

Biological Assessment of

Mosaic Phosphates Company Nichols Plant

Polk County
NPDES #FL0030139

Sampled May 22, 2006

May 2007

Biology Section Bureau of Laboratories Division of Resource Assessment and Management

Quality Manual No. 870346G NELAC Certification No. E31780

Florida Department of Environmental Protection Fifth Year Inspection Summary

Discharger: Mosaic Phosphates Company Nichols Plant

Physical Address: 5000 County Road 676

County: Polk

NPDES Number: FL0030139
Permit Expiration: March 27, 2007

Toxics Sampling Inspection (XSI)

Date Sampled: May 22, 2006

Results: Iron was detected in the effluent at levels that complied with Class III Water Quality Criteria (62-302.530 F.A.C.). The metals arsenic and copper were found in the effluent at levels above the method detection limit (MDL) and below the practical quantitation limit (PQL). No organic pollutants were detected in the effluent.

Compliance Biomonitoring Inspection (CBI)

Date Sampled: May 22, 2006

Results: The effluent sample was not acutely toxic to the fish, *Cyprinella leedsi*, or to the water

flea, Ceriodaphnia dubia, during 96-hour acute screening bioassays.

Water Quality Inspection (WQI)

Date Sampled: May 22, 2006

Results: Fecal and total coliform samples were not collected during this study. Effluent total dissolved solids were 247 mg/L. The effluent total nitrogen concentration was 0.26 mg/L. Effluent total phosphorus (0.17 mg/L), ortho-phosphate (0.067 mg/L), and nitrate+nitrite (0.043 mg/L) appeared to contribute to the levels of these nutrients in the Test Site sample. Levels of ortho-phosphate (0.72 mg/L) and total phosphorus (0.86 mg/L) in the Test Site sample were nearly twice those in the Control Site sample (0.4 and 0.54 mg/L, respectively). The nitrate+nitrite (1.2 mg/L) level was nearly four times that in the Control Site (0.33 mg/L) sample. Test Site levels of these nutrients ranked in the 90th to 95th percentile when compared with levels typical of Florida streams compared to the 80th percentile for Control Site levels (Appendix H). The effluent AGP value was 4.81 mg dry weight/L. The AGP values in the Control (24.4 mg dry weight/L) and Test Site samples (77.5 mg dry weight/L) were above the "problem" threshold (Table 3). These data, with the exception of AGP, indicate nutrient enrichment related to the Mosaic Phosphates - Nichols Plant discharge in this portion of Thirty Mile Creek.

Impact Bioassessment Inspection (IBI)

Date Sampled: May 22, 2006

Results: Quantitative measures of benthic macroinvertebrate assemblages from Hester-Dendy samplers showed little difference between the Test Site compared to the Control Site sample. Shannon-Weaver diversity, the Florida Index, number of taxa, and the percent dominant taxon were similar at both sites. Qualitative measures of benthic macroinvertebrate assemblages from dipnet samples also showed little difference between the two sites. The most notable differences between the two sites were fewer total taxa (Control Site = 31, Test Site = 24), an increase in the dominant taxon (Control Site = 16.2%, Test Site = 33.3%), and an increase in the sensitive taxa (Control Site = 2, Test Site = 4).

There was little difference in algal community composition between the Control and Test Sites (Table 4, Appendix J). Both sites had similar number of taxa, percent dominant taxon, percent blue-green algae and diatoms.

Biological assessments are prepared by FDEP staff to provide information for review of NPDES permit renewal applications. Biological assessments, in conjunction with other information concerning the subject facility and its receiving-water body, are used to determine appropriate permit conditions.

Introduction

The Mosaic Phosphates Company-Nichols Plant is located in Polk County, Florida (Appendix A) and is authorized to discharge to the Class III fresh waters of Thirty Mile Creek from Outfall D-001. The D-001 outfall pipeline is approximately 2.4 meters (8 feet) in length and the point of discharge is located approximately at latitude 27° 52'51.6" N, longitude 82° 02' 15.6" W. The facility discharges non-process wastewater, as well as treated process wastewater.

Thirty Mile Creek is located in westcentral Polk County and a small part of Hillsborough County, east of Tampa, near the Town of Mulberry, in west central Florida (Figure 1.1). The headwaters of the creek are at the confluence of Guy Branch, George Allen Creek, and an unnamed tributary. Other tributaries that flow into Thirty Mile Creek include Beulah Branch and three unnamed tributaries. Thirty Mile Creek is approximately 2.7 miles long, occupying an approximate 6.5 square-mile drainage area, with the North Prong of the Alafia River as the receiving water. A Total Maximum Daily Load (TMDL) for nutrients and dissolved oxygen (DO) for Thirty Mile Creek, which is part of the larger Alafia River Planning Unit and the Tampa Bay Tributaries Basin, was completed by the Department in September 2004 (http:// www.dep.state.fl.us/water/thirtyMile Creek/DOTMDL.pdf). The stream was verified impaired for nutrients and DO, and was included on the Verified List of impaired waters for the Tampa Bay Tributaries Basin that was adopted by Secretarial Order in May 2004. This TMDL establishes the allowable loadings to Thirty Mile Creek that would restore the waterbody such that it meets its applicable water quality criteria for DO and nutrients. The Class III freshwater DO criterion states that DO shall not be less than 5.0 mg/L (Chapter 62-3.2, F.A.C., Surface Water Quality Standards). In contrast to this straightforward numeric DO criterion, Florida's nutrient criterion

is narrative only — nutrient concentrations of a body of water shall not be altered so as to cause an imbalance in natural populations of aquatic flora or fauna. Given the uncertainty of nutrient reactions within streams, the Department applied a chlorophyll *a* target for this TMDL that should result in annual average chlorophyll below the IWR impairment threshold for streams. Specifically, the Department calculated an allocation for Total Nitrogen that would ensure that the waterbody does not exceed 20 µg/L in any given month.

Mosaic Phosphates Company's Nichols Plant (formerly IMC Phosphates Company's Nichols Concentrates Plant) manufactured sulfuric acid, phosphoric acid, and mono and diammonium phosphate (see Facility Summary in Appendix B). Phosphoric acid production was suspended in October 1998 and the plant was permanently closed in December 1999. The closure of the facility is authorized in accordance with the requirements of Chapter 62-673, Florida Administrative Code (F.A.C.) and the design specifications prepared by Ardaman & Associates, Inc. with dates of September 15, 2000, November 22, 2000, May 1, 2001, and July 6, 2001. Only the phosphogypsum stack system was authorized for closure, excluding the Total Perimeter Containment System (TPCS), Southwest Interceptor Drain System, items addressed in Consent Order No. 87-0174, and soil-bentonite slurry cut-off walls. The phosphogypsum stack system includes a 20.2 hectare (50 acre) lined process watercooling pond and associated conveyance pumps, piping and ditching used in conjunction with the 72.8 hectare (180acre) phosphogypsum stack. The stack system is being closed in seven phases over a period of approximately eight years, with a completion date set for 2010.

Other operations at this site included electric cogeneration (the simultaneous production of electricity and useful thermal energy from a single source (Heltzer, J. M. 1994)), phosphogypsum

storage, raw material storage and handling, wastewater storage and handling, process material handling, and product shipping facilities.

Methods

The purpose of this investigation was to determine the potential effects of the facility's effluent on the biota of the receiving waters. Chemical and biological comparisons were made between a Control Site (located in Thirty Mile Creek approximately 50 meters upstream of the discharge and ten meters upstream of the CSX railroad crossing) and a Test Site (located in Thirty Mile Creek approximately 150 meters downstream of the discharge). Detailed methods and their relationship to Florida Administrative Code are given in Appendix C.

All field and laboratory biological methods followed Biology Section Standard Operating Procedures (SOPs, see http://www.floridadep.org/labs/qa/2002sops.htm for details) and met FDEP quality assurance/quality control standards (see http://www.floridadep.org/labs/qa/index htm).

The following were involved in this investigation: Jacki Champion, and Scott Rose (FDEP Bureau of Mine Reclamation), and FDEP Central Laboratory in Tallahassee. See Appendix D for the chain of custody form (sample submittal form). The report was reviewed by District representatives and the Point Source Studies Review Committee (Wayne Magley, Shannan Bogdanov, and Michael Tanski).

Results and Discussion

 Specific chemical results are reported in Table 1 and Table 2 and a complete list of chemical analytes can be reviewed in Appendix E. Effluent metal iron was detected at levels that complied with Class III Water Quality Criteria (62-302.530 F.A.C.) and facility permit limits Table 1. Effluent limits, Class III Criteria and chemical, microbiological, and toxicological data.

Table 1. Effluent limits, Class III Criteria and chel Mosaic Phosphate Company - Nichols Plant	Class III	Effluent	Effluent		
mosaic i nospilate company - Michols i lant	Stds	Limits	Samples	Control Site	Test Site
Organic Constituents (µg/L)	Oldo	Liiiillo	Campico	<u> </u>	
None Detected	-	_	-	_	_
Nutrients (mg/L)		<u> </u>		<u> </u>	
Ortho-phosphate	-	_	0.067	0.4	0.72
Total Phosphorus	_	≤ 10.0	0.17 Y	0.54	0.86 A
Ammonia	-	-	0.16 Y	0.12	0.011 I
Unionized Ammonia	≤ 0.02 c	_	≤ 0.02c	≤ 0.02c	≤ 0.02c
Nitrate+Nitrite	-	-	0.043 Y	0.33	1.2
Total Kjeldahl Nitrogen	-	-	0.22 IY	0.68	0.32 I
Organic Nitrogen	-	-	0.06 cY	0.56 cY	0.31 cY
Total Nitrogen	-	3 *	0.26 c	1.01 c	1.52 c
General Physical and Chemical Parameters	•		•		
Alpha, Total (pCi/L)	-	≤ 15	2.4	-	_
Alpha-Counting Error (pCi/L)	-	-	1.3	-	-
Radium 226 + 228 (pCi/L)	-	-	0.7	-	-
Radium 226-Counting Error (pCi/L)	-	-	0.2	-	-
Radium 228 (pCi/L)	-	-	0.9 U	-	-
Radium 228-Counting Error (pCi/L)	-	-	0.5	-	-
Chloride (mg/L)	-	-	9.8	-	-
Fluoride (mg/L)	≤ 10	≤ 10	0.37	2.4	0.95
Sulfate (mg/L)	-	-	80	110	110
Temperature (°C)	-	-	26.4	25.3	24.1
Color (pcu)	-	-	10	-	-
TDS (mg/L)	-	-	247	-	-
TSS (mg/L)	-	≤ 20	4 U	6 I	4 U
Habitat Assessment	-	-	-	135	137
Dissolved Oxygen (mg/L)	≥ 5.0	≥ 5.0	6.9	6.8	8.4
pH (S.U.)	-	6.0-8.5	7.2	7.8	7.8
Conductivity (µmohs/cm)	≤ 1275	≤ 1275	372	557	441
Oil and Grease (mg/L)	≤ 5	-	1.7 UJ	-	-
Turbidity	-	33.3 t	1.3	4.3	1.3
Flow (MGD)	-	Report	-	-	-
Hardness (mg/L)	-	-	179.6 c	206.5 c	187.5 c
Chlorophyll a (μg/L)	-	-	0.96 U	0.92 U	0.85 U
AGP (mg DryWt/L)	-	-	4.81	24.4	77.5 A
Toxicology Bioassays 4 in 24 hours (96 hr ac	ute screenir			6 effluent)	
Fish (Cyprinella leedsi)	-	≤ 20	5%	-	-
Fish (Cyprinella leedsi)	-	≤ 20	5%	-	-
Fish (Cyprinella leedsi)	-	≤ 20	5%	-	
Fish (Cyprinella leedsi)	-	≤ 20	5%	-	-
Water flea (Ceriodaphnia dubia)	-	≤ 20	0%	-	-
Water flea (Ceriodaphnia dubia)	-	≤ 20	0%	-	-
Water flea (Ceriodaphnia dubia)	-	≤ 20	0%	-	-
Water flea (Ceriodaphnia dubia)	-	≤ 20	0%	-	-

Value exceeds the Class III Water Quality Criteria or permit limits

- * Effluent limit based on 24-hour composite sample
- A Value reported is the mean of two or more determinations
- b Value is calculated based on hardness
- c Value is calculated
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value
- t Shall not exceed 29 NTUs above background
- U Material analyzed for but not detected; value reported is the method detection limit
- Y The laboratory analysis was from an unpreserved or improperly preserved sample. The data may not be accurate.

Table 2. Effluent limits, Class III Freshwater Criteria and Metals data.

Mosaic Phosphates Company - Nichols Plant	Class III Stds	Effluent Limits	Effluent Samples	Class III Stds	Control Site	Class III Stds	Test Site		
Metals (µg/L unless othe	Metals (µg/L unless otherwise noted)								
Aluminum	-	-	53 A	-	230	-	91		
Arsenic	≤ 50	-	0.55 l	-	2.2	-	0.97		
Cadmium	≤ 1.8 b	-	0.05 U	2.0 b	0.05 U	1.9b	0.05 U		
Calcium (mg/L)	-	-	47.5 A	-	45.6	-	47.2		
Chromium-III	≤ 139.2 b	-	0.3 U	156.1b	0.47 I	144.2b	0.3 U		
Copper	≤ 15.4 b	-	0.47 l	17.3b	0.2 U	16.0b	0.28		
Iron	≤ 1000	-	111 A	-	191	-	84		
Lead	≤ 6.7 b	-	0.2 U	8.0b	0.21 I	7.1b	0.2 U		
Magnesium (mg/L)	-	-	14.8 A	-	22.5	-	16.9		
Nickel	≤ 85.6 b	-	1 U	96.3b	1 U	88.8b	1 U		
Selenium	≤5	-	0.5 U	-	0.51 I	-	0.5 U		
Silver	≤ 0.07	-	0.025 U	-	0.025 U	-	0.025 U		
Zinc	≤ 196.7 b	-	1.5 U	221.5b	3.6 U	204.1b	3.6 U		

- b Value is calculated based on hardness
- A Value reported is the mean of two or more determinations
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- U Material analyzed for but not detected; value reported is the method detection limit
 - (Table 2). The metals arsenic and copper were found in the effluent at levels above the method detection limit (MDL) and below the practical quantitation limit (PQL). No organic pollutants were detected in the effluent.
 - Effluent conductivity, pH and dissolved oxygen complied with Class III Water Quality Criteria (62-302 F.A.C.) and facility permit limits (Table 1).
 - Effluent radium 226+228 (0.115 pCi/L) and total alpha particle activity (2.4 pCi/L) were detected at levels below the 5 pCi/L and 15 pCi/L Class III Water Quality standards (Criterion 62-302.530 (58a) and 62-302.530 (58b) F.A.C) and permit limits.
 - Effluent total suspended solids (4U mg/l) and fluoride (0.37 mg/L) complied with the permit limits. Effluent total dissolved solids were 247 mg/L.
 - Dissolved oxygen, pH and conductivity at the Control and Test Sites complied with Class III Water Quality Criteria (Table 1, 62-302.530 F.A.C.).

- The effluent sample was not acutely toxic to the fish, *Cyprinella leedsi*, or to the water flea, *Ceriodaphnia dubia*, during 96-hour acute screening bioassays (See Table 1 for percent mortality, Appendix F for bioassay bench sheets, and Appendix G for supporting standard reference toxicant data). While the acute screening toxicity tests do not reflect the permit required conditions, the Department uses it to provide reasonable assurance that the facility does not adversely affect waters of the state.
- Fecal and total coliforms data were not collected during this sampling event.
- The effluent total nitrogen concentration was 0.26 mg/L (Table 1). Effluent total phosphorus (0.17 mg/L), ortho-phosphate (0.067 mg/L), and nitrate+nitrite (0.043 mg/L) appeared to contribute to the levels of these nutrients in the Test Site sample (Table 1). Test Site ortho-phosphate (0.72 mg/L) and total phosphorus (0.86 mg/L) levels were nearly twice those in the Control Site (0.4 and 0.54 mg/L, respectively). Total

- nitrogen in the Control Site sample was 1.01 mg/L and 1.52 mg/L in the Test Site sample, nearly a 1/3 increase. Test Site nitrate+nitrite (1.2 mg/L) concentration was nearly four times that in the Control Site (0.33 mg/L) sample. Test Site levels of these nutrients ranked in the 90th to 95th percentile when compared with levels typical of Florida streams (Appendix H) compared to the 80th percentile for Control Site levels. In May 2004, Department staff were contacted by an IMC representative and informed of a non-permitted discharge that was reaching Thirty Mile Creek upstream of the Control Site. The seepage consisted of a groundwater plume being released from a former chemical processing facility, which has been subsequently mined.
- Algal growth potential (AGP) is a measure of nutrients available for algal growth (Miller et al. 1978). Raschke and Shultz (1987) found that AGP above 5.0 mg dry wt/L represent a "problem" threshold for fresh receiving waters, implying nutrient enrichment. The effluent AGP value was 4.81 mg dry wt/L. The AGP values in the Control Site (24.4 mg dry weight/L) and Test Site (77.5 mg dry wt/L) were above the "problem" threshold (Table 3). The low effluent AGP value may be the result of normal variation between grab samples or due to an unidentified source of nutrients located between the Control and Test Sites. There was little or no evidence of growth inhibition in the AGP data (Table 3).
- Chlorophyll-a was not detected in water samples of the effluent or from the Control or Test Sites (Table 1). We note that nutrients in the water column may or may not fuel algal production immediately, depending upon the sum of environmental conditions that limit algal growth at the site (e.g. pH, shading, turbidity). Thus it is not necessarily

Table 3. Measured and predicted algal growth potential (AGP) for total soluble nitrogen (TSIN) and total nitrogen (TN) limitation of the freshwater species Psedokirchneriella subcapitata.

