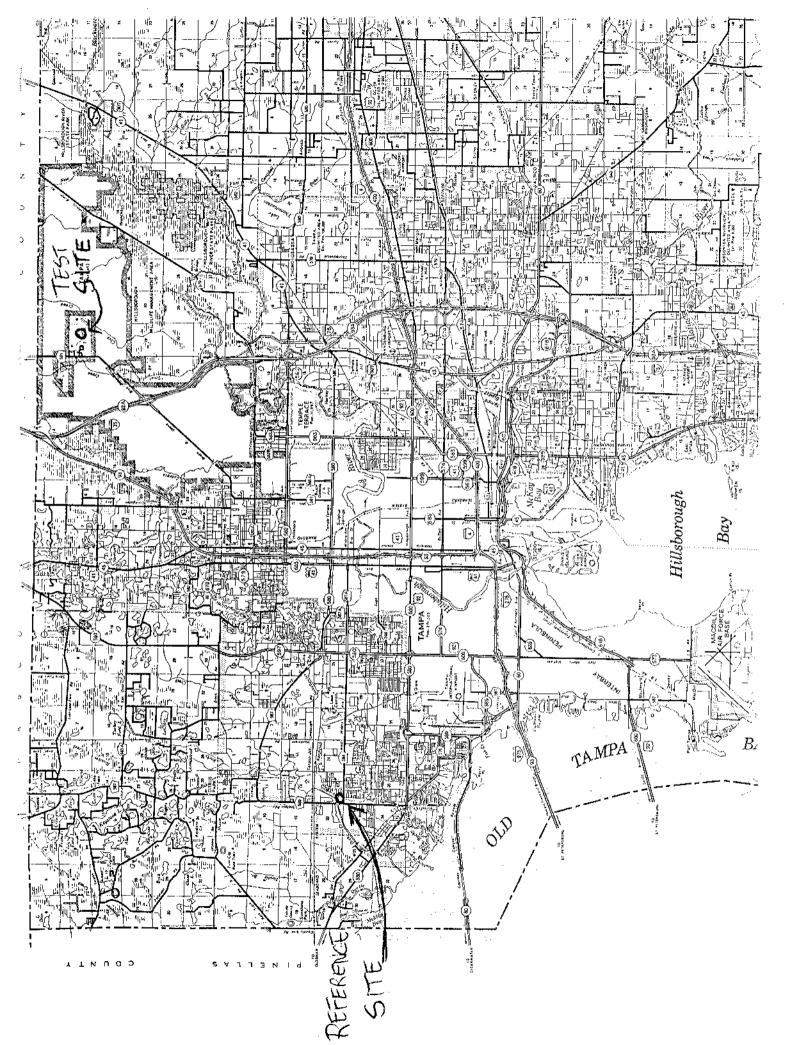
The data suggest the algal community was not adversely impacted by the discharge.

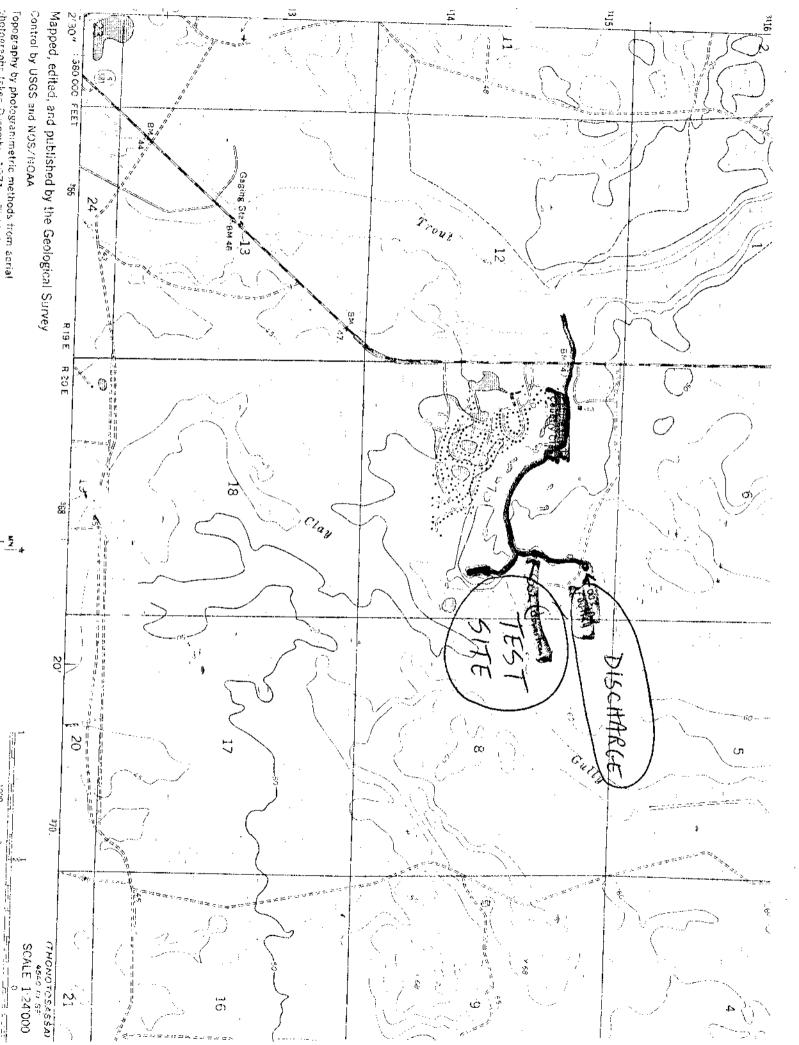
Literature Cited

- American Public Health Assoc., American Water Works Assoc., and Water Pollution Control Federation. 1989. Standard Methods for the Examination of Water and Wastewater, 17th ed. New York, N.Y. 1268 p.
- Aquatic Toxicity Information Retrieval Data Base (AQUIRE). 1991. U.S. EPA Environmental Research Laboratory, Duluth, Mn.