Mosaic Phosphates Company - Nichols Plant								
Location	AGP (measured)	Predicted AGP (TSIN) ± 20%	Predicted AGP (TN) ± 20%	Inorganic N:P ratio	Total N:P ratio			
Effluent Sample	4.81	7.71 ± 1.542	9.99 ± 1.998	3.03	1.55			
Control Site	24.4	17.1 ± 3.42	38.38 ± 7.676	1.12	1.87			
Test Site	77.5A	46.02 ± 9.204	57.76 ± 11.552	1.68	1.77			

A - Value reported is the mean of two or more determinations

contradictory for ambient nutrient levels to be high and for no chlorophyll to be detected in water samples

- Control and Test Sites showed little difference in algal community composition (Tables 4a and 4b, Appendix J).
 Both sites had similar number of taxa, percent dominant taxon, percent bluegreen algae and diatoms.
- Habitat assessment scores were 137 at the Control Site and at the Test Site (Table 1, data sheets in Appendix I).
- Quantitative measures of benthic macroinvertebrate assemblages from Hester-Dendy samplers showed little difference between the Test Site compared to the Control Site (Table 5, Appendix K). Shannon Weaver diversity, the Florida Index, number of taxa, and the percent dominant taxon were similar at both sites. Shannon-Weaver diversity decreased by 9.8% at the Test Site (3.60) compared to the Control Site (3.99), while taxa richness, the Florida Index, and the number of EPT taxa increased at the Test Site compared to the Control Site.
- Qualitative measures of benthic macroinvertebrate assemblages from dipnet samples are summarized in Table 6 and in Appendix L. The most notable differences between the two sites were fewer total taxa (Control Site = 31, Test Site = 24), an increase in the dominant taxon (16.2% at the Control Site, 33.3% at the Test Site), and an increase in

sensitive taxa (2 at the Control Site, 4 at the Test Site). Habitat assessment scores were 135 at the Control Site and 137 at the Test Site, with the primary parameters scoring in the suboptimal category. (Table 1, data sheets in Appendix I).

Summary

Data from this inspection indicate that effluent metals, total phosphorus, total nitrogen, total alpha, radium 226 + 228, and fluoride complied with Class III Water Quality criteria and permit limits. Effluent AGP was below the 5.0 mg dry weight/L "problem" threshold however, AGP levels at the Test Site increased from those at the Control, both were found to be above the "problem" threshold of 5 mg dry weight/L. Test Site levels of nutrients ranked in the 90th to 95th percentile when compared with levels typical of Florida streams (Appendix H) compared to the 80th percentile for Control Site levels.

Effluent total dissolved solids were very high (247 mg/L) and should be considered for inclusion in future permits.

With the exception of the much higher abundance of both macroinvertebrates and algae at the downstream Test Site, sampling of the biological communities showed only minor difference between the upstream and downstream sites.

Total nitrogen levels in the effluent sample, as well as, in the Control and Test Site samples were found to be higher than the 20 µg/L target set forth in the 2004 Thirty Mile Creek TMDL.

Literature Cited

Barbour, M. T. and J. B. Stribling. 1994.
A technique for assessing stream habitat structure. In: Proceedings of Riparian Ecosystems in the Humid United States: Functions and Values. U. S. Dept. Agriculture. 15-18 March 1993, Atlanta, Ga. 22 pp.

Beck, W. M. Jr. 1954. Studies in stream pollution biology 1. A simplified ecological classification of organisms. Quart. J. Fla. Acad. Sci. 17(4): 211-227.

Fore, L. 2004. Development and Testing of Biomonitoring Tools for Macroinvertebrates in Florida Streams.

Heltzer, J. M. 1994. Cogeneration of Steam and Electric Power: Pollution Prevention Opportunities and Options. Commonwealth of Virginia Department of Environmental Quality Office of Pollution Prevention Report 49-1 September 1994

Magurran, A. E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, New Jersey.

Table 4a. Oualitative periphyton composition from natural substrates.

Mosaic Phosphates Company - Nichols Plant	Control Site	Test Site
Number of Taxa	56	54
Percent Dominant Taxon	21.2	17.2
Dominant Taxon (name)	Navicula sp.	Bacillaria paxillifer
Number of Algal Units Identified	316	314
Percentage Composition		
Blue-green algae	1.9	1.3
Diatoms	98.1	98.7

Table 4b. Phytoplankton composition

Mosaic Phosphates Company - Nichols Plant	Control Site	Test Site
Number of Taxa	66	60
Shannon-Weaver Diversity	5.04	4.86
Chlorophyll a (µg/L)	0.92 U	.85U
Phaeophytin (µg/L)	1.6 U	1.5U
Algal Density (number/cm²)	303	609
Percent Dominant Taxon	10.9	12.6
Dominant Tayon (nama)	Achnanthes lanceolata	Navigula on
Dominant Taxon (name)	rostrata	<i>Navicula</i> sp.
Number of Algal Units Identified	308	303
Percentage Composition		
Blue-green algae	2.6	1.6
Diatoms	92.1	96.4
Green algae	4.0	1.3
Other	1.3	0.7

U - Material analyzed for but not detected; value reported is the method detection limit

Table 5. Macroinvertebrate Hester-Dendy Samples - Quantitative

Mosaic Phosphate Company - Nichols Plant	Control Site	Test Site	
Summary Statisics			
Shannon-Weaver Diversity	3.99	3.6	
Number of Taxa	41	47	
Florida Index	24	25	
Number of EPT Taxa	7	12	
Percent Dominant Taxon	23.6	29	
Dominant Taxon (name)	Baetis intercalaris	Microcylloepus pusillus	
Dominant Taxon (group)	Ephemeroptera	Coleoptera	
Total Number of Individuals (counted)	155	380	
Total Number of Individuals (#/m²)	465	1139	
Community Composition: Percent of total			
Coleoptera	7.1	35	
Diptera	43.6	29	
Ephemeroptera	32.2	12.1	
Gastropoda	2.4	0.4	
Trichoptera	12.7	22.2	
Other	1.9	1.3	
Functional Feeding Groups: Percent of total			
Piercers	0.7	4.2	
Predators	9.1	6.8	
Surface Deposit Feeders	43.6	36.7	
Suspension Feeders	15.3	17.2	
Scavengers	0.3	0.2	
Scrapers	18.6	26.7	
Shredders	7.4	8.1	
Unknown	5	0.2	

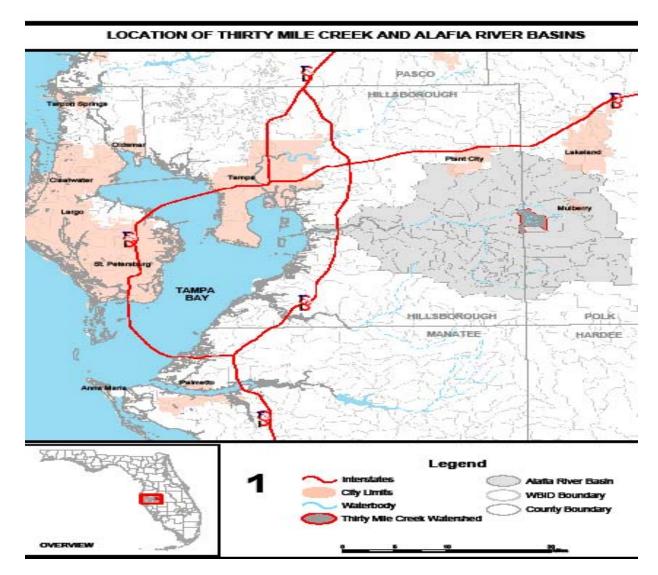
- Miller, W. E., T. E. Maloney, and J. C. Greene. 1978. The *Selenastrum capricornutum* Printz algal assay bottle test. EPA-600/9-78-018. U. S. EPA, Cincinnati, Ohio. 126 p.
- Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross and R. M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers: Benthic macroinvertebrates and fish. U. S. EPA, Office of Water Regulations and Standards, Washington D.C., EPA 440-4-89-001
- Raschke, R. L. and D. A. Schultz. 1987.

 The use of the algal growth potential test for data assessment. J. Wat. Poll. Cont. Fed. 59(4): 222-227.
- Ross, L. T. 1990. Methods for aquatic biology. Florida Department of Environmental Regulation Technical Series 10(1): 1-47.
- Sokal, R. R. and F. J. Rohlf. 1995. Biometry, Third edition. W. H. Freeman and Company, New York.
- Stevenson, R. J. and L. L. Bahls. 1999.
 Periphyton protocols. Pp. 6.1-6.22
 in: Rapid bioassessment protocols
 for use in wadeable streams and
 rivers. 2nd edition. By: M. T.
 Barbour, J. Gerritsen, B. D. Snyder
 and J. B. Stribling. EPA 841-B-99002. U. S. Environmental Protection
 Agency, Office of Water,
 Washington, D. C.
- Stevenson, R. J. and J. P. Smol. 2003.

 Use of algae in environmental assessments, pp. 775-803, in:
 Freshwater algae of North America, edited by J. D. Wehr and R. G. Sheath, Academic Press, San Diego. 918 pp.
- Wallace, J. B., J. W. Grubaugh and M. R. Whiles. 1996. Biotic indices and stream ecosystem processes: results from an experimental study. Ecol. Appl. 6(1): 140-151.
- USEPA. 2000. Nutrient Criteria Technical Guidance Manual River and Streams. EPA-822-B-00-002.

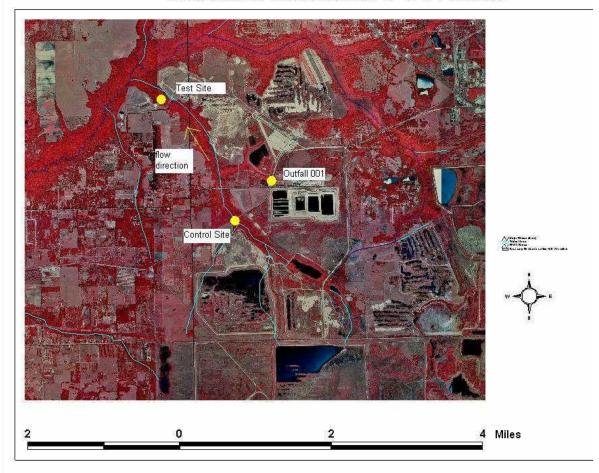
Table 6. Macroinvertebrate Dipnet Samples - Qualitative

Mosaic Phosphate Company - Nichols Plant	Control Site	Test Site
Summary Statistics		
Number of Total Taxa	31	24
Number of Ephemeroptera Taxa	4	1
Number of Trichoptera Taxa	4	7
Number of Clinger Taxa	5	5
Number of Long-lived Taxa	2	1
Number of Sensitive Taxa	2	4
Percent of Dominant Taxon	16.2	33.3
Percent Suspension Feeders and Filterers	6.7	15.2
Percent of Tanytarsini individuals	6.7	3.9
Percent of Very Tolerant individuals	1.9	0
Total Number of Individuals	105	102
Community Composition: Percent of total		
Dominant Taxon (name)	Hydrobiidae	Microcylloepus pusillus
Dominant Taxon (group)	Gastropoda	Coleoptera
Amphipoda	3.8	1.0
Coleoptera	21.9	42.2
Diptera	22.9	19.6
Ephemeroptera	10.5	2.0
Gastropoda	17.1	1.0
Odonata	6.7	2.0
Oligochaeta	1.9	0
Pelecypoda	1.0	7.8
Trichoptera	13.3	24.5
Other	0.9	0
Functional Feeding Groups: Percent of total		
Burrowing Deposit Feeders	1.9	0
Piercers	9.5	8.8
Predators	9.5	6.4
Surface Deposit Feeders	44.8	35.3
Suspension Feeders and Filterers	6.7	15.2
Scrapers	18.6	27.9
Shredders	9.1	6.4


USEPA. 2002. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. 4th Edition. EPA-821-R-02-013.

Appendices

- Appendix A. Map of facility
- Appendix B. Facility summary and DMR data
- Appendix C. Explanation of measurements
- Appendix D. Chain of Custody form
- Appendix E. Chemical analyses of effluent and receiving water.
- Appendix F. Additional physical, chemical, toxicological and microbiological results
- Appendix G. Standard Reference Toxicant test data
- Appendix H. Typical values for selected parameters in Florida waters
- Appendix I. Habitat Assessment field sheets
- Appendix J1. Periphyton: Taxa list and density (number of individuals per mL)
- Appendix J2. Periphyton: Taxa list and number of individuals counted
- Appendix K1. Hester-Dendy multi-plate samplers: Taxa list and macroinvertebrate density (average number of individuals per m²)
- Appendix K2. Hester-Dendy multi-plate samplers: Taxa list and total number of macroinvertebrates counted
- Appendix L1. Dipnet samples: Taxa list and number of macroinvertebrates counted (collapsed)
- Appendix L2. Dipnet samples: Taxa list and number of macroinvertebrates counted


Appendix A

Map of Facility

LOCATION OF THIRTY MILE CREEK AND ALAFIA RIVER BASINS

Mosaic Nichols FYI Sites

Appendix B

Facility summary and DMR data

Facility Name (as it appears of Phosphates Company-Nichols P	Former Names: IMC Phosphates Company- Nichols Concentrates Plant	
Physical Address:	NPDES Permit No.: FL0030139	Prepared By: Jacki Champion
5000 County Road 676 Nichols, Florida No.: FL0030139 Expiration Date: 3/27/07		
County: Polk	District: SW- Phosphate Mgmt.	Facility Type: Chemical Plant - Closed

Function of Facility: Currently this facility is under closure. Historically, it operated as a phosphate fertilizer manufacturing plant. Previously manufactured products include sulfuric acid, phosphoric acid and mono and diammonium phosphate. The plant permanently shut down in December 1999.

Sampling Location (actual permit designation of permitted sampling point): Outfall 001 and Internal Outfall 002. All discharge from Outfall I-002 discharges to waters of the state through Outfall 001.

Description of permitted outfall:

Description of treatment process (if multiple discharge points, include a map or diagram of facility):

Treatment of the process water at this facility consists of two-stage lime treatment followed by acidulation for pH adjustment. Currently, process water is being treated in batches.

Receiving Waters: Thirty Mile Creek	Classification (indicate whether fresh or marine): Class III Freshwaters
Temperature (C):	Design Flow:
pH (SU):	Mean Flow (for previous 12 months): 4.55 MGD for 2005
Conductivity (umhos/cm):	Flow During Survey:
Method of Chlorination na	Method of Dechlorination na
Dissolved Oxygen (mg/L):	Total Residual Chlorine (mg/L) (after disinfection):na

Discharge is: Other	Continuous X	Intermittent	Seasonal)	X Rainfall Dependent				
Toxicity Test Requirements (routine and/or additional test language test species, salinity adjustment, etc.):								
once during the v	Chronic Testing once per permit cycle. Acute Testing is conducted once during dry season and once during the wet season, except when discharge is occurring from I-002. The testing is conducted monthly. See language below.							
Administrative of violations. The or		s : A consent orde	er was issued	l in 1989 for Groundwater				
Facility Mixing 2	Zone Details: Nor	ne						
List permit viola the last year:	tions (DMR data)	and plant upse	ts that occur	rred at the plant within				
violation, January	/ 2005-Unionized a	ammonia and cor	nductance vio	March 2005- total nitrogen plations. (Other nutrient BAT treated water to be				
Describe previo enforcement ac	•	essments, WQE	BEL's, and pr	revious or current				
A FDEP bioassessment occurred in October 1997. Dipnet samples indicated degradation at the test site, however due to no difference in the Hester-Dendy at the two sites, habitat availability was thought to be the limiting factor. Algal diversity decreased from the control to test site, algal density was low at both sites, and chlorophyll-a was not detected. AGP values were high, 74.2 mg dry wt/L and 96.0 mg dry wt/L at the control and test sites respectively. The effluent had high total nitrogen 5.4 mg/L concentration.								
Discuss MOR trends to prior data; is trend improving or declining:								
List Effluent Limits (include additional sheets as necessary):								
Parameter and l	Jnits	Limit		pecial permit conditions modifications:				

1. During the period beginning on the issuance date and lasting through the expiration date of this permit, the permittee is authorized to discharge from Outfall D-001 (see Attachment A), process wastewater, non-process wastewater, and stormwater. Such discharge shall be limited and monitored by the permittee as specified below:

2.

	Dischar	ge Limitations	Monitoring Requirements			ements
Parameters (units)	Monthly Average	Daily Maximum	Da Minim	ily um	Monitoring Frequency*	Sample Type
Flow (mgd)	Report	Report			Continuous	Recorder
pH (su)	Report	8.5 See Cond I.A.14.		6.0	Continuous	Recorder
Temperature (C), Water (deg.C)	Report	Report See Cond I.A.14.			Weekly	Grab
Nitrogen, Ammonia, Total (as N) (mg/l)	Report	Report See Cond I.A.14.			Weekly	Grab
Ammonia, Unionized (mg/l)	Report	0.02 See Cond I.A.14.			Weekly	Calculated
Oxygen, Dissolved (DO) (mg/l)	Report			5.0	Weekly	Grab
Specific Conductance (umho/cm)	Report	See Cond. I.A.2.			Weekly	Grab
Specific Conductance (Background) (umho/cm)	Report	Report			Weekly	Grab
Solids, Total Suspended (mg/l)	Report	Report			Weekly	Grab
BOD, Carbonaceous 5-day, 20C (mg/l)	Report	Report			Weekly	Grab
Phosphate, Ortho (as P) (mg/l)	Report	Report			Weekly	Grab
Fluoride, Total (as F) (mg/l)	Report	10.0			Weekly	24-hour Comp

	Dischar	Discharge Limitations			Monitoring Requi	rements
Parameters (units)	Monthly Average	Daily Maximum	Da Minim		Monitoring Frequency*	Sample Type
Nitrogen, Total (as N) (mg/l) See Cond. 1.A.11.	Report	3.0**			Weekly	24-hour Comp
Nitrogen, Total (as N) (lbs/day) See Cond. 1.A.11.	Report	Report			Weekly	Calculated
Nitrogen, Total (lb/yr)		54,827**			Annually	Calculated
Phosphorus , Total (as P) (mg/l)	7.0	10.0			Weekly	24-hour Comp
Phosphorus , Total (as P) (lbs/day) See Cond. I.A.11.	Report	Report			Weekly	Calculated
Turbidity (ntu)	Report	See Cond. I.A.3			Weekly	Grab
Turbidity (Background) (ntu)	Report	Report			Weekly	Grab
Sulfate, Total (mg/l)	Report	Report			Weekly	24-hour Comp
Alpha, Gross Particle Activity (pci/l)		15.0 See Cond I.A.13.			Monthly	24-hour Comp
Radium 226 + Radium 228, Total (pci/l)		5.0 See Cond. I.A.12.			Monthly	24-hour Comp
Whole Effluent Toxicity	See Permit Condition I.A.4 and I.A.5.					

- * All monitoring frequencies shall be based on standard calendar periods.
- ** Total nitrogen values (goals) which shall be for monitoring and reporting purposes only. (See Part I.A.21)
- 2. The permittee shall initiate the series of tests described below beginning on the first

discharge to evaluate whole effluent toxicity of the discharge from outfall D-001. All test species, procedures and quality assurance criteria used shall be in accordance with Shortterm methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, EPA/600/4-91/002, or the most current edition. The control and dilution water will be moderately hard water as described in EPA/600/4-91/002, Table 3, or the most current edition. A standard reference toxicant (SRT) quality assurance (QA) chronic toxicity test shall be conducted concurrently or no greater than 30 days before the date of the "routine" test, with each species used in the toxicity tests. The results of all QA toxicity tests shall be submitted with the discharge monitoring report (DMR). Any deviation from the bioassay procedures outlined herein shall be submitted in writing to the Department for review and approval prior to use.

- a. (1)The permittee shall conduct a daphnid, <u>Ceriodaphnia</u> <u>dubia</u>, Survival and Reproduction test and a fathead minnow, <u>Pimephales promelas</u>, Larval Survival and Growth Test. These tests shall be conducted using a control (0% effluent) and one test concentration of 100% effluent.
 - (2) For each set of tests conducted, a 24-hour composite sample of final effluent shall be collected and used per the sampling schedule discussed in EPA/600/4-91/002, Section 8, or the most current edition. Two additional composite samples shall be collected according to the protocol and used as renewal solutions on Day 3 (48 hours) and Day 5 (96 hours) of the test.
 - (3) If control mortality exceeds 20% for either species in any test, the test for that species (including the control) shall be repeated. A test will be considered valid only if control mortality does not exceed 20% for either species. If, in any separate test, 100% mortality occurs prior to the end of the test, and control mortality is less than 20% at that time, that test (including the control) shall be terminated with the conclusion that the sample demonstrates unacceptable chronic toxicity. Additionally, each test must meet the acceptability criteria for the test species as defined in EPA/600/4-91/002 Section 13.11 and Section 11.11, respectively, or the most current edition.
- b. (1) The toxicity tests specified above shall be conducted on the first discharge (for intermittent discharges) or within 60 days (for continuous discharges) following the issuance of this permit. Upon the completion of this test which demonstrates that no unacceptable toxicity (as defined in Part I.A.4.c.(1) below) has been identified, the permittee will not be required to undergo chronic toxicity testing for the remainder of this permit.

(2) Results from "routine" tests shall be reported according to EPA/600/4-91/002, Section 10, Report Preparation (or the most current edition), and shall be submitted to the Department as specified in Conditions I.E.2. and 3.

Additionally, all results shall be recorded and submitted on the Discharge Monitoring Report (DMR) in the following manner:

If the NOEC of a test species is less than $\underline{100\%}$ effluent, "< $\underline{100\%}$ " should be entered on the DMR for that species. If the NOEC of a test species is greater than or equal to $\underline{100\%}$ effluent, "> $\underline{100\%}$ " should be entered.

- c. (1) An NOEC of less than 100% effluent in any "routine" or additional definitive test will be a violation of these permit conditions and Rule 62-302.530(62), F. A. C.
 - (2) If an NOEC of less than 100% effluent is found in a "routine" test, the permittee shall conduct three additional tests on each species indicating the violation.
 - (3) The first additional test shall be conducted using a control (0% effluent) and a minimum of five dilutions: 100%, 50%, 25%, 12.5% and 6.25% effluent. The dilution series may be modified in the second and third test to more accurately identify the toxicity, such that at least two dilutions above (not to exceed 100% effluent) and two dilutions below the target concentration and a control (0% effluent) are run. All test results shall be statistically analyzed according to the Appendices in EPA/600/4-91/002, or the most current edition.
 - (4) For each additional test, the sample collection requirements and the test acceptability criteria specified in section a. above must be met for the test to be considered valid. The first test shall begin within two weeks of the end of the "routine" tests, and shall be conducted weekly thereafter until three additional, valid tests are completed. The additional tests will be used to determine if the toxicity found in the "routine" test is still present.
 - (5) If after completion of a failed routine test, the facility is not discharging, the additional toxicity sampling and testing described in Part I.A.5.c.(4) above, shall be performed upon resumption of the discharge.
 - (6) Results from additional tests, required due to a chronic toxicity violation in the "routine" tests, shall be submitted in a single report prepared according to EPA/600/4-91/002, Section 10, or the most current edition, and submitted within 45 days of completion of the third additional, valid test. Upon the completion of

the third additional test, the permittee will meet with the Department within 30 days of the report submittal to identify corrective actions necessary to remedy the observed chronic toxicity.

3. In order to provide the Department with reasonable assurance that the discharge from Outfall 001 does not violate the acute toxicity requirements of Section 62-302.500, F.A.C., the permittee shall perform the toxicity tests as specified below and submit the results to the Department.

The permittee shall initiate the series of tests described below, beginning in the first testing period following the effective date of this permit, to evaluate whole effluent toxicity of the discharge from Outfall 001. All test species, procedures and quality assurance criteria used shall be in accordance with Methods for Measuring Acute Toxicity of Effluents to Freshwater and Marine Organisms, EPA/600/4-90/027F, or the most current edition. The control water and dilution water used will be moderately hard water as described in EPA/600/4-90/027F, Table 6, or the most current edition. A standard reference toxicant (SRT) quality assurance (QA) acute toxicity test shall be conducted concurrently or no greater than 30 days before the date of the "routine" test, with each species used in the toxicity tests. The results of all toxicity tests shall be submitted with the discharge monitoring report (DMR). Any deviation of the bioassay procedures outlined herein shall be submitted in writing to the Department for review and approval prior to use.

- a. (1) The permittee shall conduct 96-hour acute static renewal toxicity tests using the daphnid, <u>Ceriodaphnia dubia</u>, and the bannerfin shiner, <u>Cyprinella leedsi</u>. All tests will be conducted on four separate grab samples collected at evenly-spaced (6-hr) intervals over a 24-hour period and used in four separate tests in order to catch any peaks of toxicity and to account for daily variations in effluent quality.
 - (2) If control mortality exceeds 10% for either species in any test, the test(s) for that species (including the control) shall be repeated. A test will be considered valid only if control mortality does not exceed 10% for either species. If, in any separate grab sample test, 100% mortality occurs prior to the end of the test, and control mortality is less than 10% at that time, that test (including the control) shall be terminated with the conclusion that the sample demonstrates unacceptable acute toxicity.

- b. (1) The toxicity tests specified above shall be conducted once during the months of December, January and February, and again during the months of July, August and September, but not to exceed two tests per year, except as follows. During the discharge of treated process water from IMS 002, the permittee shall conduct the acute toxicity tests specified above monthly. Samples shall be collected only during actual discharge events. These tests are referred to as "routine" tests. The permittee shall monitor the toxicity, as described above, for the life of this permit.
 - (2) Results from "routine" tests shall be reported according to EPA/600/4-90/027F, Section 12, Report Preparation (or the most current edition), and shall be submitted to the address listed in Conditions I.E.2. and 3.
- c. (1) All "routine" tests shall be conducted using a control (0% effluent) and a test concentration of 100% final effluent.
 - (2) Mortalities of greater than 50% in a 100% effluent in any "routine" sample or an LC50 of less than 100% effluent in any additional definitive test will constitute a violation of these permit conditions, and Rule 62-302.200(1), Rule 62-302.500(1)(d) and Rule 62-4.244(3)(a), F. A. C.
- d. (1) If unacceptable acute toxicity (greater than 20% mortality of either test species in any grab sample test) is found in a "routine" test, the permittee shall conduct three additional tests on each species indicating unacceptable toxicity. The first additional test will include four grab samples taken as described in Condition I.A.5.a.(1) and run as four separate definitive analyses. The second and third additional definitive tests will be run on a single grab sample collected on the day and time when the greatest toxicity was identified in the first additional definitive test. Results for each additional test will include the determination of LC50 values with 95% confidence limits.
 - (2) The first additional test shall be conducted using a control (0% effluent) and a minimum of five dilutions: 100%, 50%, 25%, 12.5% and 6.25% effluent. The dilution series may be modified in the second and third test to more accurately identify the toxicity, such that at least two dilutions above and two dilutions below the target toxicity and a control (0% effluent) are run.
 - (3) For each additional test, the sample collection requirements and the test acceptability criteria specified in Condition I.A.5.a. above must be met for the

test to be considered valid. The first test shall begin within two weeks of the end of the "routine" tests, and shall be conducted weekly thereafter until *three* additional, valid tests are completed. The additional tests will be used to determine if the toxicity found in the "routine" test is still present.

- (4) Results from additional tests, required due to unacceptable acute toxicity in the "routine" tests, shall be submitted in a single report prepared according to EPA/600/4-90/027F, Section 12, or the most current edition and submitted within 45 days of completion of the additional, valid tests. Upon completion of the third additional test, the permittee will schedule to meet with the Department within 30 days of the report submittal to identify the cause(s) and corrective actions (if applicable) necessary to remedy the unacceptable acute toxicity.
- (3) If acute toxicity is found, additional chronic toxicity testing may be required.

Appendix C

Explanation of Measurements

(1) Quality Assurance and Quality Control

FDEP's quality assurance requirements for analytical laboratories and field activities are codified in Chapter 62-160, F.A.C., Quality Assurance (QA Rule) and in internal Standard Operating Procedures (FDEP SOPs). Methods for all analyses are on file at the FDEP Central Laboratory in Tallahassee and may be viewed on the web at http://www.floridadep.org/labs/sop/index.htm and/or http://www.floridadep.org/labs/qa/index.htm

(2) Chemical Analyses of the Effluent

The effluent was analyzed for nutrients, metals, organic constituents (base, neutral, and acid extractables) and pesticides following FDEP SOPs. A list of the analytes tested for, results, data qualifiers, the minimum detection limit and the practical quantitation limit are given in Appendix D. The results from these analyses were compared with Water Quality Criteria (62-302 F.A.C.) and facility permit limits (Table 1, Appendix B). Exceedances of Water Quality Criteria may be violations of specific provisions of Chapter 62-302 (F.A.C.) and/ or facility permit limits.

(3) Toxicity Bioassays

Acute screening toxicity bioassays were performed on the effluent sample using the water flea, *Ceriodaphnia dubia*, and the fish, *Cyprinella leedsi* following FDEP SOPs TA07_01 and TA07_02. Failure of toxicity testing may constitute a violation of 62-302.520(21), 62-302.530(62) and/or facility permit limits. Standard reference toxicant tests are conducted monthly to ensure quality in toxicity testing.

(4) Bacteriological Testing

The effluent and water from control and test sites were analyzed for the presence and concentration of total and fecal coliform bacteria following FDEP SOPs MB1_0 and MB1_1. High levels of fecal or total coliform bacteria may constitute violation of 62-302.530(6), 62-302.530(7) and/or facility permit limits.

(5) Habitat Assessment

Habitat assessment is used to evaluate the physical structure and extent of disturbance in a waterbody. Eight aspects are ranked, with 20 possible points for each aspect (QA Rule SOP FT 3100). The Habitat Assessment score includes types and amounts of benthic substrates, water velocity, amount of sand or silt accumulation, extent of artificial channelization, bank stability, and riparian zone width and vegetation type. All scores are summed to yield an overall Habitat Assessment score. Habitat Assessment score ranges from 11-160 and overall habitat quality is assigned to one of four categories: Optimal (120-160 points), Suboptimal (80-119 points), Marginal (40-79 points), and Poor (11-39 points).

(6) Algal Growth Potential (AGP)

The effluent and water from control and test sites are autoclaved, filtered ($0.45\mu m$), inoculated with the unicellular green alga, *Pseudokirchneriella subcapitata* (formerly *Selenastrum capricornutum*, USEPA 2002), and incubated for 14 days (FDEP SOP

TA08_05). The algal growth potential (AGP) value is the peak growth of the alga within that 14-day period, recorded as mg dry weight/L. Raschke and Shultz (1987) found that an AGP above 5.0 mg dry weight/L represents a "problem" threshold for fresh receiving waters, implying nutrient enrichment. High AGP values may constitute one line of evidence for violation of 62-302.530(47) F.A.C., 62-302.530(48)(a) F.A.C. and/or 62-302.530(48)(b) F.A.C..

The concentration of nutrients in a water sample may be used to calculate the expected yield of AGP under the assumption that other required nutrients (e.g. silicon, micronutrients) are present in excess (Miller *et al.* 1978). The expected amount of production is calculated as 38 times the total soluble inorganic nitrogen (nitrate and nitrite plus ammonia) under nitrogen limitation or 430 times the ortho-phosphate (OP) concentration under phosphorus limitation with an error of \pm 20%. When the ratio of nitrogen to phosphorus (N: P) is less than 10:1, nitrogen limitation of algal production is likely. When the N: P ratio is 20:1 or greater, phosphorus limitation is likely (USEPA 2000). For ratios in-between, co-limitation may occur. Production of lower biomass than expected may be evidence of growth inhibition related to toxic compounds present in the water sample tested and may be a violation of 62-302.530(62) F.A.C..

(7) Algal Phytoplankton and Periphyton Assemblages

Methods: Qualitative periphyton were sampled at both control and test sites by taking subsamples of algae from natural substrates throughout the sample reach (QA Rule FS7220). Phytoplankton were sampled using a 1 L grab sample (QA Rule SOP FS7100). Periphyton were subsampled and identified to the lowest practical level, usually species (FDEP SOPs AB03, AB03_1 and AB05).

Chlorophyll a Content: Chlorophyll *a* content is measured in phytoplankton samples to estimate algal biomass (FDEP SOP BB05). High algal biomass implies nutrient stress (Stevenson and Bahls 1999) and may be a violation of 62-302.530(47) F.A.C., 62-302.530(48)(a) F.A.C. and/or 62-302.530(48)(b) F.A.C.

Algal Density: Algal density is estimated as number of natural units/ml for phytoplankton samples and number of natural units/cm² for periphyton samples. Although algal density of a single site is highly variable and depends on a number of factors, comparison of algal density at a control site to algal density at a related test site gives a partial comparison of algal biomass at the two sites (Stevenson and Smol 2003).

Taxa richness: Taxa richness is the number of distinct algal taxa present in a sample. Extreme nutrient enrichment tends to reduce the number of different types of algae present in a sample because a few tolerant taxa tend to reproduce rapidly and constitute the majority of the cells present. However, moderate nutrient enrichment of nutrient poor waters may sometimes be correlated with increased algal taxa richness (Stevenson and Bahls 1999) as the algal community begins to respond to the increased input of nutrients.

Community Composition: Shifts in relative proportions of major groups of algae downstream of a point source, compared to upstream, control conditions, may indicate negative effects of a discharge (Stevenson and Bahls 1999) and may constitute violations of 62-302.530(47) F.A.C., 62-302.530(48)(a) F.A.C., 62-302.530(48)(b) F.A.C. and/or 62-302.530(62) F.A.C..

Shannon-Weaver Diversity Index: This index is specified in the Florida Administrative Code 62-302 as a measure of biological integrity. Low diversity scores are undesirable. Where diversity is low, only a few taxa are abundant as compared to an area where many taxa are present with more equitable abundance among taxa (Magurran 1988). Low diversity scores related to a facility's effluent may constitute violations of 62-302.530(47) F.A.C., 62-302.530(48)(a) F.A.C., 62-302.530(48)(b) F.A.C. and/or 62-302.530(62) F.A.C.

(8) Benthic Macroinvertebrate Assemblages

Methods: Benthic macroinvertebrates were collected using two methods. Quantitative samples were collected from Hester-Dendy multi-plate samplers incubated for 28 days (QA Rule SOP FS7430). Qualitative collections are made using 20 dipnet sweeps (QA Rule SOP FS7420). Benthic macroinvertebrates were sorted and identified to the lowest practical taxonomic level, usually species (FDEP SOP IZ06).

Taxa richness: Taxa richness is the number of distinct macroinvertebrate taxa present in a sample. Stress, habitat destruction and pollution tend to reduce the number of different types of organisms present (Karr and Chu 1998). Decreases in taxa richness related to a facility's effluent may constitute violations of 62-302.530(47) F.A.C., 62-302.530(48)(a) F.A.C., 62-302.530(48)(b) F.A.C. and/or 62-302.530(62) F.A.C..

Percent Contribution of Dominant Taxon: Percent contribution of the dominant taxon is calculated by dividing the number of individuals in the most abundant taxa by the total number of individuals counted. Percent contribution of the dominant taxon tends to increase with increasing perturbation (Plafkin *et al.*, 1989). Increases in the percent contribution of the dominant taxon related to a facility's effluent may constitute violations of 62-302.530(47) F.A.C., 62-302.530(48)(a) F.A.C. and/or 62-302.530(48)(b) F.A.C..

Shannon-Weaver Diversity Index: This index is specified in the Florida Administrative Code 62-302 as a measure of biological integrity. Low diversity scores are undesirable. Where diversity is low, only a few taxa are abundant as compared to an area where many taxa are present in equitable abundance among taxa (Magurran 1988). A difference of 25% in Shannon-Weaver diversity between results from Hester-Dendy multiplate samplers incubated for 28 days at test and control sites constitutes a violation of 62-302.530(11) F.A.C..

Community Composition: Shifts in proportions of major groups of organisms downstream of a point source, compared to upstream, control conditions, may indicate negative effects of a discharge (Karr and Chu 1998). Shifts in community composition related to a facility's effluent may constitute violations of 62-302.530(47) F.A.C., 62-302.530(48)(a) F.A.C., 62-302.530(48)(b) F.A.C. and/or 62-302.530(62) F.A.C..

Functional Feeding Groups: Environmental degradation may differentially affect groups of invertebrates based on how the group feeds (e.g. predators, deposit feeders, etc.). In Florida, pollution may be responsible for reducing the numbers of filter feeders (FDEP 1994) and shredders (EA Engineering 1994). Changes in the proportions of functional feeding groups related to a facility's effluent may constitute violations of 62-302.530(47) F.A.C., 62-302.530(48)(a) F.A.C., 62-302.530(48)(b) F.A.C. and/or 62-302.530(62) F.A.C..