- Miller, W. E., T. E. Maloney, and J. C. Greene. 1978. The Selenastrum capricornutum Printz algal assay bottle test. U. S. Environ. Prot. Agency, EPA-600/9-78-018, 126 p.
- Raschke, R. L. and D. A. Schultz. 1987. The use of the algal growth potential test for data assessment. J. Wat. Poll. Cont. Fed. 59(4): 222-227.
- Ross, L. T. 1990. Methods for aquatic biology. Fla. Dept. Environ. Reg. Tech. Ser. 10(1): 1-47.
- Weber, C. I. 1991. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. 4th edition. EPA/600/4-90/027. U. S. EPA, Cincinnati, Ohio. 216 pp.

Peddle Creek ww.IP	Site							
Organic Constituents (ug/L)								
Atrazine	0.16 N							
Diazinon	0.12 N							
Metals (ug/L)								
Aluminum	100 U							
Antimony	15 U							
Arsenic	20 U							
Cadmium	Blank Contaminate	d						
Copper	12 A							
Chromium	10 U							
Iron	11 A							
Lead	15 U							
Mercury	0.1 U							
Nickel	5 U							
Selenium	30 U							
Silver	0.05 U							
Zine	24 A							
Nutrients (mg/L)								
Ortho-phosphate	1.4	0.089	1.5 A					
Total phosphorus	1.5	0.12	1.5					
Ammonia	0.022 I	0.072	0.020 U					
Nitrate+Nitrite	1.4	0.29	1.2 A					
TKN	0.58	0.69	0.54					
Other Parameters								
Habitat Assessment		44	64					
D.O. (mg/L)	4.5	5,1	4.3					
pH (SU's)	7.8	7.4	7.0					
Conductivity (µmhos/cm)	1250	556	1250					
Temperature (°C)	28.0	21.7	29.0					
Hardness (mg CaCO3)	209		220					
Bioassay Fish	Not Toxic							
Bioassay Fish Bioassay Invertebrate	LC50 < 100%							
Fecal coliforms (org/100 ml)	8 J		640					
Algal Growth Potential (mg dry wt/L)	113.0	25.85	85,4					
Algai Growth Potential (mg dry WUL)	113.0	43.03	03.4					


- A Value reported is the mean of two or more determinations
- I Value reported is less than the minimum quantitation limit, and greater than or equal to the minimum detection limit
- J Estimated value
- N Presumptive evidence of presence of material
- U Material analyzed for but not detected; value reported is the minimum detection limit


Typical Values for Selected Parameters in Florida Waters Adapted from Joe Hand, FDER, personal communication, 1991 (data was collected between 1980 and 1989)

Percentile Distribution

				entine							· · · ·
Parameter	5 %	10%	20%	30%	40%	50%	60%	70%	80%	90%	95%
STREAMS											
(1617 stations)											
Phytoplankton	·····										
Chlorophyll a	0.22	0.52	0.94	1.60	3.02	4.63	6.72	9.87	14.68	27.35	48.70
Periphyton					<u> </u>	i					
Chlorophyll a	0.31	0.43	0.77	1.04	2,16	2.94	6.45	10.51	17.00	39.51	60.85
H-D Diversity	0.84	2.12	2.48	2.74	2,88	3.09	3,25	3.40	3.52	3.76	3.90
Qualitative Taxa											
Richness	9.00	12.00	17.00	20.00	22.00	24.50	26.00	28.00	31,00	37.00	53.00
H-D Taxa								aa	22.22	00.00	00.00
Richness	6.00	6.50	9.00	11.50	13.00	15.00	17.00	21.50	26.00	29.00	32.00
TKN	0.30	0.39	0.56	0.73	0.87	1,00	1.11	1.26	1.49	1.93	2.80
Ammonia	0.02	0.02	0.04	0.05	0.06	0.08	0,11	0.14	0.20	0.34	0.60
NO2-NO3	0.01	0.01	0.03	0.05	0.07	0.10	0.14	0.20	0.32	0.64	1.05
Total Phosphorus	0.02	0.03	0.05	0.06	0.10	0.13	0.18	0.25	0.39	0.74	1.51
Ortho Phosphorus	0.01	0.01	0.03	0.04	0.05	0.08	0.11	0.17	0.27	0.59	1.37
Turbidity	0.60	0.90	1.20	1.45	2.10	2.80	3.60	4.50	6.65	10.45	16.30
LAKES											
(477 stations)											
Phytoplankton											
Chlorophyll a	0.80	1.71	2.88	4.28	10.06	13.40	20.00	30.10	47.20	65.44	113.90
Dredge Diversity	0.71	0.97	1.43	1.74	1.98	2.12	2.21	2.59	2.85	3.15	3.17
Dredge Taxa		·									24.00
Richness	3.00	5.00	6.50	7.00	9.00	10.00	11.00	13.00	15.00	17.00	21.00
TKN	0.36	0.49	0.67	0.83	1.08	1.26	1.40	1.51	1.68	2.11	3.46
NH3+NH4	0.01	0.02	0.02	0.03	0.04	0.06	0.08	0.12	0.15	0.21	0.28
NO2-NO3	0.00	0.00	0.01	0.01	0.01	0.02	0.04	0.05	0.10	0.14	0.23
Total Phosphorus	0.01	0.02	0.02	0.03	0.05	0.07	0.09	0.11	0.14	0.23	0.42
Ortho-Phosphorus	0.00	0.01	0.01	0.02	0.03	0.04	0.05	0.06	0.08	0.21	0.32
Turbidity	1.00	1.25	1.55	2.05	2.75	4.50	6.45	9.60	14,10	26.00	40.00
ESTUARIES											
(690 stations)											
Phytoplankton					i						
Chlorophyll a	2,14	3.28	4.49	5.13	6.00	6.93	7.94	9.60	12.40	17.60	22,20
Dredge Diversity	1.34	1.53	1.91	2.28	2.56	2.90	3.15	3.59	4.01	4.53	4.98
Dredge Taxa											
Richness	4.00	6.00			15.00	· · · · · · · · · · · · · · · · · · ·	25.00	35.00			90.00
TKN	0.26	0.34	0.42	0.50	0.59	0.69	0.76	0.82	0.95	1.30	1.49
NH3+NH4	0.01	0.02	0,03		0.05	0.06	0.08	0.09	0.13	0.22	0.28
NO2-NO3	0.00	0.00	0.01	0.01	0.01	0.02	0.03	0.05	0.08	0.17	0.23
Total Phosphorus	0.01	0.02	0.06		0.10	0.11	0.14	0.17	0.23	0.43	0.59
Ortho-Phosphorus	0.01	0.02			0.04	0.05	0.07	0.09	0.12	0,21	0.44
Turbidity	3.50	4.00	4.50	5.05	5.40	5.60	6.30	6.80	8.00	11,40	11.75