(9) Statistical Comparisons

Statistical comparisons of the proportions of taxa, major groups or feeding groups were made using 95% confidence intervals on proportions. A 95% confidence interval is the range of values above and below a given proportion that has a 95% chance of containing the true proportion (Sokal and Rohlf 1995). If the 95% confidence intervals for two proportions do not overlap, then the proportion of X in sample 1 is significantly different from the proportion of X in sample 2 at p<0.05. A "p<0.05" level of significance means that there is less than a 5% chance that the true proportions in the two samples are the same. All comparisons that are labeled as significant in the text have a probability <0.05 that the proportions are the same.

Appendix D Chain of Custody form

Central Laboratory Sample Submittal Form Collection (local) Co	Champics) the	NPDES Number Eastern Group(s)** Central Group(s)** NPDES Number NPDES Number	NPDES Number Eastern Bottle Central Group(s)** NPDES Number Date/Time S-33-04-94, 204.	
Florida Department of Englands Sample Depth Sample Depth Compensation Comments Compensation Comments Compensation Compensation Compensation Comments Compensation Comments Compensation Compensation Comments Compensation Comments Compensation Compensation Compensation Comments Compensation Compensation Compensation Compensation Compensation Comments Compensation Compensation Compensation Comments Compensation Compensation Comments Compensation Compensatio	Event ID	o/cm)	Collection (end) Date Storet Station Number nity (PPTh) Conductance (umho/cm) Date Storet Station Number nity (PPTh) Conductance (umho/cm) Conductance (umho/cm) Conductance (umho/cm)	
Sollect Collect Collec	Sam	Comp Sample Depth Comments Comments Comments Comments Comments Comments Comments Comments Comments	Comments Comments Comments Comments Comments Comments Comments Comments	last revised October 1, 2003
	Request Number: RQ-2006-05-22-18 Mosaic Phosphates Co-Nichols Concentrates Requester: Shannan Bogdis Customer: BMR-TAMPA Collected By: Collected Collected By: Collect	19, Ha	Semp (C)	** Please see reverse side for Bottle Group information.

	Group(s)**	Group(s)**	Group(s)**	Group(s)**	Siddle 9: 22
2 Champles	Eastern S7/20 Central mber NPDES Number o/cm)	ne 3/30 Central er	Eastern ne Central er NPDES Number m)	Eastern Pe Central er NPDES Number	Page 1 of 4
Frotection Event ID* Orm Fleid Report Prepared By: Toch CM Send Final Report To Vishwas Sathe	Collection (end) Tal Date 5/22 (Ve Time Storet Station Number Salinity (PPTh) Sp Conductance (umho/cm)	Storet Station (end) Storet Station Number Storet Station Number Salinity (PPTh) Sp Conductance (umho/cm)	Salinity (PPTh) Sp Conductance (umho/cm)	tral Date Time Storet Station Number Salinity (PPTh) Sp Conductance (umho/cm)	Received By:
Protection Form Fleid Report Prepar	ast ast	astern Salin		East Cent	Date/Time
Central Laboratory Sample Submittal Form Innan Bogdanov Colt Rose See See See See See See See See See S	Comments	Collection (begin) Date-1 32 (Ac Time 1000 C Is (mg/L) Diss Oxygen (mg/L) In the control of the	ich (begin) Diss Oxyge O\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Collection (begin) Date 5/03/06 Time 1:10 te (mg/L) Diss Oxygen (mg/L) m n n n	Relinquished By: 1, 2003
ratory Sample Su	1	Comments	Comments	Comments	Date/Time Relinquiat revised October 1, 2003
da Department Central Laborato Shannan Bogdanov Cocki Chonypion	Site-Hester Danda	Site - Hester Denote	Hd	Hd -	Ester Dendys
Florid Requester: S Collected By:	G 8		CCAC— PETO etc Temp (C) Longitude o	Mod State (C) Longitude o	8 9
22	MOSOLC NICHOLS Matrix (Include type e.g. Salt, Fresh, etc Temp (Fresh Tracsh Track) Latitude o Longitu	Wichol Cyrek -	Field ID 30 mile Cycoke Matrix (Include type e.g. Salt, Fresh, etc Temp (C)	Field ID BLANKS Salf, Fresh, etc Temp (Tresh, Woday Latitude o Woday	Shaping Method: Chowpi Ch Salw Date/Time Shipping Method: Shaded Areas for Lab use only. Please see reverse side for Bottle Group information.
Request Number: RQ-2006-05-; Mosaic Phosphates Co-Nichols Concentrates Customer: BMR-TAMPA Project ID: FYI5	Location Location MoSow Field ID Matrix (Include by	Freid 10 Matrix (Include type e.g. (7-C.)) — The control of type e.g. (7-C.))	Labiber Location MOSOLC Field ID 30 mm Matrix (Include type e.g. Fresh h — Improvement to the supplement to the suppleme	Field ID BL	Shaded Areas for Lab use only. Please see reverse side for Bottle (
Request Numbe Mosaic Phosphates Co Customer: BMR Project ID: FYI5	PMAS: 1163 Lapin: Field of the control of the contr	Lab ID Field ID Field ID Matrix (In Latitude	Labiba	Labilitics (Location) Field ID Matrix (Inc.	Relinquished By: Cloumpi Ch. Shaded Areas for Please see revers

														,					,	E F	3	
		\$			Bottle Group(s)**	-	Bottle	Group(s)**	0	0		Bottle Group(s)**	_)		Bottle Group(s)**				300 300	4	
		Lampy	-			NPDES Number	Eastern			NPDES Number		n		NPDES Number		Eastern		NPDES Number		Saga 0	Page 1 of	
		9	Sathe					Time	() ()			ne 12:3	er			19:30	e		0	3		
Event ID *		Field Report Prepared By: TOLL	Send Final Report To Vishwas Sathe		ction (end) t Station Nu	Salinity (PPTh) Sp Conductance (umho/cm)	ction (end)	1	Storet Station Number	Salinity (PPTh) Sp Conductance (umho/cm)		Collection (end) Date 5/ 300/0 Time 3.30 central	Storet Station Number	Salinity (PPTh) Sp Conductance (umho/cm)		Sollection (end) Date 5/38/06 Time	Storet Statlon Number	Salinity (PPTh) Sp Conductance (umho/cm)		Received By:		
Protection		ort Prepared	Final Report	1	Eastern) Colle Central Date L) Store	Salinity (P	Gestern DCollection (end)		Store	Salinity (P				Salinity (PF Sp Conduc		1	Storet	Salinity (PPTh)				
	Form	Field Rep	Send	/	9 (2) Ce		6	1000	Diss Oxygen (mg/L)	441		begin) Eastern	en (mg/L)	00		pegin) Eastern (Sacretral	en (mg/L)			Date/Time		
Environmental	ubmitta		R		Collection (begin) Date 5 (33) (NGTime 4.50) e (mg/L) Diss Oxygen (mg/L)		(heain)	Q		2		in (begin)	-				Ďiss Oxygen (mg/L)			Relinquished By:	£ 3	
Enviror	ample S		Scottkos		lorin	e #	Collecti	Date	Tot Res Chlorine (mg/L)	ag a		Collection (b	Tot Res Chlorine (mg/L)	pth		Collection (Tot Res Chlorine (mg/L)	pt		Relind	1005 T. 2003	
- 1	ratory S.	+	-		Comp A Grab Tot Res Ch	Sample Depth Comments		Grab Grab	Tot Res Ch	Sample Depth	Comments	Comp	-	Sample Depth	Comments	Comp	Tot Res Ch	Sample Depth	Comments	Date/Time	last revised October 1, 2003	
Department of	Central Laboratory Sample Submittal Form	Shannan Bogdanov	Champion						15th	1.8.1			- Hestr Davely	D			Dendy	0			2	
	Cent	Shannan	John John		mosso	Hd -			Creek-Test	표							- Hester Devolu	H		Received By:	JOK 3 HESTER DENDYS 5/33/06 10.9m	
Florida		Requester:	Collected By: A		- 18ta	Temp (C)		2	2	remp (C)	ongitude	15.	Test Si	emp (C)	Longitude	9	Sta	emp (C)	Longitude		130K d) 130K d	
	-22-18		Samplin		Mosaic Nichols-18,000sou	Fresh, etc.		Nichols	30-mile	Fresh, etc 7		Wichol	Field 10 30 mile, Creck-Test Site	Fresh, etc 7		Nichal	Field 10 30 - mile Creek-Test	Matur (Include type e.g. Salt, Fresh, etc Temp (C)		Shipping Method:	information.	
	-2006-05	Concentrate	PA		Sie N	Woden		saic)	を全	pe e.g. Salt,	-	Vosaic 1	mile,	rix (Include type e.g. Salt,	-	Osave,)	mile	pe e.g. Salt,			Bottle Group	
	ber: RG	s Co-Nichois	MR-TAM		M OSC	ix (Include ty		MOS	Field ID-	x (Include ty	nde o	1	300	x (Include ty	o apr	113	108a	x (Include ty	o epr	Date/T	Lab use on	
	Request Number: RQ-2006-05-22-18	Mosaic Phosphates Co-Nichols Concentrates	Customer: BMR-TAMPA Project ID: FYI5	PMAS: 1163	Labilip: Location	Matrix (Include type e.g. Salt, Fresh, etc Temp (C)		Lab 10 some Location MoSou.c	Field	Mat	Latitude o " Longitude o	Labilities & Location	Field		Latitude	Labilot - Location	Field	Math	Latitude	Relinquished By: Date/Time	Shaded Areas for Lab use only. ** Please see reverse side for Bottle Group information.	
	Regu	Mosaid	Cust	PMA				Lab				Labil				Labilda				Reling	· Shad	

		San	
Bottle Group(s)**		Group(s)**	
CMG. In pi Of Street St	Eastern Central Central Central	NPDES Number Gro Date/Time 5:3306	
TO E	Time NPDE MPDE NPDE NPDE NPDE NPDE NPDE NPDE NPDE N	ber	
Gentral Bate Station Number Send Final Report To Vishwas Sathe Send Final Report To Vishwas Sathe Send Final Bate Station Number Storet Stati	Salinity (PPTh) Sastem Collection (end) Sastem Conductance (umho/cm) Societ Station Number Storet Station Number Storet Station Number Storet Station Number Storet Station Number Conductance (umho/cm)	Salinity (PPTh) Sp Conductance (umho/cm) Sp Conductance (umho/cm) Sp Conductance (umho/cm) Sp Conductance (sp Sy:	3
Prepared E Prepared E Salinity (PP Sp Conduct	Storet : Storet : Salinity (PP) Sp Conducts Sp Conducts Storet : S	Salinity (PPTh) Salinity (PPTh) Sp Conductance Time Rece	108m
Field Report Prepared By. JCCK1 Send Final Report To Vishwas Send Final Re	Eastern (mg/L) Sali Sali Sp (Castern Collection (ep. Collection (ep. Collection (mg/L) Co	
Field Report Polection (Pegin) Collection (Pegin)	Collection (begin) Letter (mg/L) Collection (begin) Collection	Collection (begin) Collection (end) Date 1930 Circle O'.OO Central Date 3/30 Central Date 1930 Circle O'.OO Central Conductance (umho/cm) Conductance (umho/cm) Relinquished By: Date 7 Date Received By: Conductance (umho/cm) Cond	
Sample Submittal Sample Submittal Sample Submittal Collection (pegin) ab Date Collection (pegin) ab Date Collection (pegin) ab Depth m	Collection (posted) and mark of may 1) and mark of mark of may 1) and mark of mark	Sollection (begin) Date (2000 Tire Im In Relinquished By	
y Samı y Samı inab inab inab inab inab inab inab inab	Comments (mg/L)	Chlorin Chlorin Depth its	
ment on mov		Commer Co	
Shannan Bogdanov Shanna	PH O Sta	Hester Dendy	
Sp. Tida	1 P 0 TE 70		
Florida Department of Central Laborator Requester: Shannan Bogdanov Collected By: Jock Champion Sampling Agency: FOEP Sampling Agency: FOEP Sampling Agency: FOEP Sampling Agency: Poeper David Tot R Sh. etc Temp (C) pH Comm	Longitude Longitude Longitude	c) Temp (C) Longitude Longitude:	
Samp Samp Samp R. Fresh, etc.	Michals Michals Overek It Fresh, etc Te Loo	W.ckols 9. Salt, Fresh, etc Ter 7. Shipping Method: 50 Odd Coup information.	
er: RQ-2006-05-22-18 o-Nichois Concentrates S-TAMPA S-TAMPA OSCULE NICHOELS O-MILE CHECK Include type e.g. Satt, Fresh, e	Josaic Manue Crandide type e.g. Salt, Josaic A 30-mile 30-mile mainte type e.g. Salt, resh Walter	Society Night Chro	
Request Number: RQ-2006-05-22-18 Mosaic Phosphates Co-Nichols Concentrates Customer: BMR-TAMPA Collected By: Project ID: FYI5 Sampling Agency: PMAS: 1163 AMAS: 1164 A	Lability Cour Wichols Freid ID Antix (Include type e.g. Salt, Fresh, etc Temp (C) pH Latitude o ' " Longitude o " Lability: Location Nosaic Nichols Freid ID 20-mile Creek-Control Site Matrix (Include type e.g. Salt, Fresh, etc Temp (C) pH7, 82 Latitude o Latitude o Longitude o Longitude o Longitude	Lability: Location MoSauc Michael Stranger Press, etc Temp (3) Process and Process and Process and Lability (Include type e.g. Salt, Fresh, etc Temp (3) Process and Latitude o	
Request Numbe Mosaic Phosphates Co Customer: BMR Project ID: FY15 PMAS: 1163 Location Field ID Field I	Labrido Freid ID Frei	Relinquished By: Shaded Areas for Lat- Please see reverse s	
Requi Mosaic Custe Proje Proje	In Indian	Relinquist C.C.N. Shaded A. Thease 4	

Cooler ID	Bo	Incorrect Preserva ttle Field ID		Bo	ttle Tes	t ID(s)			Tape on Bo	intac ottle?
									103	140
	_		_							
							_			
Bottles Not Intac	t									
Field ID		Bottle Test ID(s		ose	Dama	aged		naged	Evid	Tape
			Ca	p	Cap	Lnn		tainer	Not I	Intact
					CK	BR	CK	BR	-	
						-	-		-	
				_						
Samples With Inc	orrect p	H Preservation								
Field ID _		Bottle Test ID(s)	pH		Actio	on Tak	en			
Outfall a	01	924:303	7:	2	Pers	enve	A in	n La	Ь	
			_		+					
	_									
							_			
Samples With Inc.		. V-1 5								
Field ID	umcieni	Bottle Test IDe	ses (s)	_	Ac	tion T	aken			
								117		
					_					
Additional Comm	ents:									

Page 2 of 2, 12/8/05, Form RF-001-5.0

CK - Cracked, BR - Broken

Appendix E

Chemical analysis of effluent and receiving water

DATE SAMPLE	D FIELD ID	ANALYSIS GROUP	COMPONENT	RESULT	UNITS	REMARK	MDL	PQL
05/22/06	Effluent	Bio-AGP/LimNut	Algal Growth Potential	4.81	mg DryWt/L		0.3	0.9
05/22/06	Effluent	Bio-Chl-a	Chlorophyll-A, Monochromatic, Water	0.96	ug/L	U	0.96	2.9
05/22/06	Effluent	Bio-Chl-a	Phaeophytin-A, Monochromatic, Water	1.7	ug/L	Ü	1.7	5.1
05/22/06	Effluent	Bio-Peri/Phyto	Phytoplankton-Quantitative-# Wet Taxa	11	#Taxa	J		0.1
05/22/06	Effluent	Bio-Peri/Phyto	Phytoplankton-Quantitative-#Diatom Taxa	34	#Taxa			
05/21/06	Effluent	Bio-Toxicology	Bioassay-Acute-Screen-FW-C.dubia, LC50	100	LC50	L		
05/21/06	Effluent	Bio-Toxicology	Bioassay-Acute-Screen-FW-C.dubia, LC50	100	LC50	L		
05/22/06	Effluent	Bio-Toxicology	Bioassay-Acute-Screen-FW-C.dubia, LC50	100	LC50	Ĺ		
05/22/06	Effluent	Bio-Toxicology	Bioassay-Acute-Screen-FW-C.dubia, LC50	No Result	LC50	_		
05/21/06	Effluent	Bio-Toxicology	Bioassay-Acute-Screen-FW-Fish, LC50	100	LC50	L		
05/21/06	Effluent	Bio-Toxicology	Bioassay-Acute-Screen-FW-Fish, LC50	100	LC50	Ĺ		
05/22/06	Effluent	Bio-Toxicology	Bioassay-Acute-Screen-FW-Fish, LC50	100	LC50	Ĺ		
05/22/06	Effluent	Bio-Toxicology	Bioassay-Acute-Screen-FW-Fish, LC50	100	LC50	L		
05/22/06	Effluent	BNA-Water	1,2,4-Trichlorobenzene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	1,2-Dichlorobenzene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	1,3-Dichlorobenzene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	1,4-Dichlorobenzene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	2,4,6-Trichlorophenol	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	2,4-Dichlorophenol	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	2,4-Dimethylphenol	49	ug/L	U	49	190
05/22/06	Effluent	BNA-Water	2,4-Dinitrophenol	15	ug/L	U	15	58
05/22/06	Effluent	BNA-Water	2,4-Dinitrotoluene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	2,6-Dinitrotoluene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	2-Chloronaphthalene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	2-Chlorophenol	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	2-Methyl-4,6-dinitrophenol	2.9	ug/L	U	2.9	12
05/22/06	Effluent	BNA-Water	2-Nitrophenol	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	3,3'-Dichlorobenzidine	39	ug/L	U	39	160
05/22/06	Effluent	BNA-Water	4,4'-DDD	1.5	ug/L	U	1.5	5.8
05/22/06	Effluent	BNA-Water	4,4'-DDE	1.5	ug/L	U	1.5	5.8
05/22/06	Effluent	BNA-Water	4,4'-DDT	1.5	ug/L	UJ	1.5	5.8
05/22/06	Effluent	BNA-Water	4-Bromophenyl phenyl ether	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	4-Chloro-3-methylphenol	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	4-Chlorophenyl phenyl ether	1.9	ug/L	U	1.9	7.8
05/22/06	Effluent	BNA-Water	4-Nitrophenol	15	ug/L	U	15	58
05/22/06	Effluent	BNA-Water	Acenaphthene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	Acenaphthylene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	Aldrin	1.5	ug/L	U	1.5	5.8
05/22/06	Effluent	BNA-Water	alpha-BHC	1.5	ug/L	U	1.5	5.8
05/22/06	Effluent	BNA-Water	Anthracene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	Benzidine	97	ug/L	U	97	390
05/22/06	Effluent	BNA-Water	Benzo(a)anthracene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	Benzo(a)pyrene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	Benzo(b)fluoranthene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	Benzo(g,h,i)perylene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	Benzo(k)fluoranthene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	beta-BHC	1.5	ug/L	U	1.5	5.8
05/22/06	Effluent	BNA-Water	Bis(2-chloroethoxy)methane	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	Bis(2-chloroethyl)ether	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	Bis(2-chloroisopropyl)ether	2.9	ug/L	U	2.9	12
05/22/06	Effluent	BNA-Water	Bis(2-ethylhexyl)phthalate	15	ug/L	U	15	58
05/22/06	Effluent	BNA-Water	Butyl benzyl phthalate	4.9	ug/L	U	4.9	19
05/22/06	Effluent	BNA-Water	Chrysene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	delta-BHC	1.5	ug/L	U	1.5	5.8
05/22/06	Effluent	BNA-Water	Dibenzo(a,h)anthracene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	Dieldrin	1.5	ug/L	U	1.5	5.8
05/22/06	Effluent	BNA-Water	Diethyl phthalate	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	Dimethyl phthalate	49	ug/L	U	49	190
05/22/06	Effluent	BNA-Water	Di-n-butyl phthalate	4.9	ug/L	U	4.9	19
05/22/06	Effluent	BNA-Water	Di-n-octyl phthalate	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	Endosulfan I	3.9	ug/L	U	3.9	16
05/22/06	Effluent	BNA-Water	Endosulfan II	3.9	ug/L	U	3.9	16
05/22/06	Effluent	BNA-Water	Endosulfan sulfate	1.5	ug/L	U	1.5	5.8
05/22/06	Effluent	BNA-Water	Endrin	1.5	ug/L	U	1.5	5.8
05/22/06	Effluent	BNA-Water	Endrin aldehyde	3.9	ug/L	U	3.9	16
05/22/06	Effluent	BNA-Water	Fluoranthene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	Fluorene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	gamma-BHC	1.5	ug/L	U	1.5	5.8 5.8
05/22/06	Effluent	BNA-Water	Heptachlor	1.5	ug/L	U	1.5	5.8