Phytoplankton Chlorophyll a (ug/L), Periphyton Chlorophyll a (mg/m²), Nutrients (mg/L), Turbidity (NTU), Taxa richness and diversity values are for macroinvertebrates

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION FACILITY SUMMARY

		1 <u> </u>	PM.								
Facility Name: Pebble Co	reck Service Corp.	Date Summary	Prepared: <i>Sept. 3, 1993</i>								
Location (attach detailed may			District								
	Hillsborou	~ b	SW								
Federal Permit # FLOO 39			Facility Type: Industrial								
and expiration date:	State expiration dat	e:	Municipal Federal Agricultural								
Feb 28, 1997	April 1	, 1994	Other (list): Private, Franchise								
Function of facility:											
Advanced Domestic Wastometer											
Description of treatment process: The facility is a 0.540 MGD Type I Combined Stoge "RABCO" Process. It employs ultraviolet disinfection											
The facility is a	L 0.540 MGN	Type I (surbined stage								
"RABCO" Process	. It employs	s ultouvio	olet dispatellion								
prior to discl	range to peb.	ble cree	≥ C								
,											
Receiving waters: Pebbl	e Creek	Classification:	I (II) III								
Design Flow: 0.540 MG	n Mean Flow: O. /	82	Flow during survey:								
Total the total											
Other (describe)	1> &ve.	TO decily	1 1000 DEDITION DELLE								
therefore the hest time to sa	mple is: wash ay	icles for c	our of 3 filters.								
the state of the s	,		004								
If facility has a mixing zone, o	jive details (size, parameter	s affected, etc.):									
•											
List effluent limits (if necessa	ry, attach relevant paperwo	and normit m	ecial permit conditions								
List effluent limits (if necessar	ry, attach relevant paperwo Limit (units)	and normit m	odifications								
Parameter	Limit (units)	and permit m									
	Limit (units) 3 mg/l Annual Aug 5, 11 " " "	and permit me permit was Mod	nodifications: # DO29-160887B lified twice since								
Parameter CBOD5	Limit (units) 3 mg/l Annual Aug 5 , 11 " " " Non-detectable	and permit m permit une Mod issue	rodifications: # DO29-160887B Refred twice since								
Parameter CBOO ₅ TSS	Limit (units) 3 mg/l Annual Aug 5, 11 " " "	and permit me permit was mod issuar reduced	nodifications: # DO29-160887B lified twice since								
Parameter CBOD; TSS Fecal Coliform	Limit (units) 3 mg/l Annual Aug 5 in "" Non-detectable 3 mg/l Annual Aug	and permit in permit was mod issuar reduced MBD.	lified twice since lefted twice since ace. Flow rate was from 0.540 to 0.4								
Parameter CBOD; TSS Fecal Coliforn Total Nitrogen	Limit (units) 3 mg/l Annual Aug 5 , 11 " " " Non-detectable	and permit in permit was mod issuar reduced MOD. Certit	lified twice since life of flow rate was from 0.540 to 0.4								
Parameter CBOD; TSS Fecal Coliform Total Nitrogen Total Kjeldahl N.	Limit (units) 3 mg/l Annual Aug 5 " " " " Noin-detectable 3 mg/l Annual Aug 1 mg/l 0.4 MGD	and permit in permit was mod issuar reduced MOD. Certit	lified twice since life of flow rate was from 0.540 to 0.4								
Parameter CBOD; TSS Fecal Coliform Total Nitrogen Total Kjeldahl N. Flow	Limit (units) 3 mg/l Annual Aug 5 11 "" Non-detectable 3 mg/l Annual Aug 1 mg/l	and permit in permit axis mod issuar reduced MOD. Certit was re 7 days/o	lified twice since lified twice since was from 0.540 to 0.4 Cied operator attendance duced from 16 hrs/day work to 8 hrs/day								

Page 2 of 2 Pebble Creek

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION FACILITY SUMMARY

(Facility)		· - · · · · · · · · · · · · · · · · · ·	······································	
Description of permitted outfall(s):	4			
The outfall consists of a 10-12,	inch dia v	ertical.	s taid p	Pipe
located about 300 yards east	of the is	lant o	in the	north
side of Regents Pork Dr. A wo	vurue (W 13 180	eted	}
	5 37		,	•
List permit violations (from MOR data or other source) and	plant upsets that	occurred with	nin past	-
List permit violations (from MOR data or other source) and year: F. Coliform TKN pH	6-30-93	F. Coliforn	4 6/2	TKN
· ·		2	0.09	
June 93 April 93 3.03	6-25	7	0.09	
Dec 92 1.1	6-22		0.08	i
Oct 92 1,04	6-16		0.3	
lead as	6-14		1.5	1,5
Aug 95	6-9	111		1.16
12 36 1.3	5-14- 93			3.5
	8-13-92	75		. h
				2,18
Describe previous impact bioassessments, WQBEL's, and	previous or curre.	nt enforceme	nt actions:_/	
EPC is not aware of any pr	eurous bi	<i>basses</i>	SMOUL	5.
EPC has no records on pre	ongond 0	JOBEC	٤.	:
In 1992 Administrative enfo				
when it was learned to faci	lity was i	rricati	nol 901	(F
courses with effluent. De	malties		10	1 11 0
l'un cournect the Mount with			aktick at a	ACT / CR
line connect the plant with	a golf co	ouse p	Sond C	vew)
cut. The case has been a	(osed).			1
Discuss comparability of MOR results to past DER results a	and whether there	are trends (in	nproving,	
declining) in the data set:	0		,	
MOR's report focal coliforn a	o non-det	rectable	almos	57
always. However, EPC's data	indicates	focal co	oliforu	- 1
counts in the 5-25/100ml rac	age aure	chronic	cally p	resect,
other data is fairly consistant of eleverted kjeldahl and	.t. cocas	ional of	2.20de	5
of elevated kjeldahl and	total wit	rollen a	ce doc	entra porta
by MOR'S and EPC.	•) `	•	
Additional information: The facility has applied	Staff contributin	g to this revie	w (signatur	e):
for a permit to construct golf			(F	Biologist)
course irrigation. A third set	BIWI	Boult H	EPC_ (II	nspector)
of ultraviolet lamps has been	0			
justula. Low levels of residual		 	<u>{</u> }	Engineer)
C/2 are chronically present. This	<u></u>		(
and he has to method intertence	<u>F</u>	······································		
The facility was chlorinations MITTE	ļ		(<u>)</u> *
control a filmmentous bacteria problem	_[. ()

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET (Version 4)

1	ATE (MIDY): TIME RECEIVING BODY OF WATER: 1-22-93 9:45 ROCKY Creek									
REMARKS: Gambusia, Tilapia, Lemna, LOCATION: REFERE	NCE. SITE FOR PURALE PERDIDINAME: REFERENCE SITE									
Ludwigia, Sagittaria, Erchornia, Salvinia, Alternanthura, Pithophora or spyn River Oaks	NWTP DOWNSTREAM OO 2 FOR PETFALE O									
RIPARIAN ZONE/INSTREAM FEATURES										
Predominant Surrounding Land-Use (specify relative percent in	n each category);									
	lential Commercial Industrial Other (Specify)									
	0% G0%									
Local Watershed Erosion (check box): None Moderate Heavy										
Local Watershed NPS Pollution (check box): No evidence	Some potential sources Obvious sources									
Point-Source Pollution (list location and describe): Dairy Ferm (includes pigs and chickens also) is about one mile upstream. It discharges during rainsforms to Channel 4.										
Estimated System Width (range, m): 8-10 m Estimated	System Depth (range, m). 6.5-2-4 yes									
High Water Mark (m above bed): 기다 제 Velocity (i	range, m/s): lmpounded Channelized									
Canopy Cover %: Open: Lightly Shaded (11-45%):	Moderately Shaded (46-80%): Heavily Shaded:									
SEDIMENT/SUBSTRATE										
Sediment Odors: Normal: Sewage: Petroleum:	Chemical: Anaerobic: Other: Other:									
Sediment Oils: Absent: Slight: Moderate:	Profuse:									
Sediment Deposits: Sludge: Paper Fiber: Mud:	Sand: Shell: Other:									
Substrate Types % coverage # times sampled method	Substrate Types % coverage # times sampled method									
Woody Debris (Snags)	Riffles									
Leaf Packs	Sand 82% 7 /									
Aquatic Vegetation 8%	Mud/Muck/Silt 52.									
Rock or Shell Rubble	Benthic leaf mats									
Undercut Banks/Roots	Other:									
WATER QUALITY	J. Livering Livering Livering Livering Livering									
the state of the s	(mg/l): Cond. (μmho/cm): Secchi (m):									
Top										
Mid-depth 9.26 21.7 7.35 5.	69 554									
Bottom										
Sand Bottomed Swamp & Bog Alle	vial Aisc) Lake: Wetland: Estuary: Other:									
Water Odors (check box): Normal: Sewage:	Petroleum: Chemical: Other:									
Water Surface Oils (check box): None: Sheen:	Globs: Slick:									
Clarity (check box): Clear: Slightly turbid:	Turbid: Opaque:									
Color (check box): Tannic: Green (algae)	Clear: Other:									
Weather Conditions: Abo	undance: Absent Rare Common Abundant									
Sunny										
/ = 0 = FIST										
Breeze from NE Aquatic Macrophy Iron/sulfur Bacteri										
SAMPLING TEAM:	SIGNATURE: O 2 / DATE:									
Jim Snitgen Kathryn Hicks	Kathyma Hick 4-22-9									

DEPARTMENT OF ENVIRONMENTAL REGULATION

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET (Version 4)