DATE SAMPLE	D FIELD ID	ANALYSIS GROUP	COMPONENT	RESULT	UNITS	REMARK	MDL	PQL
05/22/06	Effluent	BNA-Water	Heptachlor epoxide	1.5	ug/L	U	1.5	5.8
05/22/06	Effluent	BNA-Water	Hexachlorobenzene	0.97	ug/L	Ū	0.97	3.9
05/22/06	Effluent	BNA-Water	Hexachlorobutadiene	2.9	ug/L	Ū	2.9	12
05/22/06	Effluent	BNA-Water	Hexachlorocyclopentadiene	2.9	ug/L	UJ	2.9	12
05/22/06	Effluent	BNA-Water	Hexachloroethane	2.9	ug/L	U	2.9	12
05/22/06	Effluent	BNA-Water	Indeno(1,2,3-cd)pyrene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	Isophorone	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	Naphthalene	0.97	ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	Nitrobenzene	1.9	ug/L	U	1.9	7.8
05/22/06	Effluent	BNA-Water	N-Nitrosodimethylamine	1.9	ug/L	U	1.9	7.8
05/22/06	Effluent	BNA-Water	N-Nitrosodi-n-propylamine	1.9	ug/L	U	1.9	7.8
05/22/06 05/22/06	Effluent Effluent	BNA-Water BNA-Water	N-Nitrosodiphenylamine	2.9 2.9	ug/L ug/L	U	2.9 2.9	12 12
05/22/06	Effluent	BNA-Water	Pentachlorophenol Phenanthrene	0.97	ug/L ug/L	U	0.97	3.9
05/22/06	Effluent	BNA-Water	Phenol	0.97	ug/L ug/L	Ü	0.97	3.9
05/22/06	Effluent	BNA-Water	Pyrene	0.97	ug/L	Ü	0.97	3.9
05/22/06	Effluent	GC-Water	Alachlor	0.57	ug/L	Ü	0.57	2.3
05/22/06	Effluent	GC-Water	Ametryn	0.048	ug/L	Ü	0.048	
05/22/06	Effluent	GC-Water	Atrazine	0.048	ug/L	Ü	0.048	
05/22/06	Effluent	GC-Water	Azinphos Methyl	0.19	ug/L	U	0.19	0.76
05/22/06	Effluent	GC-Water	Bromacil	0.19	ug/L	UJ	0.19	0.76
05/22/06	Effluent	GC-Water	Butylate	0.19	ug/L	U	0.19	0.76
05/22/06	Effluent	GC-Water	Chlorpyrifos Ethyl	0.048	ug/L	U	0.048	
05/22/06	Effluent	GC-Water	Chlorpyrifos Methyl	0.095	ug/L	U	0.095	
05/22/06	Effluent	GC-Water	Diazinon	0.048	ug/L	UJ	0.048	
05/22/06	Effluent	GC-Water	Ethion	0.048	ug/L	U	0.048	
05/22/06	Effluent	GC-Water	Ethoprop	0.095	ug/L	UJ	0.095	
05/22/06	Effluent	GC-Water	Fenamiphos	0.19	ug/L	U	0.19	0.76
05/22/06	Effluent	GC-Water	Fonofos	0.095	ug/L	U	0.095	
05/22/06	Effluent Effluent	GC-Water	Hexazinone	0.095	ug/L	U	0.095	
05/22/06 05/22/06	Effluent	GC-Water GC-Water	Malathion Metalaxyl	0.14 0.24	ug/L	U U	0.14 0.24	0.56 0.96
05/22/06	Effluent	GC-Water GC-Water	Metolachlor	0.48	ug/L ug/L	U	0.48	1.9
05/22/06	Effluent	GC-Water	Metribuzin	0.095	ug/L ug/L	Ü	0.095	
05/22/06	Effluent	GC-Water	Mevinphos	0.19	ug/L ug/L	Ü	0.033	0.76
05/22/06	Effluent	GC-Water	Naled	0.76	ug/L	Ü	0.76	3
05/22/06	Effluent	GC-Water	Norflurazon	0.14	ug/L	Ü	0.14	0.56
05/22/06	Effluent	GC-Water	Parathion Ethyl	0.14	ug/L	Ü	0.14	0.56
05/22/06	Effluent	GC-Water	Parathion Methyl	0.095	ug/L	Ü	0.095	
05/22/06	Effluent	GC-Water	Phorate	0.048	ug/L	UJ	0.048	
05/22/06	Effluent	GC-Water	Prometryn	0.14	ug/L	U	0.14	0.56
05/22/06	Effluent	GC-Water	Simazine	0.048	ug/L	U	0.048	0.19
05/22/06	Effluent	Metals-Water	Aluminum	53	ug/L	Α	4	16
05/22/06	Effluent	Metals-Water	Arsenic	0.55	ug/L	1	0.5	2
05/22/06	Effluent	Metals-Water	Cadmium	0.05	ug/L	U	0.05	0.2
05/22/06	Effluent	Metals-Water	Calcium	47.5	mg/L	Α	0.02	0.08
05/22/06	Effluent	Metals-Water	Chromium	0.3	ug/L	U	0.3	1.2
05/22/06	Effluent	Metals-Water	Copper	0.47	ug/L	Į.	0.2	0.8
05/22/06	Effluent	Metals-Water	Iron	111	ug/L	Α	5	20
05/22/06	Effluent	Metals-Water	Lead	0.2	ug/L	U	0.2	0.8
05/22/06 05/22/06	Effluent Effluent	Metals-Water	Magnesium	14.8	mg/L	A	0.005	0.02
05/22/06		Metals-Water Metals-Water	Nickel Selenium	0.5	ug/L	U U	1	2
05/22/06	Effluent Effluent	Metals-Water	Silver	0.5 0.025	ug/L ug/L	U	0.5 0.025	
05/22/06	Effluent	Metals-Water	Zinc	1.5	ug/L ug/L	Ü	1.5	6
05/22/06	Effluent	Nutrients-Liquid	Ammonia-N	0.16	mg N/L	Y	0.01	0.02
05/22/06	Effluent	Nutrients-Liquid	Chloride	9.8	mg Cl/L	•	0.4	1
05/22/06	Effluent	Nutrients-Liquid	Color	10	PCU		5	5
05/22/06	Effluent	Nutrients-Liquid	Fluoride	0.37	mg F/L		0.05	0.1
05/22/06	Effluent	Nutrients-Liquid	Kjeldahl Nitrogen	0.22	mg N/L	ΙΥ	0.16	0.4
05/22/06	Effluent	Nutrients-Liquid	NO2NO3-N	0.043	mg N/L	Υ	0.004	
05/22/06	Effluent	Nutrients-Liquid	O-Phosphate-P	0.067	mg P/L		0.008	
05/22/06	Effluent	Nutrients-Liquid	Sulfate	80	mg SO4/L		0.4	1
05/22/06	Effluent	Nutrients-Liquid	TDS	247	mg/L		15	60
05/22/06	Effluent	Nutrients-Liquid	Total-P	0.17	mg P/L	Υ	0.02	0.06
05/22/06	Effluent	Nutrients-Liquid	TSS	4	mg/L	U	4	16
05/22/06	Effluent	Nutrients-Liquid	Turbidity	1.3	NTU		0.05	0.05
05/22/06	Effluent	Overflow	Alpha, Total	2.4	pCi/L			
05/22/06	Effluent	Overflow	Alpha-Counting Error	1.3	pCi/L			
05/22/06	Effluent	Overflow	Oil and Grease	1.7	mg/L	UJ		
05/22/06	Effluent	Overflow	Radium 226	0.7	pCi/L			
05/22/06	Effluent	Overflow	Radium 226-Counting Error	0.2	pCi/L			
05/22/06	Effluent Effluent	Overflow Overflow	Radium 228 Radium 228-Counting Error	0.9 0.5	pCi/L	U		
05/22/06	Linuelli	Overnow	Nacion 220-Countilly Life	0.5	pCi/L			

DATE SAMPLE	O FIELD ID	ANALYSIS GROUP	COMPONENT	RESULT	UNITS	REMARK	MDL	PQL
05/22/06		Bio-AGP/LimNut	Algal Growth Potential	24.4	mg DryWt/L		0.3	0.9
05/22/06	CONTROL SITE		Chlorophyll-A, Monochromatic, Water	0.92	ug/L	U	0.92	2.8
05/22/06	CONTROL SITE	Bio-Chl-a	Phaeophytin-A, Monochromatic, Water	1.6	ug/L	Ū	1.6	4.9
05/22/06	CONTROL SITE	Bio-Invertebrates	Macroinvert-FW-Qual-Dipnetx20-# Taxa	31	# Taxa			
05/22/06	CONTROL SITE	Bio-Invertebrates	Macroinvert-FW-Quan-ArtSubstr-# Taxa	17	# Taxa			
05/22/06	CONTROL SITE	Bio-Invertebrates	Macroinvert-FW-Quan-ArtSubstr-# Taxa	26	# Taxa			
05/22/06		Bio-Invertebrates	Macroinvert-FW-Quan-ArtSubstr-# Taxa	28	# Taxa			
05/22/06	CONTROL SITE		Periphyton-Qualitative-# Diatom Taxa	54	# Taxa			
05/22/06	CONTROL SITE	•	Periphyton-Qualitative-# Wet Taxa	2	#Taxa			
05/22/06	CONTROL SITE		Phytoplankton-Quantitative-# Wet Taxa	13	#Taxa			
05/22/06	CONTROL SITE	•	Phytoplankton-Quantitative-#Diatom Taxa	54	#Taxa			40
05/22/06	CONTROL SITE		Aluminum	230	ug/L		4	16
05/22/06 05/22/06	CONTROL SITE		Arsenic Cadmium	2.2 0.05	ug/L ug/L	U	0.5 0.05	2 0.2
05/22/06	CONTROL SITE		Calcium	45.6	mg/L	U	0.03	0.08
05/22/06	CONTROL SITE		Chromium	0.47	ug/L	I	0.3	1.2
05/22/06	CONTROL SITE		Copper	0.2	ug/L	Ü	0.2	0.8
05/22/06	CONTROL SITE		Iron	191	ug/L		5	20
05/22/06	CONTROL SITE		Lead	0.21	ug/L	1	0.2	0.8
05/22/06	CONTROL SITE		Magnesium	22.5	mg/L		0.005	0.02
05/22/06	CONTROL SITE	Metals-Water	Nickel	1	ug/L	U	1	4
05/22/06	CONTROL SITE	Metals-Water	Selenium	0.51	ug/L	1	0.5	2
05/22/06	CONTROL SITE	Metals-Water	Silver	0.025	ug/L	U	0.025	0.1
05/22/06	CONTROL SITE	Metals-Water	Zinc	3.6	ug/L	U	3.6	14
05/22/06	CONTROL SITE	Nutrients-Liquid	Ammonia-N	0.12	mg N/L		0.01	0.02
05/22/06	CONTROL SITE		Fluoride	2.4	mg F/L		0.05	0.1
05/22/06	CONTROL SITE	•	Kjeldahl Nitrogen	0.68	mg N/L		0.16	0.4
05/22/06	CONTROL SITE		NO2NO3-N	0.33	mg N/L		0.004	
05/22/06	CONTROL SITE	•	O-Phosphate-P	0.4	mg P/L		0.016	0.04
05/22/06	CONTROL SITE		Sulfate	110	mg SO4/L		1	2.5
05/22/06	CONTROL SITE	•	Total-P	0.54	mg P/L		0.02	0.06
05/22/06	CONTROL SITE		TSS	6	mg/L	I	4	16
05/22/06 05/22/06	TEST SITE	Nutrients-Liquid Bio-AGP/LimNut	Turbidity	4.3 77.5	NTU ma Dr.W/t/l	٨	0.05 0.3	0.05 0.9
05/22/06	TEST SITE	Bio-AGP/Liminut Bio-Chl-a	Algal Growth Potential Chlorophyll-A, Monochromatic, Water	77.5 0.85	mg DryWt/L	A U	0.85	2.6
05/22/06	TEST SITE	Bio-Chl-a	Phaeophytin-A, Monochromatic, Water	1.5	ug/L ug/L	U	1.5	4.5
05/22/06	TEST SITE	Bio-Invertebrates	Macroinvert-FW-Qual-Dipnetx20-# Taxa	24	# Taxa	U	1.5	4.5
05/22/06	TEST SITE	Bio-Invertebrates	Macroinvert-FW-Quan-ArtSubstr-# Taxa	32	# Taxa			
05/22/06	TEST SITE	Bio-Invertebrates	Macroinvert-FW-Quan-ArtSubstr-# Taxa	29	# Taxa			
05/22/06	TEST SITE	Bio-Invertebrates	Macroinvert-FW-Quan-ArtSubstr-# Taxa	32	# Taxa			
05/22/06	TEST SITE	Bio-Peri/Phyto	Periphyton-Qualitative-# Diatom Taxa	51	# Taxa			
05/22/06	TEST SITE	Bio-Peri/Phyto	Periphyton-Qualitative-# Wet Taxa	3	#Taxa			
05/22/06	TEST SITE	Bio-Peri/Phyto	Phytoplankton-Quantitative-# Wet Taxa	9	#Taxa			
05/22/06	TEST SITE	Bio-Peri/Phyto	Phytoplankton-Quantitative-#Diatom Taxa	51	#Taxa			
05/22/06	TEST SITE	Metals-Water	Aluminum	91	ug/L		4	16
05/22/06	TEST SITE	Metals-Water	Arsenic	0.97	ug/L	1	0.5	2
05/22/06	TEST SITE	Metals-Water	Cadmium	0.05	ug/L	U	0.05	0.2
05/22/06	TEST SITE	Metals-Water	Calcium	47.2	mg/L		0.02	0.08
05/22/06	TEST SITE	Metals-Water	Chromium	0.3	ug/L	U	0.3	1.2
05/22/06	TEST SITE	Metals-Water	Copper	0.28	ug/L	1	0.2	8.0
05/22/06	TEST SITE	Metals-Water	Iron	84	ug/L		5	20
05/22/06	TEST SITE	Metals-Water	Lead	0.2	ug/L	U	0.2	8.0
05/22/06	TEST SITE	Metals-Water	Magnesium	16.9	mg/L		0.005	
05/22/06	TEST SITE	Metals-Water	Nickel	1	ug/L	U	1	4
05/22/06	TEST SITE	Metals-Water	Selenium	0.5	ug/L	U	0.5	2
05/22/06	TEST SITE	Metals-Water	Silver	0.025	ug/L	U	0.025	0.1
05/22/06	TEST SITE	Metals-Water	Zinc Ammonia-N	3.6	ug/L	U	3.6	14
05/22/06 05/22/06	TEST SITE	Nutrients-Liquid	Fluoride	0.011	mg N/L	I	0.01	0.02
05/22/06	TEST SITE TEST SITE	Nutrients-Liquid Nutrients-Liquid		0.95 0.32	mg F/L	1	0.05 0.16	0.1 0.4
05/22/06	TEST SITE	Nutrients-Liquid	Kjeldahl Nitrogen NO2NO3-N	1.2	mg N/L mg N/L	'	0.10	0.4
05/22/06	TEST SITE	Nutrients-Liquid	O-Phosphate-P	0.72	mg P/L		0.02	0.03
05/22/06	TEST SITE	Nutrients-Liquid	Sulfate	110	mg SO4/L		0.00	1
05/22/06	TEST SITE	Nutrients-Liquid	Total-P	0.86	mg P/L	Α	0.02	0.06
05/22/06	TEST SITE	Nutrients-Liquid	TSS	4	mg/L	Û	4	16
05/22/06	TEST SITE	Nutrients-Liquid	Turbidity	1.3	NTU	-	0.05	0.05
05/22/06	BLANKS	BNA-Water	1,2,4-Trichlorobenzene	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	1,2-Dichlorobenzene	0.95	ug/L	Ü	0.95	3.8
05/22/06	BLANKS	BNA-Water	1,3-Dichlorobenzene	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	1,4-Dichlorobenzene	0.95	ug/L	Ū	0.95	3.8
05/22/06	BLANKS	BNA-Water	2,4,6-Trichlorophenol	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	2,4-Dichlorophenol	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	2,4-Dimethylphenol	48	ug/L	U	48	190
05/22/06	BLANKS	BNA-Water	2,4-Dinitrophenol	14	ug/L	U	14	57