SUBMITTING AGENCY CODE: SUBMITTING AGENCY NAME:	STORET STATION NUMBER:	DATE (M/D/Y): TIM	AECEIVIN	IG BOOY OF WATER:						
REMARKS: Only flow	LOCATION:	(1)	FIE	LD ID/NAME:	-2.					
RIPARIAN ZONE/INSTREAM FEATUR	 			•						
Predominant Surrounding Land-Us	e (specify relative perce	nt in each categor	y):							
Forest Field/Pasture			ommercial	Industrial	Other (Specify)					
		00								
Local Watershed Erosion (check box): None Moderate Heavy										
Local Watershed NPS Pollution (ch	eck box): No evidence	Some	potential source	es 💹 Obvid	ous sources 🐷					
Point-Source Pollution (list location and describe): Pebble Creekwidth										
Estimated System Width (range, m)	2,53 - / . © Estima	ted System Dep	oth (range, m):	<u>>-C.3</u> 8,	yes					
High Water Mark (m above bed):	1.5 Velocit	y (range, m/s):	0	impo Char	unded 💹 inelized 🖾					
Canopy Cover %: Open:	ightly Shaded (11-45	%): Modera	ately Shaded (46	S-80%): Hea	vily Shaded: 🕼					
SEDIMENT/SUBSTRATE										
Sediment Odors: Normal:	Sewage: Petroleu	m: Chemica	ıl: Anaerobio	: Other: 🦳						
Sediment Oils: Absent:	Slight: Modera	te: Profuse	a: 🔲							
Sediment Deposits: Sludge:	10000	ıd: Sano	**************************************	لينيها المنت	. ,					
	times sampled method	Substrate	Types % co	/erage # times sa	mpled method					
Woody Debris (Snags)		Riffles	•							
Leaf Packs 5%		Sand		0%						
Aquatic Vegetation		Mud/Muck/S		1//						
Rock or Shell Rubble		Benthic leaf	mats	524						
Undercut Banks/Róots 10%		Other:								
WATER QUALITY Depth (m): Temp	(00)	.O. (mg/l): Cond.	(>-		On a phi ())					
Top Depth (iii). Temp	. (°C): pH (SU): D	.O. (mg/i). Cond.	. (μmno/cm):		Secchi (m):					
Mid-depth O.33 ZA	7.00	4.3 72	50							
Bottom		1,000								
Sand Bo	ttomed Swamp & Bog t w/ Spring Calcareous	Alluvial Mjsc.) Lake:	Wetland: E	stuary: Othe	er:					
Lata Garlo Be	nal: Sewage:	1000000			er:					
Water Surface Oils (check box): No	ne: Sheen:	Globs	s: S	lick:						
Clarity (check box): Cle	ar: Slightly turb	oid: Turbic	i: Opac	que:						
Color (check box): Tant	ic: Green (alga	ıe): Clear	: N Ot	her:						
Weather Conditions:	Periphyton	Abundance: /	Absent R	are Comm	on Abundant					
Cloudy, 85°F	Fish				/ 🚆					
(Cloudy)	Aquatic Macrop	hytes								
	Iron/sulfur Bact	-								
SAMPLING TEAM:		SIGNATURE:	. 1		OATE:					
Pat Fricans, Jim Snitgen	Kathy Hicks	Tithay a	1. Choo 1973	Comment.						

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION

FRESHWATER BENTHIC HABITAT ASSESSMENT FIELD DATA SHEET									
SUBMITTING AGENCY CODE: SUBMITTING AGENCY NAME: 5W- TAM	STORET STATION NUM		EIVING BODY OF WATER: ROCKY CreeK						
REMARKS: Gambusia, Tilapia, Sagittaria, Lemna, Salvinia, Alternanthera, Pithophera or s	Eichornia Din - A	FERENCE SITE A aks Downstrea	CK ITEXEL FIELD IDNAME:)	SEFERENCE 3/TE					
Habitat Parameter	Excellent	Good	Fair	Poor					
Bottom Substrate/ Available Cover	Greater than 40% snags, logs, tree roots, emergent vegetation, leaf packs, undercut banks, rubble, or other stable habitat. 23-30 points	20% to 40% snags, logs, tree roots, emergent vegetation, leaf packs, etc. Adequate habitat. 16-22 points	5% to 20% snags, logs, tree roots, emergent vegetation, leaf packs, etc. Less than desirable habitat. 8-15 points	Less than 5% snags, logs, tree roots, emergent vegetation, leaf packs, etc. Lack of habitat is obvious. 0-7 points					
Water Velocity	Max. observed: >0.3 m/sec. but < 1 m/sec 23-30 points	Max. observed; 0.1 to 0.3 m/sec 16-22 points	Max. observed; 0.05 to 0.1 m/sec 8-15 points	Max. observed; <0.05 m/sec, or spate occurring; > 2 m/sec 0-7 points					
Artificial Channel/ Flow Alteration	No artificial channelization. Little activity (impervious surface) in watershed which would cause scouring during spates. 12-15 points		Artificially channelized, or scouring presenduring spates to excess impersurface in water 0-3 points						
Bank Stability	Stable. No evidence of erosion or bank failure. Little potential for future problems. 9-10 points	Moderately stable. Infrequent or small areas of erosion, mostly healed over. 6-8 points	Moderately unstable. Moderate areas of erosion, high erosion potential during floods. 3-5 points	Unstable, Many raw, eroded areas. Obvious bank sloughing. 0-2 points					
Riparian Zone Vegetation Quality	Over 80% of streambank surfaces consist of native plants, classified as: bottomland hardwoods, understory shrubs, or non-woody macrophytes. 9-10 points	50% to 80% of riparian zone is vegetated, but one class of plants is not represented. 6-8 points	25% to 50% of riparian zone is vegetated, but one or two classes of plants are not represented. 3-5 points	Less than 25% of streambank surfaces are vegetated. Poor plant community (e.g. grass monoculture) present. 0-2 points					
	dd 5 points if cross-se reater than one square i		umazed wise	OTAL SCORE					
COMMENTS:									
ANALYSIS DATE: 4-22-93	ANALYST: Kathryn Hicks Jim	Snitgen signature:	Tathy a.	4ich					