DATE SAMPLE	D FIELD ID	ANALYSIS GROUP	COMPONENT	RESULT	UNITS	REMARK	MDL	PQL
05/22/06	BLANKS	BNA-Water	2,4-Dinitrotoluene	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	2,6-Dinitrotoluene	0.95	ug/L	Ü	0.95	3.8
05/22/06	BLANKS	BNA-Water	2-Chloronaphthalene	0.95	ug/L	Ū	0.95	3.8
05/22/06	BLANKS	BNA-Water	2-Chlorophenol	0.95	ug/L	Ū	0.95	3.8
05/22/06	BLANKS	BNA-Water	2-Methyl-4,6-dinitrophenol	2.9	ug/L	Ū	2.9	11
05/22/06	BLANKS	BNA-Water	2-Nitrophenol	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	3,3'-Dichlorobenzidine	38	ug/L	U	38	150
05/22/06	BLANKS	BNA-Water	4,4'-DDD	1.4	ug/L	U	1.4	5.7
05/22/06	BLANKS	BNA-Water	4,4'-DDE	1.4	ug/L	U	1.4	5.7
05/22/06	BLANKS	BNA-Water	4,4'-DDT	1.4	ug/L	UJ	1.4	5.7
05/22/06	BLANKS	BNA-Water	4-Bromophenyl phenyl ether	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	4-Chloro-3-methylphenol	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	4-Chlorophenyl phenyl ether	1.9	ug/L	U	1.9	7.6
05/22/06	BLANKS	BNA-Water	4-Nitrophenol	14	ug/L	U	14	57
05/22/06	BLANKS	BNA-Water	Acenaphthene	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	Acenaphthylene	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	Aldrin	1.4	ug/L	U	1.4	5.7
05/22/06	BLANKS	BNA-Water	alpha-BHC	1.4	ug/L	U	1.4	5.7
05/22/06	BLANKS	BNA-Water	Anthracene	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	Benzidine	95	ug/L	U	95	380
05/22/06	BLANKS	BNA-Water	Benzo(a)anthracene	0.95	ug/L	Ū	0.95	3.8
05/22/06	BLANKS	BNA-Water	Benzo(a)pyrene	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	Benzo(b)fluoranthene	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	Benzo(g,h,i)perylene	0.95	ug/L	Ū	0.95	3.8
05/22/06	BLANKS	BNA-Water	Benzo(k)fluoranthene	0.95	ug/L	Ū	0.95	3.8
05/22/06	BLANKS	BNA-Water	beta-BHC	1.4	ug/L	Ū	1.4	5.7
05/22/06	BLANKS	BNA-Water	Bis(2-chloroethoxy)methane	0.95	ug/L	Ū	0.95	3.8
05/22/06	BLANKS	BNA-Water	Bis(2-chloroethyl)ether	0.95	ug/L	Ū	0.95	3.8
05/22/06	BLANKS	BNA-Water	Bis(2-chloroisopropyl)ether	2.9	ug/L	Ū	2.9	11
05/22/06	BLANKS	BNA-Water	Bis(2-ethylhexyl)phthalate	14	ug/L	Ū	14	57
05/22/06	BLANKS	BNA-Water	Butyl benzyl phthalate	4.8	ug/L	Ū	4.8	19
05/22/06	BLANKS	BNA-Water	Chrysene	0.95	ug/L	Ü	0.95	3.8
05/22/06	BLANKS	BNA-Water	delta-BHC	1.4	ug/L	Ü	1.4	5.7
05/22/06	BLANKS	BNA-Water	Dibenzo(a,h)anthracene	0.95	ug/L	Ü	0.95	3.8
05/22/06	BLANKS	BNA-Water	Dieldrin	1.4	ug/L	Ü	1.4	5.7
05/22/06	BLANKS	BNA-Water	Diethyl phthalate	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	Dimethyl phthalate	48	ug/L	Ü	48	190
05/22/06	BLANKS	BNA-Water	Di-n-butyl phthalate	4.8	ug/L	Ü	4.8	19
05/22/06	BLANKS	BNA-Water	Di-n-octyl phthalate	0.95	ug/L	Ü	0.95	3.8
05/22/06	BLANKS	BNA-Water	Endosulfan I	3.8	ug/L	Ü	3.8	15
05/22/06	BLANKS	BNA-Water	Endosulfan II	3.8	ug/L	U	3.8	15
05/22/06	BLANKS	BNA-Water	Endosulfan sulfate	1.4	ug/L	U	1.4	5.7
05/22/06	BLANKS	BNA-Water	Endrin	1.4	ug/L	U	1.4	5.7
05/22/06	BLANKS	BNA-Water	Endrin aldehyde	3.8	ug/L ug/L	U	3.8	15
05/22/06	BLANKS	BNA-Water	Fluoranthene	0.95	ug/L ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	Fluorene	0.95	ug/L ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	gamma-BHC	1.4	ug/L	U	1.4	5.7
05/22/06	BLANKS	BNA-Water	Heptachlor	1.4	ug/L ug/L	U	1.4	5.7
	BLANKS	BNA-Water	•	1.4		U	1.4	5.7
05/22/06			Heptachlor epoxide	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS BLANKS	BNA-Water	Hexachlorobenzene		ug/L	U		
05/22/06		BNA-Water	Hexachlorobutadiene	2.9	ug/L		2.9	11
05/22/06	BLANKS	BNA-Water	Hexachlorocyclopentadiene	2.9	ug/L	UJ	2.9	11
05/22/06 05/22/06	BLANKS BLANKS	BNA-Water BNA-Water	Hexachloroethane	2.9	ug/L	U	2.9	11
			Indeno(1,2,3-cd)pyrene	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	Isophorone	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	Naphthalene	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	Nitrobenzene	1.9	ug/L	U	1.9	7.6
05/22/06	BLANKS	BNA-Water	N-Nitrosodimethylamine	1.9	ug/L	U	1.9	7.6
05/22/06	BLANKS	BNA-Water	N-Nitrosodi-n-propylamine	1.9	ug/L	U	1.9	7.6
05/22/06	BLANKS	BNA-Water	N-Nitrosodiphenylamine	2.9	ug/L	UJ	2.9	11
05/22/06	BLANKS	BNA-Water	Pentachlorophenol	2.9	ug/L	U	2.9	11
05/22/06	BLANKS	BNA-Water	Phenanthrene	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	Phenol	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	BNA-Water	Pyrene	0.95	ug/L	U	0.95	3.8
05/22/06	BLANKS	GC-Water	Alachlor	0.57	ug/L	U	0.57	2.3
05/22/06	BLANKS	GC-Water	Ametryn	0.048	ug/L	U		0.19
05/22/06	BLANKS	GC-Water	Atrazine	0.048	ug/L	U		0.19
05/22/06	BLANKS	GC-Water	Azinphos Methyl	0.19	ug/L	U	0.19	
05/22/06	BLANKS	GC-Water	Bromacil	0.19	ug/L	UJ	0.19	0.76
05/22/06	BLANKS	GC-Water	Butylate	0.19	ug/L	U	0.19	0.76
05/22/06	BLANKS	GC-Water	Chlorpyrifos Ethyl	0.048	ug/L	U		0.19
05/22/06	BLANKS	GC-Water	Chlorpyrifos Methyl	0.095	ug/L	U		0.38
05/22/06	BLANKS	GC-Water	Diazinon	0.048	ug/L	UJ	0.048	0.19
05/22/06	BLANKS	GC-Water	Ethion	0.048	ug/L	U	0.048	0.19
05/22/06	BLANKS	GC-Water	Ethoprop	0.095	ug/L	UJ	0.095	0.38
					-			

DATE SAMPLE	D FIELD ID	ANALYSIS GROUP	COMPONENT	RESULT	UNITS	REMARK	MDL	PQL
05/22/06	BLANKS	GC-Water	Fenamiphos	0.19	ug/L	U	0.19	0.76
05/22/06	BLANKS	GC-Water	Fonofos	0.095	ug/L	U	0.095	0.38
05/22/06	BLANKS	GC-Water	Hexazinone	0.095	ug/L	U	0.095	0.38
05/22/06	BLANKS	GC-Water	Malathion	0.14	ug/L	U	0.14	0.56
05/22/06	BLANKS	GC-Water	Metalaxyl	0.24	ug/L	U	0.24	0.96
05/22/06	BLANKS	GC-Water	Metolachlor	0.48	ug/L	U	0.48	1.9
05/22/06	BLANKS	GC-Water	Metribuzin	0.095	ug/L	U	0.095	0.38
05/22/06	BLANKS	GC-Water	Mevinphos	0.19	ug/L	U	0.19	0.76
05/22/06	BLANKS	GC-Water	Naled	0.76	ug/L	U	0.76	3
05/22/06	BLANKS	GC-Water	Norflurazon	0.14	ug/L	U	0.14	0.56
05/22/06	BLANKS	GC-Water	Parathion Ethyl	0.14	ug/L	U	0.14	0.56
05/22/06	BLANKS	GC-Water	Parathion Methyl	0.095	ug/L	U	0.095	0.38
05/22/06	BLANKS	GC-Water	Phorate	0.048	ug/L	UJ	0.048	0.19
05/22/06	BLANKS	GC-Water	Prometryn	0.14	ug/L	U	0.14	0.56
05/22/06	BLANKS	GC-Water	Simazine	0.048	ug/L	U	0.048	0.19
05/22/06	BLANKS	Metals-Water	Aluminum	4.8	ug/L	I	4	16
05/22/06	BLANKS	Metals-Water	Arsenic	0.5	ug/L	U	0.5	2
05/22/06	BLANKS	Metals-Water	Cadmium	0.05	ug/L	U	0.05	0.2
05/22/06	BLANKS	Metals-Water	Calcium	0.02	mg/L	U	0.02	0.08
05/22/06	BLANKS	Metals-Water	Chromium	0.3	ug/L	U	0.3	1.2
05/22/06	BLANKS	Metals-Water	Copper	0.2	ug/L	U	0.2	8.0
05/22/06	BLANKS	Metals-Water	Iron	5	ug/L	U	5	20
05/22/06	BLANKS	Metals-Water	Lead	0.2	ug/L	U	0.2	8.0
05/22/06	BLANKS	Metals-Water	Magnesium	0.005	mg/L	U	0.005	0.02
05/22/06	BLANKS	Metals-Water	Nickel	1	ug/L	U	1	4
05/22/06	BLANKS	Metals-Water	Selenium	0.5	ug/L	U	0.5	2
05/22/06	BLANKS	Metals-Water	Silver	0.025	ug/L	U	0.025	0.1
05/22/06	BLANKS	Metals-Water	Zinc	1.5	ug/L	I	1.5	6
05/22/06	BLANKS	Nutrients-Liquid	Ammonia-N	0.01	mg N/L	U	0.01	0.02
05/22/06	BLANKS	Nutrients-Liquid	Kjeldahl Nitrogen	0.08	mg N/L	U	0.08	0.2
05/22/06	BLANKS	Nutrients-Liquid	NO2NO3-N	0.004	mg N/L	U	0.004	0.01
05/22/06	BLANKS	Nutrients-Liquid	O-Phosphate-P	0.012	mg P/L		0.004	0.01
05/22/06	BLANKS	Nutrients-Liquid	Total-P	0.02	mg P/L	U	0.02	0.06

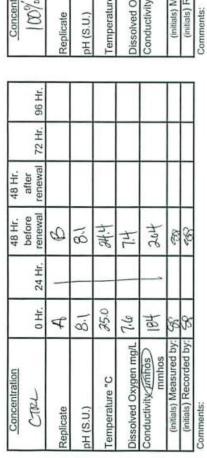
Appendix F

Additional physical, chemical, toxicological and microbiological results

FI	DEP Biology Sec	tion - A	Acute S	creen	4/24 Bi	oassa	y Ber	nch She	ets	
Facility: <u>Mosaic Phosphates</u> (Address: <u>5000 County Roo</u> City: Nichols	Company Nichols F ad 676	lant			Sample C	Start:	Date:	The state of the s	Time: <u>1730</u> Time: <u>0950</u>	_
City: TVICHOIS	County: FOIN	William William			Sample: _	of 4				
Contact/District: Tacki Champ	oion/Southwest Dis	trict			,					
NPDES Permit #: FL 003013	7				Comments	ii 	100	lection eve	lar 2121	4
LIMS Job # TLH-2006-05-23-09	LIMS Sample #	anunc			Chrenolo	year sain	yne co	HECTION OF	hours only	
The state of the s			CANADA CONTRACT		The	setouTs w	ere nu	w For 41	hours only	due
Lims Data Entry: N.F 6-5-06	Data Entry Verifica	tion: 6-9-6	to Es		to last	of paral	6 For	rendeval. D	istair Conta	ut.
			ACCOUNT OF THE PARTY OF		Not. Fra	I lab of	aumple	er fullar	and request	ed.
ristructions (for below): Circle appropriate wording, if Test Type: Befinitive Sexeen	yes is circled, complete blanks. Test 1 validation:	Test to con	TAOT OF		451	com test	. MF	5-22-010	n F	17
Static / Static Renewal/ Flow-through	Control survival ≥90% (Yes		TRUIT_M	6	N. S. S. S. S.					
Test Duration: 48 (96) Hours.	Temperature Range ≤3°C: (,	
light Intensity: 50 - 100 ft. candles.	Test 2 validation:		TA 07_02		Test 244 T	maps: In a	/2 23.	2-25.7	96 hours	
Photoperiod: 16 hours light 8 hours dark.	Control survival 290%: (Ves				100	- ! Porm	6246	24.0-24.9	pent)
nitial sample handling: "H adjustment: yes (no) Initial pH:	Temperature Range ≤3*CC					. //**		(0)	14-	
Aoration: (yes) no Initial DO: (0.1 r Salinity adjusted (Test 1): yes no Initial Sa Salinity adjusted (Test 2): yes no Initial Sa	ng/L Final DO: 8.2 mg/L (sinity: Final Salinity: Sinity: Final Salinity: N Sodium Thiosulfate por liter of salinity Delivered: Cooling (received *C < e	Ouration: 20 Salts H Salts H mple:	_minutes Ri typersaline brin typersaline brin Final TRC:	0				Temperature Incubator # 2 Room 8246 Waterbath	Range *C Range 233-25 240-249 Wi	6 (Fr 701 1+2 48 hours mf 6-3
nvestigators' Signatures			Moderately	Salt Water	Salt Water	Other:				Lucal
Saral Victored	Water Quality	20% DMW	Hard Water/	ASW NSW	ASW NSW		Original	Method	Measured by	Verified
00	Parameters	Incorporationals	(Well Water)	Test 1	Test 2					64-
Buse Acres	Field Total Residual CI2 (mg/L):	N/A	N/A	N/A	N/A /	N/A /	notm	easured	-	88
Janes Daniel F	Lab Total Residual CI2 (mg/L):	<0.03	<0.03	_/	/	_/	<0.03	HACH	SEVEW	MA
Paris Ornich	A 10 . 10 . 10 . 10 . 10 . 10 . 10 . 10	81	136	/		_/_	100	HACH	BA/SP/MF/SA	me
Peris Daniel Franchett	Alkalinity (mg/L as CaCO ₃):									
Paris Ornich	Alkalinity (mg/L as CaCO ₃): Hardness (mg/L as CaCO ₃): Total Ammonia (mg/L as N):	85	137	/	/	-/-	0.110	HACH DENVER	BAJSP/MF/SA MF	mF Ser

000041

MS Sample #: rganism: rganism Batch rganism Age: _ hamber Size: _	ubia : 22-06 <24 hrs	SOP #: TA 0	YCT /	. subcapitati	Test Ended	d: Date <u>5</u> -73 l: Date <u>5</u> -25 rtemia	CΦ Time:	10:40
est Volume:		Feeding		Rear to rene	weD- Daily			
				NA	Test	Hour		
Concentration	Replicate	Chamber #	0 hr	24 hr		48 hr AR	72 hr	96 hr
	A	A	5	5	5			
0.01	B	В	5	.5	5			
CHAI	C	C	5	5	5	-		
752	0	D	5	5	5	-		773.00
	A	A	2	5	5			
10001	B		5	5	5			
100%	c	B	5	5	5			
Manual Pro-	D	D	5	5	5			
				-				
		-						-
				-	-			-
				-	-			
								7.
Organisms loade	d by: RA	Checked by:		SP	ME			
Loading Verified	by: _oc:yd			Comments				
n = missing d = dead Test Results: % mortality in 10	0% sample: _	0_	val					
LC50: >100	If Calculated	: 95% CI	Metho	d:				
Screening Tests								


Page

LIMS Sample #: Organism: <u>C.h</u> Organism Batch	924570 edsi : 10-06	Test #: 2 SOP #: TA 0	7_02 ch: //////	40,5	Test Starte	d: Date <u>5-2</u> f: Date <u>5-25</u>	Time:	1100
Organism Age: _ Chamber Size: _	12 days	Food: Batch:	YCT P	. subcapitat	GSL A	rtemia		
est Volume:	500 mL	Feeding: Eri	or to tes) - I	Prior to rene	well- Daily		-	
Concentration	Replicate	Chamber #	0 hr	24 hr		Hour 48 hr AR	72 hr	96 hr
	A	Fi	5	5	5		7.2.70	
MRL	В	F2	5	5	5			
CTRL	C	F3	510	5	5			
127. (21)	D	F4	5	5	5			
ű.	A	F5	5	410	4			
100%	В	F6	5	5	5			
ILLIE	c	F7	5	5	5			
	D	F8	5	5	5			
79 11								
				, c				
				_				
organisms loade		Checked by:		20	20			
est Results:	BR = before rene	owal AR = after renew	val	Comments				
mortality in 100		5						
C ₅₀ : <u>>/00</u> Screening Tests	If Calculated:	95% CI	Method	1:	-			
eport LC50 as >1	70	-1000						