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION

FRESHWATER BENTHIC HABITAT ASSESSMENT FIELD DATA SHEET

SUBMITTING AGENCY CODE:	STORET STATION NUM	BER: DATE (M/D/Y): RECE	EIVING BODY OF WATER:	. (
REMARKS: Sembusia,	LOCATION:	, Creak Comer	FIELD ID/NAME:	<i>(</i> :	
Habitat Parameter	Excellent	Good	Fair	Poor	
Bottom Substrate/ Available Cover	Greater than 40% snags, logs, tree roots, emergent vegetation, leaf packs, undercut banks, rubble, or other stable habitat. 23-30 points	20% to 40% snags, logs, tree roots, emergent vegetation, leaf packs, etc. Adequate habitat. 16-22 points	5% to 20% snags, logs, tree roots, emergent vegetation, leaf packs, etc. Less than desirable habitat. 8-15 points	Less than 5% snags, logs, tree roots, emergent vegetation, leaf packs, etc. Lack of habitat is obvious. 0-7 points	
Water Velocity	Max. observed: >0.3 m/sec. but < 1 m/sec 23-30 points	Max. observed; 0.1 to 0.3 m/sec 16-22 points	Max. observed; 0.05 to 0.1 m/sec 8-15 points	Max. observed; <0.05 m/sec, or spate occurring; > 2 m/sec 0-7 points	
Artificial Channel/ Flow Alteration	No artificial channelization. Little activity (impervious surface) in watershed which would cause scouring during spates. 12-15 points			Artificially channelized, or scouring present during spates because of excess impervious surface in watershed. 0-3 points	
Bank Stability	Stable. No evidence of erosion or bank failure. Little potential for future problems. 9-10 points	Moderately stable. Infrequent or small areas of erosion, mostly healed over. 6-8 points	Moderately unstable. Moderate areas of erosion, high erosion potential during floods. 3-5 points	Unstable. Many raw, eroded areas. Obvious bank sloughing. 0-2 points	
Riparian Zone Vegetation Quality	Over 80% of streambank surfaces consist of native plants, classified as: bottomland hardwoods, understory shrubs, or non-woody macrophytes. 9-10 points	50% to 80% of riparian zone is vegetated, but one class of plants is not represented. 6-8 points	25% to 50% of riparian zone is vegetated, but one or two classes of plants are not represented. 3-5 points	Less than 25% of streambank surfaces are vegetated. Poor plant community (e.g. grass monoculture) present. 0-2 points	
	add 5 points if cross-se reater than one square		sumawed wise	TOTAL SCORE	
COMMENTS:					
ANALYSIS DATE:	ANALYST: Hast Frican Jim Snitgen Koth	SIGNATURE:	Hila Putica	· À	

Sample Source: PEBBLE CR Location: County: HILLS BORG Contact/District: PAT FRIC NPDES Permit #: FL0039896 Test Type: Screening Definitive Static Renewal Flow-thro Test Number: / of 2 Remarks: C = 0.07 mg	OUGH ANO / SW Outfall #: 634 93 - AUG-17 Ough Instrument Calibrations: pH meter # 7851 0 hr 70@7.0 90@90 24 hr 70@7.0	Test Beginn Test End Organism Bate Organism Test Organi Test Organi Test Organi Temperature °C 90H018262 24./ @ 24.2	Ing: Date 8/ Ing: Date 8// ch #: 105 Age: < 2 Sm: Ceric D.O. mg/L 90H018262 8.3 @ 24.0	Diluent Batch #: 24 hrs Conductivity umhos/ G9005749 105@ 1,000 1010@ 1,000	30 19 19 19 19 19 20 20 24.7°C
	9.0 @9.0			<u> %50</u> @ 10,000	@ 24.5° C
	48 hr <u>7.0 @</u> 7.0 <u>9.0 @9.0</u>		<u>8.3@24.6</u>	<u>1015</u> @ 1,000 <u>1690</u> @ 10,000	@ <u>⊋45</u> ℃

	1	11.	ımber L		<u> </u>	pH		Temn	erature	(PC)	n.	O. (mg.	/1.\	Cond.	ORREC	s/cm)
Conc.	Chamber #	0 hr	24 h	48 h	0 hr	24 h	48 h	0 hr	24 h	48 h	0 hr	24 h	48 h	0 hr	. (μmh 24 h	08/cm) [48 h
			5	5	8.1		8.3	23.9		25.2			7.8	170		185
<u>Control</u>	A	5			0-1		8.3			25.1	9.1.		7.9	110	ļ	180
<u>Control</u>	18	5_	5	5				!			 	-	7.9		 	180
<u>Control</u>	<u> </u>	5	5	.5_	<u> </u>		8.3		· ····	24.9	 				-	
Control	D	5_	5	5			8.3			24.7			7.8		<u> </u>	170
100%	A	5	5	0	<u> છ.પ</u>			23.5		25.7	7.7	ļ	7.6	935		935
10070	B	5	5	0	 		8.8			25.2	<u> </u>		7.8		-	950
100%	C	5	5	0			8.8			24.8	ļ		7.9	 	 	935
100%	D:	5	5	LO_			88			24.8			7.9		ļ	940
		İ			<u> </u>						<u></u>	ļ	ļ		ļ	
							j			ļ.,						<u> </u>
, AL-10,																
				ĺ												
			 		i —											
		 							. ,	 						\
		 	 -		 					 		·				
					 		 			ļ		ļ <u> </u>	+			-
				<u> </u>			<u> </u>		·· ···········	ļ				 	 	
		ļ					ļ			ļ	ļ		 	<u> </u>		
				ļ	ļ					ļ	 				 	-
<u></u>		<u> </u>	ļ <u></u>								ļ	<u> </u>	 		ļ	-
					<u> </u>			<u> </u>		<u> </u>					_	
Measured	d/Loaded by:	KP	TIZ	TR	TM		7m	TM		7m	TM		Tm	TM	<u> </u>	Tm
F	lecorded by:	TR	ITM	7R	TR		TR	TR		TR	TR		TR	TR		178

Measured/Loaded by:	KP !	TR	TR	TM		7m	TM		7m	TM		<u> 7m</u>	TM	TM	
Recorded by:	TR	TM	7R	TR		TR	TR		TK	TR		TR	TR	72	
nvestigators' Signatures					· · · · · · · · · · · · · · · · · · ·	Sa	alt Wate	r/	Wate	er Qua	lity Par	amete	rs		-
John a. Ra	do.					W	ell Wate	P) 20%	6 Min V	Vater	Sample	e M	ethod	Measured by	<u> </u>
		f. E	Field T	otal Re	sidual C	12:					0			KH	_
Tingpriku	<u>lek</u>	4	Lab T	otal Re	sidual C	12: Z	0.03	4	0.03	,	0.07	' DI	R-100	7/29	
Mandell Frield	1				Alkalini	ity:	125		70	>	260	H	ich	TM	_
					Hardne	ss:	120		80)	205	He	ich	TR	
	· ···	_		Total	Ammon	ia:	(0,017)		די גומקט		ZC,01	, or	co	mf	_
Reviewer form updated 7/8/93	<u></u>		monia ter #98		mmonia leter Slo		54,5	Amme Blank			ontrol alinity:	0	taa	ample alinity:	ppt