Page

Test Species: Ceriodaphnia dubia) Cyprinella leedsi Pimephales promelas FDEP Biology Section - Bioassay Parameter Sheet Americanysis bahia Menidia beryllina Other: 1 of 2 Test #: 934570 TEST SOP #: TA07_01

LIMS Sample #:

Concentration			48 Hr.	48 Hr.		
/00/	0 Hr.	24 Hr.	before renewal	after renewal	72 Hr.	96 Hr.
Replicate	A	_	8			
pH (S.U.)	8·i		8.3			
Temperature °C	25.0	7	24.2			
Dissolved Oxygen mg/L	7.7		51			
Conductivity umhos mmhos	377	_	111			
(initials) Measured by:	250		8			
(initials) Recorded by:	83		93			

Concentration			48 Hr.	48 Hr.		/	Concentration			48 Hr.	48 Hr.		/
	0 Hr.	24 Hr.	before renewal	after renewal	ZHZ.	96 Hr.		0 Hr.	24 Hr.	before renewal	after renewal	12 A	96 Hr.
Replicate							Replicate						
pH (S.U.)							pH (S.U.)						
Temperature °C		/					Temperature °C	1	/				
Dissolved Oxygen mg/L							Dissolved Oxygen mg/L						
Conductivity µmhos							Conductivity umhas						
(initiale) Measured by:							(initials) Measured by:						
(initials) Recorded by:							(initials) Recorded by:						

000044

V 2.0 2/24/04

Page

FDEP Biology Section - Bioassay Parameter Sheet

LIMS Sample #: 924570 TEST SOP #: TA07_02-

Test#: 2 of 2

Test Species: Ceriodaphnia dubia Cyprinella leedsD Pimephales promelas Americamysis bahia Menidia beryllina Other:

Concentration	0 Hr.	24 Hr.	48 Hr. before renewal	48 Hr. after renewal	72 Hr. 96 Hr.	96 Hr.
Replicate	A	8	J			
pH (S.U.)	8.0	43	2.2			
Temperature *C	18AH8	hite	34.0			
Dissolved Oxygen mg/L	872+3rg	0.9	6.6			
Conductivity aminos	376	327	285			
(initials) Measured by:	89	K	Splant	4		
(initials) Recorded by:	450	2	JUYUS			

(10% O Hr. 24 Hr. renewal Replicate	after		
8.1 81 8.1 81 ure "C 25.4 24.4		72 Hr.	96 Hr.
8.1 81 ure °C 25.4 24.4			
25.4 244 3			
7.7 60			
2000		1	
Conductivity 4mhos 363 4/8 387			
(initials) Measured by: SP The MC/SP	6		
(initials) Recorded by: 58 73 mF/S/			

ş
Đ
Ε

Concentration	0 Hr.	24 Hr.	48 Hr. before renewal	48 Hr. after renewal	72.HT.	96 Hr.	Concen
Replicate							Replicate
pH (S.U.)							pH (S.U.)
Temperature °C							Temperatur
Dissolved Oxygen mg/L.							Dissolved O
Conductivity µmhas							Conductivity
(initials) Measured by:							(initials)
(initials) Recorded by:							(initials) F
Comments:						ř.	Comments:

	0 Hr.	24 Hr.	before	after renewal	13. A.A.	8 / 8
Replicate						
pH (S.U.)						
Temperature °C						
Dissolved Oxygen mg/L	1					
Conductivity µmhas						
(initials) Measured by:						
/(nitials) Recorded by:						

V 2.0 2/24/04

FDEP Biology Section - Acute Screen 4/24 Bioassay Bench Sheets

Facility: Mosaic Phosphates (Address: 5000 Country Roa City: Nichols Contact/District: Jacki Champ	d 676 county: Polk	Sample Co Hold Time Sample:	Start:	Date: 5-21-0 Date: 5-21-0 5-22-		
	,	Comments				
NPDES Permit #: FL 6030139		Temperatu	5: IN. #2	137-257		
LIMS Job#_TLH-2006-05-23-09	LIMS Sample #: 934749	17770475.43545	1,13246	24.0-24.9 (g b hour p	vertird)
Lims Data Entry: 65-06 m/	Data Entry Verification: 69-069	of these		AUN FOR	yo house	due to tack
Instructions (for below). Circle appropriate wording.			- Jorian	account.	turn	5 22 -06
Test 1 validation:	Test 2 validation: Control survival ≥90%: (Yes) No					
Control survival ≥90% (Ye) No Temperature Range ≤3°C (Yes)No	Temperature Range ≤3°C. (Yes) No					
est 1: SOP TA 07_ O	Test 2: SOP TA 07_ 02			i i		
	*					
Initial sample handling: PH adjustment: yes (no) Initial pH:	NaOH N HCI N Drops.mL Fina	MANUAL CONTRACTOR OF THE PARTY				
Salinity adjusted (Test 1): yes (no) Initial S Salinity adjusted (Test 2): yes (no) Initial S Dechlorination: yes (no) mt. of 0.00 Sample Validation: Temperature: Shipped ≤5°C (res) No Hai	Salinity: Final Salinity Salts Hypersali Salinity: Final Salinity: Salts Hypersali	TRC:				
Investigators' Signatures Just Prichard Buck Accel	100000	er Quality meters	Original Sample	Method	Measured by	Verified by
beren David	Field Total	Residual CI2 (mg/L):	40.030	not measure	-	88
tin pri	Lab Total F	Residual CI2 (mg/L):	<0.03	HACH	ęω	mk
	Alkalinity (r	mg/L as CaCO ₃):	103	HACH	550	MF
Marshell Faircloth						
		(mg/L as CaCO ₃):	162	HACH	50	WE
Manhell Faircloth Myde Wettert	Hardness ((mg/L as CaCO ₃): nonia (mg/L as N):	0.103	DENVER YSI / Mettler	MF SP	85 W

V 2 0 4/12/05

Page ()()()() () 46

FDEP Biology Section - Bioassay Survival Sheet

LIMS Sample #: 924749 Organism: C. dwin Organism Batch: 32-06	Test #: SOP #: TA 07	Test Ende	ted: Date 5-13-00 Time: 12:00 ed: Date 5-25-06 Time: 10:45 5-27-06
Organism Age: 434 hrs Chamber Size: 30 mL Test Volume: 20 mL	Food: YCT P. s	ubcapitata 2-06	Artemia

	5-7 W 10	Decorat 107 244			Test	Hour		
Concentration	Replicate	Chamber#	0 hr	24 hr	48 hr BR	48 hr AR	72 hr	96 hr
	A	A	5	5	5	5	410	4
CIPI	В	B	5	. 2	5	5	40	4
	C	C	5	5	5	5	5	5
	D	D	5	5	5	5	5	5
1000	A	A	5	5	2	5	0 -34 5	5
100%	В	В	5	5	2	2	5	5
(IX)(o	C	C	5	5	5	5	5	5
	D	Ď	5	5	5	5	5	5
				-	-			
				,				
Organisms load	ad bur @A	Checked by:		88	ME	mr	86	73
Loading Verified	bv: 55		A216	Commen	ts: up wrong vial	GO.		
m = missing d = dea	d BR = before re	newal AR = after rener	wal	(A) picked	up wirng viale	ग		
Test Results:	200/	05						
% mortality in 10 LC ₅₀ : >100	uu% sample:	14: 050/ CI	Meth	od:				

Substitue highest test concentration used if other than 100% (example: Ocean outfall tested at 30% concentration).

V 2.1 11/01/2005

000047 Page

LIMS Sample #: Organism: <u>C.k</u> Organism Batch	eeds1 1: 10-06	SOP #: TA 0 Diluent/ Bat	7 <u>62</u> ch: <u>Well</u>	1/120 15-1	Test Starte Test Ended	d: Date <u>5-7</u> d: Date <u>5-73</u>	3-06 Time: -06 Time: -06	17:15 H:05 17:00 G
Organism Age:	12days	Food:	YCT	P. subcapitat	a A	rtemia		
Chamber Size: _	1000 mL	Batch:	-	-	_ GSL	-536-90	-	
Test Volume:	500 mL	Feeding: Pf	or to test	Prior to rene	war - Daily			
					Test	Hour		
Concentration	Replicate	Chamber #	0 hr	24 hr	48 hr BR	48 hr AR	72 hr	96 h
	A HAP	F9	5	5	5	5	5	5
CTPL	B	F10	5	5		5	5	5
THE REAL PROPERTY.	C	FII	, 5	5	5	5	9	5
	D	F12	5	5	5	5	5	5
	A	F/3	5	2	5	5	5	5
1109	A B	F/4	5	5	5	5	5	5
10010	C	F/5	5	5	5	5	5	5
	D	F160	5	5	5	5	5	5
Organisms loade	d by: 🔊	Checked by:	A LAW ST	<u>ज</u>	79	70	ود	70
oading Verified of a missing d = dead of the control of the contro	by: SP BR = before rend 0% sample:	owal AR = after renew		Comments		30		
C ₅₀ : >100 Screening Tests	If Calculated	: 95% CI	Metho	d:	_			

V 2,1 11/01/2005

Page 000048

FDEP Biology Section - Bioassay Parameter Sheet

Test Species: Ceriodaphnia dubia) Cyprinella leedsi Pimephales promelas Americamysis bahia Menidia beryllina Other: Test #: LIMS Sample #: 934749 TEST SOP #: TA07_ 0|

Concentration			48 Hr.	48 Hr.			Concentration
CTEP	0 Hr.	24 Hr.	before renewal	after renewal	72 Hr.	96 Hr.	%001
Replicate	A	-	0	9	_	2	Replicate
pH (S.U.)	8.0		4.9	8.7		8,3	pH (S.U.)
Temperature °C	1.98		34.0	34.3		340	Temperature °C
Dissolved Oxygen mg/L	7.5		6.7	1,5		77	Dissolved Oxyg
Conductivity umbos mmhos	0781	_	bbl	171		205	Conductivity un
(initials) Measured by:	S		88	36		Е	(initials) Meas
(initials) Recorded by:	R		8	800		6	(initials) Reco
Comments:							Commonter

Concentration			48 Hr.	48 Hr.		
000%	0 Hr.	24 Hr.	renewal	77	72 Hr.	96 Hr.
Replicate	A		8	B	1	V
pH (S.U.)	7.9		8.3	112.85		8.4
Temperature °C	35.3	-	24.0	34.1		24,3
Dissolved Oxygen mg/L	7.7		HIL	3,5		7.9
Conductivity_umbos7	316	_	417	365		014
(initials) Measured by:	32		86	B		F
(initials) Recorded by:	S		89	80		R

Concentration			48 Hr.	48 Hr.		\	Concentration			48 Hr.	48 Hr.		1
3.0	0 Hr.	24 Hr.	before renewal	after renewal	ZHT.	96 Hr.	8	0 H.	24 Hr.	before renewal	after renewal	12. F. F.	96 H
Replicate							Replicate						
pH (S.U.)							pH (S.U.)						
Temperature °C							Temperature °C	1					
Dissolved Oxygen mg/l							Dissolved Oxygen mg/L						
Conductivity umbes							Conductivity umhos	1					
(injuins) Measured by:						•	(initials) Measured by:						
/(initials) Recorded by:							(initials) Recorded by:						
Comments:							Comments:						

0.00049

V 2.0 2/24/04

FDEP Biology Section - Bioassay Parameter Sheet

LIMS Sample #: 924749 TEST SOP #: TA07_02-

Test#: 2 of 2

Test Species: Ceriodaphnia dubia Cyprinella TeedsD Pimephales promelas Americamysis bahia Menidia beryllina Other.

			40 LII.	40 LII.		
CTPL	0 Hr.	24 Hr.	before	after renewal	72 Hr.	96 Hr.
Replicate	A	В	>	7	Q	*
pH (S.U.)	8.0	2,3	8.1	8.0	1.8	1%
Temperature °C	35.0	25.9	846	EX.	24.7	きた
Dissolved Oxygen mg/L	1238	5.4	6.9	7.4	69	7.2
Conductivity Antinos	376	31/	279	747	34	472
(initials) Measured by:	8	3)	B	۴	50	3
(initials) Recorded by:	B	40	00/00	73	R	ê

Concentration			48 Hr.	48 Hr.		
100%	0 Hr.	24 Hr.	before renewal	after renewal	72 Hr.	.96 Hr.
Replicate	4	В	7	V	Q	4
pH (S.U.)	8.0	18	1.8	26	18	2.9
Temperature °C	35.7°	24.3	24.7	572	24.3	24.8
Dissolved Oxygen mg/L	H.L	5.4	6.9	7.6	20	7.4
Conductivity 4加加多~ mmhos	363	line	283	398	383	388
(initials) Measured by:	88	તે	es/ 90,	6	5	R
(initials) Recorded by:	000	33	98/30	7,	33	55

0 Hr. 24 Hr. renewal renewal	Concentration			48 Hr.	48 Hr.		1
Replicate PH (S.U.) Temperature °C Dissolved Oxygen mg/L Conductivity µmhos (initiple/Measured by:		0 Hr.	24 Hr.	before renewal	after renewal	Z HE	96 Hr.
Temperature °C Dissolved Oxygen mg/L Conductivity µmhos (initiple/Measured by:	Replicate						
Dissolved Oxygen mg/L Conductivity umhos (initiple) Measured by:	pH (S.U.)						
Dissolved Oxygen mg/L Conductivity umhos printos (initiple) Measured by:	Temperature °C						
Conductivity umhos printed by: (initiple) Measured by:	Dissolved Oxygen mg/L						
(initials/Measured by:	Conductivity µmhas						
Activity Recorded by	(initials) Measured by:			i i			
(minus) recolued by:	(initials) Recorded by:						

Concentration			48 Hr.	48 Hr.		/
	0 Hr.	0 Hr. 24 Hr.	before renewal	after renewal	ZZ FE	96 Hr.
Replicate						
рн (S.U.)		E				7
Temperature "C		/				
Dissolved Oxygen mg/L	/					
Conductivity µmhos						
(initials) Measured by:						
/(initials) Recorded by:						

Page ()()()(50

V 2.0 2/24/04

FDEP Biology Section - Acute Screen 4/24 Bioassay Bench Sheets

Date: 5-27:06 Time: 0130

Sample Collection:

Address: 5000 County Road 676	010
City: Nichols County:	F. POK
Jacki Champ	Southerst District
NPDES Permit #: FL 0030139	
LIMS Job # 11.11-2006-05-23-09	LIMS Sample #: 934751
7 · · · · · · · · · · · · · · · ·	DON'S 1

lack of anyple for variable, District Contact intownship for lune or requested us now tosts. AT 5-33-06 Date: 5-22-06 Time: 4130 SP then tosts were num for 48 hours due to Sample: 2 of 4 Hold Time Start: Comments:

Temperatures: Inc#2 23.3.35.6 B246 24.0-24.9

Control survival 240%. (fcs) No Temperature Range 53°C. (fcs) No Test 2: SOP TA 07 02

Temperature Range 53°C; 766) No

Initial sample handling: Test 1: SOP TA 07_ O

Control survival 290%: (45) No

Test 1 validation:

instructions (for below): Gricle appropriate wording. If yes is circled, complete blanks.

Lims Data Eritry: 6-5-00 M.F.

Test 2 validation:

PH adjustment: yes (no) Initial ptt NaOH N HCI N Drops mt, Final ptt Aeration: (yes) no Initial DO: 16.1 mg/L Final DO: 18.2 mg/L Duration: 20 minutes Rate: -16.0 bubbles/min Temperatum: Shipped s6*C / yes No Hand Delivered: Cooling (received 'C < catecled 'C') Yes No Holding Time: s36 Hours Yes No (Composito-end of collection; grab-when collected; 4 in 24 - time last sample collected) Salts Hypersaline brine Final TRC. Salinity adjusted (Test 1): yes (ng Initial Salinity: Final Salinity: Sal Salinity adjusted (Test 2): yes (ng Initial Salinity: Final Salinity: Sal Dechtorination: yes (ng) ml. of 0.025N Sodium Thiosulfalo per Iller of sample. Sample Validation:

Water Quality Parameters	Original Sample	Method	Measured by
Field Total Residual Cl2 (mg/L):	not med	panns	1
Lab Total Residual CI2 (mg/L):	<0.03	HACH	60
Alkalinity (mg/L as CaCO ₃):	102	HACH	80
Hardness (mg/L as CaCO ₃):	1604	HACH	Se
Total Ammonia (mg/L as N):	0.103	DENVER	ME
Salinity (ppt):	7	YSI / Mettler	38

Markell Fairlett

S. wwo

And Filther Bore Older

Visite Wellert

V 2.0 4/12/05

1288

Verified by

SP

Page ()()()()51

IMS Sample #: 934 Organism: <u>Calubia</u> Organism Batch: 23-	OG Diluent/ Bat	tch: DN	W 113-	06	d: Date <u>5-73</u> d: Date <u>5-2</u> 5	766 Time: 1	12:10
rganism Age: <u><24</u>	rs Food:	YCT /	o. subcapitate	ı A			
hamber Size: 30	_mL Batch:	5-05	2-06			-	
est Volume:	mL Feeding: E	ior to test -	Prior to Tenes	al - Daily			
					Hour		
Concentration Repl		0 hr	24 hr		48 hr AR	72 hr	96 hr
Com A		5	5	5			
CIPL B	В	5	5	5			6 ==== 10 =
	C	5	410	4			- HORALS
D	D	5	5	5		Ž.	
A	A	<u>5</u>	5	5		7/	
111% B	В	-5	5	5		-	
C		5	5		J		
T		5	5	5			
							1
organisms loaded by: Operating Verified by: Operating Verified by: Operating declared by: O	lore renewal AR = after renev	val	PA Comments:	m+			

45

Page

000052

V 2.1 11/01/2005

FDEP Biology Section - Bioassay Survival Sheet Test Started: Date 5:23-c6 Time: 1325 LIMS Sample #: 924751 Test#: 2 Organism: Clanden SOP #: TA 07 02 Test Ended: Date 5-15-66 Time: //:00 Diluent/ Batch: [Well Hz 0 | 5-23-06 Organism Batch: 10-06 Organism Age: 12 days Food: YCT P. subcapitata Artemia GSL-536-90 Chamber Size: _/000 mL Batch: Test Volume: 500 mL Feeding: Prior to test - Prior to renewal 2 Daily Test Hour 48 hr BR | 48 hr AR | Concentration Replicate Chamber # 0 hr 24 hr 72 hr 96 hr A 5 F17' 5 5 5 F18 5 5 C FIS 5 5 5 D 5 5 F20 5 A FZ/ 5 5 ξ 5 B F22 5 C F23 5 5 D F24 5 5 Organisms loaded by: Checked by:
Loading Verified by: SP
m = missing d = dead BR = before renewal AR = after renewal JD 20 Comments: Test Results: Method:

Screening Tests:

Report LC50 as >100%, =100%, or <100%.