FDEP Biology Section — Acute Bioassay Bench Sheet

	ribiti Diology C	occuron are	are broader	<i>.</i>					
Sample Source: Location:	PEBBLE CREEK	VIELAGE	Sample Collection: Date 8/16/93 Time 11:15 Test Beginning: Date 8/17/93 Time 12:00						
County:	HILLSBOROUGH	<u> -</u>	── Test End ── Organism Bate	Test Ending: Date <u>8 (19193</u> Time <u>1230</u> - Organism Batch #: <u>3</u> Diluent Batch #: <u>Well</u>					
Contact/District:	PAT FRICAN	0/5W		Organism Age: 9 days					
NPDES Permit #:	FL00 39896	Outfall #:	Test Organ	- Test Organism: Cyprinella leedsi					
	atic Renewal Flow-through	G-17-24 60 Instrument Calibrations: pH	C34 outer	8/9m	Conductivity µmhos/cm				
Test Number: 之	<u> </u>	meter # 7851	90H018262	90H018262	G9005749				
Remarks:	. —	0 hr <u>7-0</u> @7.0	24.1@24.2	8.3@24.0					
	= 0.07 m3/L	9.0 @9.0	<u>.</u>		<u>9670</u> @ 10,000@ <u>24.7</u> °C				
	•	24 hr <u>7 <i>O</i>@</u> 7.0	24.4 @24.5	8.4 @24.0					
		<u>9.0@ 9.0</u>	-		<u> የራ ጽር</u> ነ@ 10,000 @ <i>ፚሂ5</i> °C				
		48 hr <u>7.0</u> @ 7.0	<u>25.0@25.1</u>	8.3@246	2 <u>1010</u> @ 1,000				
		<u>9.0@9.0</u>	<u>)</u>		<u>9690 @</u> 10,000 @ <u>24.5</u> °C				

		 								400		<u> </u>		Cond.	ORREC	s/cm)
		Ŋu	Number Live pH Tempera		erature	(°C)	D.O. (mg/L)			Cond. (µmhos/cm)						
Conc.	Chamber #	0 hr	24 h	48 h	0 hr	24 h	48 h	0 hr	24 h	48 h	0 hr	24 h	48 h	0 hr		48 h
Control A	120	.5	5	5	7.8	8.1	8.2	24.1			8.1	7.1	7.4			
Control B	390	5	5	5	7.8	8.1	8.2			२५.२	8.1	7.0	+		245	245
100% A	891	5	4	4	8.3	8.5	8.6	2 3.1	24.3	244	7.7		7.3	970		985
100% B	413	ل	5	5	8.3	8.5	86		,. <u> </u>	24.4	7.7	6.5	7.4	970	985	985
													ļ	<u> </u>		ļ
								<u> </u>	 	<u> </u>			 		<u> </u>	
											ļ		 		-	<u> </u>
		<u> </u>			<u> </u>	ļ						<u> </u>	<u> </u>		<u> </u>	ļ
								ļ					<u> </u>		ļ	ļ <u>-</u>
		<u> </u>							ļ <u></u>	<u> </u>						<u> </u>
					<u> </u>			<u></u>					ļ	!		
					ļ		···		ļ		<u> </u>				<u> </u>	ļ
				ļ <u> </u>												i
·					ļ <u> </u>			<u> </u>						<u></u>	ļ	
				1			ļ	<u> </u>							ļ	<u> </u>
				<u> </u>	<u> </u>		<u> </u>			<u> </u>		<u></u>			ļ <u>.</u>	ļ ·
			<u> </u>		<u> </u>		<u> </u>									ļ
							ļ <u>.</u>					ļ.,. <u></u>	<u> </u>	<u> </u>		
													<u> </u>			<u></u>
			<u> </u>		<u> </u>		<u></u>	ļ				<u> </u>				<u> </u>
Measured/Loaded by:		Tm	TM	TM	TM	Thy	TM	Tin	7m	7/19	TM	TM	7m	TM	TM	7m
Recorded by:		TR	TM	7M	TR	TR	TM	TR	TR	17K	TR	TR	17R	TR	TR	TR

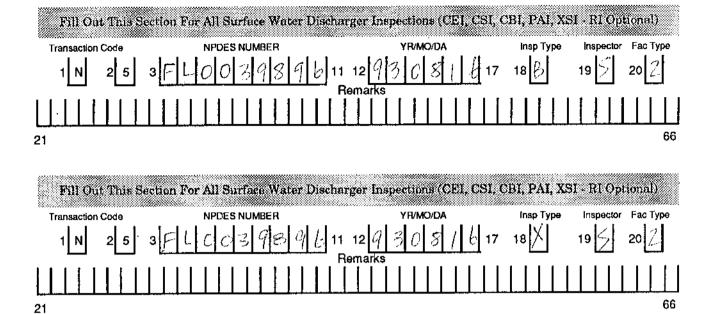
Investigators' Signatures		Salt Water/ Water Quality Parameters						
11-1-00		Well Water	20% Min Water	Sample	Method	Measured by		
Toborn C. Kades	Field Total Residual CI2:			Ŏ	,	KH		
- (ma mikeusti	Lab Total Residual CI2:	< 0.03	<0.03	0.07	DR-100	TM		
noulal Parcheth	Alkalinity:	125	70	260	Hach	Tin		
	Hardness:	120	80	205	Hach	TR		
	Total Ammonia:	60,017	20.017	20,017	ani	ME		
Reviewer	- Ammonia Ammonia		mmonia C	ontrol	n ppt	ample p		

form updated 7/8/93

Ammonia Ammonia Control Sample ppt Meter #98136 Meter Slope: __SUS Blank: __ZOO/7 Salinity: __O __ppt Salinity: __O __ppt

Benthic macroinvertebrate taxa list for Pebble Creek WWTP, collected via Hester-Dendy artificial substrates in Rocky Creek (reference site), on 22 April, 1993, and downstream of the outfall in Pebble Creek (test site), on 16 August, 1993. Densities, in number/m², represent the mean of three replicates.

	Rocky Ck. Reference Site	Pebble Ck. Test Site
Acarina		
Sperchon sp.	1.0	-
Diptera		
Ablabesmyia mallochi	2.0	_
A. rhamphe grp.	58.6	1.0
Asheum beckae	30.3	_
Chironomus sp.	_	6.1
Cladotanytarsus sp.	17.2	_
Cricotopus bicinctus	14.1	-
Cryptochironomus sp.	3.0	_
Cryptotendipes sp.	6.1	-
D. neomodestus	339.4	_
D. simpsoni	141.4	_
Endochironomus nigricans	3.0	.
E. subtendens	52.5	_
Glyptotendipes sp.	48.5	_
Goeldichironomus natans?	_	2.0
Labrundinia neopilosella	3	_
L. pilosella	3 3 3	_
Nanocladius sp.	3	_
Palpomyia grp. sp.	3	
Parachironomus directus	3	_
Polypedilum tritum	Overen	1.0
Pseudochironomus sp.	187.9	_
Tanytarsus sp. A Epler	3.0	_
T. sp. C Epler	31.3	
T. sp. G Epler	9.1	
T. sp. K Epler	21.2	-
T. sp. L Epler	31.3	
T. sp. T Epler	13.1	_
Xenochironomus xenolabis	2.0	_
Undetermined dipteran pupa	37.4	7.1
Ephemeroptera		
Caenis sp.	292.9	_
Callibaetis floridanus	25.3	_
Stenonema exiguum	1.0	_
Stenacron sp.	1.0	_
S. interpunctatum	1.0	_
Gastropoda		
Amnicola dalli johnsoni	2.0	_


Hebetancyclus excentricus	38.4	_
Micromenetus dilatus	5.1	-
M. floridensis	8.1	
Physella sp.	39.4	
Planorbella duryi	25.3	_
Pseudosuccinea columella	1.0	-
Pyrogophorus platyrachis		123.2
Hirudinea		1,00,2
H. triserialis	1.0	_
Malacostraca	1.0	
Hyalella azteca	155.6	1.0
	100.0	1.0
Procambarus sp.		4.0
P. fallax	_	4.0
Odonata	0.0	
Enallagma cardenium	2.0	
E. pollutum	12.1	-
Epitheca princeps	1.0	
Ischnura hastata	3.0	_
I. posita	1.0	_
I. ramburii	2.0	. —
Pachydiplax longipennis	1.0	_
Oligochaeta		
Aulodrilus pigueti	5.1	_
Chaetogaster limnaei	1.0	_
D. pectinata	1.0	_
Nais communis	1.0	_
N. pardalis	5.1	
Stŷlaria lacustris	1.0	-
Pelecypoda		
Sphaerium or Musculium sp.	15.2	-
Platyhelminthes		
Dugesia sp.	7.1	_
Rhynchocoela		
Prostoma rubra	1.0	_
Trichoptera		
Cyrnellus sp.	5.1	-
C. fraternus	5.1	_
	17.2	_
Hydropsyche sp.	5.1	_
Octis sp.	17.2	
Orthotrichia sp.	5.1	
Oxyethira sp.	9,1	_

Periphyton taxa list and densities (#/mm²) for Pebble Creek WWTP, collected via glass microscope slides in Pebble Creek downstream of the discharge (test site), on 16 August, 1993. No specific reference site data were available.

Test Site

Diatoms	
Achnanthes affinis	2
A. delicatula	$egin{array}{c} 2 \\ 2 \end{array}$
A. exigua	30
A. lanceolata	
A. linearis	8
A. minutissima	2
Amphora normanii	2 8 2 8
Anomoeonies vitrea	
Caloneis sp.	****
Cocconeis placentula	40
Cyclotella meneghiniana	4
Diploneis ovalis	**
Eunotia monodon	2 .
	19
E. pectinalis Executivities whom boildes at capitate	19
Frustulia rhomboides v. capitata	4
Gomphonema sp.	4
G. affine	_ _
G. gracile	$\frac{2}{4}$
G. parvulum	$\frac{4}{2}$
Navicula sp.	
N. capitata	_
N. confervacea	4
N. constans	2 2 2
N. cryptocephala	Z
N. gysingensis	_
N. halophila	-
N. minima	19
N. pupula	$\begin{array}{c} 2 \\ 2 \end{array}$
N. pupula v. mutata	2
N. pupula v. rectangularis	
N. pygmaea	$\begin{array}{c} 2 \\ 4 \end{array}$
N. viridula	4
Neidium affine	_
Nitzschia amphibia	30
N. microcephala	4
N. obtusa	-
N. palea	11
N. romana	2
N. tryblionella	_
Pinnularia sp.	_
P. intermedia	2
P. subcapitata	11
Synedra ulna	_
Unidentified pennate diatom	_

Chlorophyta	
Ankistrodesmus sp.	2
Coelastrum sp.	_
Cosmarium sp.	-
Gloeocystis sp.	_
Scenedesmus sp.	4
Staurastrum sp.	_
Stigeocolonium sp.	17
Uronema sp.	4
Cyanophyta	
Anabaena sp.	_
Chroococcus sp.	15
Lyngbya sp.	6
Oscillatoria sp.	8
Phormidium sp.	6
Rhabdoderma sp.	_
Total	288