Substitue highest test concentration used if other than 100% (example: Ocean outfall tested at 30% concentration).

V 2.1 11/01/2005

Page

000053

FDEP Biology Section - Bioassay Parameter Sheet

LIMS Sample #: 32475 TEST SOP #: TA07_ 01

Test Species: (Ceriodaphnia dubia) Cyprinella leedsi Pimephales promelas Americamysis bahia Menidia beryilina Other:

Test #: 1 of 2

CTRC		10 11.	40 III.			Concentration			48 Hr.	48 Hr.		
N. P.	24 Hr.	before renewal	after	72 Hr.	96 Hr.	100/	0 Hr.	24 Hr	before	- 7	72 Hz	77 90
Replicate	, .	D				Replicate	4	_	\$	in and and and and and and and and and an		30 11.
PH (S.U.)		1.8				pH (S.U.)	7.8	-	2			
Temperature °C 25.0		35.0				J. entit	35.1		34.1			
Dissolved Oxygen ma/L 7.6		7.3					77		717			
Conductivity Timbos 184		621				Conductivity freshos	384	-	280			
(initials) Measured by:		845				(initials) Measured hv.	- 00	-	200			
(initials) Recorded by:		050					8		39			
Comments:							(4)		50			

Replicate D Hr. 24 Hr. Per Per	Concentration			48 Hr.	48 Hr.		1	Concentration		
		0 Hr.	24 Hr.	before renewal	after renewal 7	7.	96 Hr.		0 Hr.	
	Replicate				/			Replicate		
	pH (S.U.)							pH (S.U.)		
	Temperature °C		/					Temperature °C	-)
	Dissolved Oxygen mg/L	/			ėl:			Dissolved Owner		
	Conductivity µmhas							Conductivity umhas		
	(initials) Measured by:						T	(initials) Measured by	3	
	-(initials) Recorded by:							(initials) Recorded by		

after renewal 72-Hr. 96 Hr.

48 Hr. before renewal

0.000054

V 2.0 2/24/04

FDEP Biology Section - Bioassay Parameter Sheet

LIMS Sample #:

TEST SOP #: TA07 02

Test Species: Ceriodaphnia dubia (Cyprinella leeds) Pimephales prometas Americamysis bahia Menidia beryllina Other:

Concentration	11.0		48 Hr. before	48 Hr. after		:	Conc
Replicate	4	В В	C	renewal	12 Hr.	90 Hr.	Renlicate
pH (S.U.)	8.0	43	8.2				pH (S.U.
Temperature °C	35.0	24.7	24.7				Tempera
Dissolved Oxygen mg/L	7.5	9	9.9				Dissolved
Conductivity and Des	375	98€	289				Conducti
(initials) Measured by:	g	F	SPME				(initials
(initials) Recorded by:	198	F	Spanf				(initials

Concentration			48 Hr.	48 Hr.		
/00//	0 Hr.	· 24 Hr.	before renewal	after renewal	72 Hr.	96 Hr.
Replicate	A	В	C			
pH (S.U.)	7.9	8,2	8.1			
Temperature "C	35.0	25:4	1.48			
Dissolved Oxygen mg/L	1.7	63	800		***	
Conductivity umhas?	379	43)	368			
(initials) Measured by:	B	R	JW ds			
(initials) Recorded by:	30	35	JW JS			

Comments:

96 Hr.

17/2

after renewal 48 Hr.

48 Hr. before renewal

24 Hr.

0 Hr.

Concentration

Concentration			48 Hr.	48 Hr.		1
	0 Hr.	24 Hr.	before renewal	after renewal	Z T	96 Hr.
Replicate						
pH (S.U.)						
Temperature °C						
Dissolved Oxygen mg/L						
Conductivity µmhps						
(initials) Measured by:						
(initials) Recorded by:						
Comments:						

Temperature °C

pH (S.U.) Replicate

Conductivity timbos
Conductivity timbos
parthos
(initials) Measured by:
Comments;

Page U111(155

V 2.0 2/24/04

FDEP Biology Section - Acute Screen 4/24 Bioassay Bench Sheets

Facility: Mosaic Phosphates Company Nichels Plant Address: 5000 County Road 676 City: Nichols county: Polk Contactionstrict: Tacki Champion/Southwest District	Hold Tin	Collection: ne Start: <u> </u>	Date: 5-22 Date: 5-22	1	
NPDES Permit #: FL 0030139 LIMS Job #_TLH_1266_05-23-09 LIMS Sample #: 924752 Lims Data Entry Co-5-00 Data Entry Verification: (6.9-06 Sc) Instructions (for below): Circle apprepriate wording: If yes is circled, complete blanks. Test 12 validation: Control survival 250%: Yes (8) Control survival 250%: Yes (8) Temperature Range s3*C: Yes (8) Temperature	plt Rate: - (00 tubbles/mire to brine	18746 2 18746	3.2-25.7 No-24.9 No-24.9 Leantrol A	(96 hoursales)	n leriod) I at 72 8% mortu
Sample Validation: Temperature: Shipped fit Ves No Hand Delivered: Cooling (received *C < collected *C) Yes No Holding Time: fit Hours (Yes) No (Composite-end of collection; grab-when collected; 4 in 24 - Inne last	it sample collected)				
Temperature: Shipped ≤6*℃ Yes No Hand Delivered: Cooling (received *C < collected *C) Yes No Holding Time: ≤36 Hours (785) No (Composite-end of collection; grab-when collected; 4 in 24 - Inne Interval (Investigatore Signatures) Water Water	Quality	Original Sample	Method	Measured by	Verified by
Temperature: Shipped <pre>50*Q*Yes</pre> No Hand Delivered: Cooling (seeived *C < collected *C) Yes No Holding Time: <pre><36 Hours (*Test)</pre> No (Composite-end of collection; grab-when collected; 4 in 24 - Inne last Investigators' Signatures Justin Futbook Water Param	Quality	Sample	Method as wred	Measured by	Simpories
Temperature: Shipped ≤b*Q Yes) No Hand Delivered: Cooling (seceived *C < celested *C) Yes No Holding Time: ≤36 Hours (**8) No (Composite-end of collection: grab-when collected: 4 in 24 - lume last investigators' Signatures ###################################	Quality	Sample		144113000000000	Verified by
emperature: Shipped 66°Q Ves) No Hand Delivered: Cooling (received °C < collected °C) Ves No tolding Time: state Hours (**) No (Composite-end of collection; grab-when collected; 4 in 24 - lime last nives ligators' Signatures State-burble Water Param	Quality neters Residual CI2 (mg/L):	Sample not not	asured	-	58P

V 2.0 4/12/05

Page 00056

LIMS Sample #: 924752 Test Started: Date 5:13:04 Time: 12 30 Test #:_ Organism: Cdulia Test Ended: Date 5-26-05 Time: 11:20 SOP #: TA 07_0|__ Organism Batch: 22-06 Diluent/ Batch: DMW 113-06 Organism Age: <24 hrs YCT P. subcapitata Food: Artemia Chamber Size: 30 mL Batch: 5-05 2-06 Test Volume: 20 mL Feeding: Prior to test - Prior to renewar - Daily Test Hour Concentration Replicate Chamber # 0 hr 24 hr 48 hr BR | 48 hr AR | 72 hr 96 hr 5 320 A 5 A 5 5 CIPL 5 B B 5 5 5 5 4 10 C C 5 5 5 0 D 5 5 5 54045 A 5 A 5 100% B B 5 5-5-48 5 5 C 5 5 5 D D 5 50/BA MF MF 8P Organisms loaded by: BA Checked by: Comments:
D5 organisms found at 72 hours SP
test terminated at 72 hours due to 15%
mortality in the control
NCR 2085 weater, mf 6/5/06 Loading Verified by: 50

m = missing d = dead BR = before renewal AR = after renewal _Method: Screening Tests: Report LC50 as >100%, =100%, or <100%. Substitue highest test concentration used if other than 100% (example: Ocean outfall tested at 30% concentration). V 2.1 11/01/2005 000057 Page

FDEP Biology Section - Bioassay Survival Sheet

50

FDEP Biology Section - Bioassay Survival Sheet

LIMS Sample #: 924752 Organism: Cleadsi Organism Batch: 10-06	Test #: SOP #: T	A 07 OZ		est Started: Date <u>5-23-06</u> Time: <u>12-5</u> est Ended: Date <u>5.2.7.06</u> Time: <u>12-6</u>
Organism Age: 12 days	Food:	YCT	P. subcapitata	Artemia
Chamber Size: /000 mL	Batch:	-		GSL-536-90
Test Volume: 500 mL	Feeding:	Prior to te	st - Prior to renewal	- Daily

						Hour		
Concentration	Replicate	Chamber #	0 hr	24 hr	48 hr BR	48 hr AR	72 hr	96 hr
	A	CIO	5	5	5	410	4	4
CTPL	B	CII	,5	5	5	5	5	5
O		CIZ	5	5	5	5	5	5
112 5100	D	CB	5	5	5	5	5	5
	A	CIY	5	5	5	2	5	5
100%	A B	CIS	5	5	5	5	5	5
100/0	c	C16	5	5	5	5	5	5
	D	C17	5	5	5	5	5	5
				-	-			
		-		-			-	
Organisms loade	d by: 20	Checked by:	THE IN	20	-2D	30	73	70
oading Verified n = missing d = dead	by: OF			Comments				

Test Results: % mortality in 10	00% sample:		_
LC50: >100	If Calculated: 95% CI	Method:	
Screening Test	s:		

Report LC50 as >100%, =100%, or <100%.

Substitue highest test concentration used if other than 100% (example: Ocean outfall tested at 30% concentration).

V 2.1 11/01/2005

Page 000058

924752 TEST SOP #: TA07 0 LIMS Sample #:

Test Species: Ceriodaphnia dubia—Cyprinella leedsi Pimephales promelas Americamysis bahia Menidia beryllina Other:

Test#: l of

72 Hr.

after renewal

48 Hr. before renewal

24 Hr.

O Hr.

Concentration

Ser

Replicate

pH (S.U.)

48 Hr.

	Concentration			48 Hr.	48 Hr.		
96 H.	%00)	0 Hr.	24 Hr.	before	after	72 Hr.	96 Hr.
	Replicate	4	_	0	8	9	
	pH (S.U.)	0.0		8.3	97. 82	8.1	
	Temperature °C	अमृप		24.1	34.2	345	
	Dissolved Oxygen mg/L	7.7		75	7.6	25	
	Conductivity Timbos	363	1	385	37.1	Loh	
	(initials) Measured by:	ð		8	B	38	
	(initials) Recorded by:	E		æ	S.	B	
the Faller	Comments:						

34.9

24.5

みが 8

24.7

Temperature °C

17

Dissolved Oxygen mg/L Conductivity umhos

1.9

8.3

8

5

17 F

E 7.7

8

Test terminded at 12 hours due to 15% Contact failur (initials) Measured by:

Concentration		•	48 Hr.	48 Hr.		Concentration	
	0 Hr.	24 Hr.	before renewal	after renewal	72-Hr. 96 Hr.		0
Replicate						Replicate	
pH (S.U.)						pH (S.U.)	
Temperature °C						Temperature °C	1
Dissolved Oxygen mg/L_						Dissolved Oxygen mg/L	
Conductivity µmhps						Conductivity µmhos	
(initials) Measured by:						(initials) Measured by:	
(initials) Recorded by:						—(finitials) Recorded by:	
Comments:						Comments:	
					200	0 20000	

96 Hr.

2年

after renewal

48 Hr. before renewal

24 Hr.

0 Hr.

48 Hr.

Page

V 2.0 2/24/04

Comments:

Page OOONGO

V 2.0 2/24/04

FDEP Biology Section - Bioassay Parameter Sheet

LIMS Sample #: 924

Test #: 2 of 2

Test bacies: Ceriodaphnia dubia Cyprinella laeds Pimephales promelas

Americamysis bahia Menidia beryllina Other.

Concentration			48 Hr.	48 Hr.		
CYPL	0 Hr.	24 Hr.	before renewal	after renewal	72 Hr.	96 Hr.
Replicate	4	В	7	7	Q	M
pH (S.U.)	8.0	4.3	8.3	1.6	18	80
Temperature °C	74:4	25.0	348	33.1	24.9	340
Dissolved Oxygen mg/L	1.4	(2)	2.0	7.7	99	6.9
Conductivity rimbes mmhos	aTio	249	283	116	272	277
(initials) Measured by:	8	R	865	*	15	3
(initials) Recorded by:	B	4	44/35	30	10	100

Concentration ((bb)/c	0 Hr.	24 Hr.	48 Hr. before renewal	48 Hr. after renewal	72 Hr.	96 Hr.
Replicate	4	B	C	J	0	¥
pH (S.U.)	8.6	19	€'8	2.7	28	80
Temperature °C	Z.1.2	24.0	845	1.50	82	240
Dissolved Oxygen mg/L	11	19	6.9	4%	. 59	1/2
Conductivity umhas mmhos	383	ВÌЬ	349	374	386	34/
(initials) Measured by:	3	12	No.	19	R	ĥ
(initials) Recorded by:	à	33	35/30	20	7,3	R

Comments:

Concentration			48 Hr.	48 Hr.		1
	0 Hr.	24 Hr.	before renewal	after renewal	72 Hr.	96 Hr.
Replicate						
pH (S.U.)						
Temperature °C						
Dissolved Oxygen mg/L						
Conductivity µmbes						
(injuats) Measured by:						
(initials) Recorded by:						
Commonte						

Replicate PH (S.U.) Temperature °C Dissolved Oxygen mg/L Conductivity µmhgs (initiglsy Measured by:	Concentration		48 Hr.	48 Hr.		1
Replicate pH (S.U.) Temperature "C Dissolved Oxygen mg/L Conductivity µmhgs (initigle)*Measured by: (finitigle)*Recorded by:		0 Hr.	 before renewal	after renewal	ZZHI.	96 Hr
PH (S.U.) Temperature "C Dissolved Oxygen mg/L Conductivity µmhgs mmhos (initiglsy*Measured by:	Replicate			/		
Dissolved Oxygen mg/L Conductivity µmhgs mmfhos (initigisty Measured by:	pH (S.U.)					
Dissolved Oxygen mg/L Conductivity µmhgs mnfhos (initigls) Measured by: (finitigls) Recorded by:	Temperature °C					
Conductivity mmhas mmhos (initigas/Measured by:	Dissolved Oxygen mg/L					
(initigls)*Measured by:	Conductivity µmhgs mmhos					
-(initials) Recorded by:	(initials) Measured by:					
	(fnitials) Recorded by:					

Comments:

Appendix G

Standard Reference Toxicant

11842 Research Circle Alachua, FL 32615 T: (386) 462-7889 F: (386) 462-7264 www.hydrosphere.net

Packaging List

Date	Customer Number	Order Shipped Via
5/1/2006	NA	Hydrosphere Research
Custo	omer	Order Prepared By
FDEP Marshall Fairclo Biology Mail Sto 2600 Blair Stone Tallahassee, Fl	op 6515 e Road	D. Onash

Quantity	Description
150	C. leedsi, Cl#1098, Hatched 4/28/2006
150	P. promelas, FM#1023, Hatched 4/27/2006
150	M. bahia from Aquatic Indicators
150	M. beryllina from Aquatic Indicators

MBL Aquaculture 4569 Samuel Street Sarasota, Florida 34233 TEL: (800) 889-0384 FAX: (941) 922-3874 EMAIL: sales@mblaquaculture.com WEB: www.MBLAquaculture.com

NELAC Accredited

Organism Shipment Record

State of Florida Aquaculture Certificate Number AQ0668007

Date: 5 1	Ole				
Shipped to:	FDEP				
P.O. No:		 ,			
C	0	1	D 131 1	T	0.11
Species	Quantity	Age	Brood Number	Temperature	Salinity
Mysidopsis bahia					
Menidia					
beryllina					
Cyprinella	25	11 1000	accosti	252	
leedsi		7	00000		
Pimephales					
promelas					
Packed by: 1-5	16.4				
racked by.	acresi.				
Shipped Via:	Esta -)			
Notes:					
-					
-					
	Т	hank you for	your order.		
)	
			-	/	
				(

FDEP Biology Section - Acute SRT Bench Sheet Test Organism: Americamysis bahia Menidia beryilina Meshod 2007 0 Meshod 2006 0 Hyalella azteca Method 100 | EPA-600-R-99-064 Method 2006.0 Ceriodaphnia dubia Cyprinella leedsi) Pimephales promelas Other:_ Mrthad 2000 0 Method 2000 Test Beginning: Date: 52-de Time: 1340 Test Ending: Date: 5-6-06 Time: 64-10 Diluent Batch#: Welther 5-1-40 Toxicant/ Batch# Neck 15-00

Method from EPA-821-R-02-012 Test Type: Definitive Static Static Renewal

Water Qu	ality	Parameter	s:	Diluent	Method	Initials		Organi	sm Batel	#/ Age:	9-06	, 4da	45				
Total Resid	ual Cl	2 (mg/L):		<0.03	Hach	36		Feeding	: Prior to	rest / Pri	or to rene	aaD/ Dail	y				
Alkalinity (mg/L	as CaCO ₃):		148	Hach	SW		Food:		YCT	P.subca	pitata	Artem	ia a			
Hardness (n	ng/L a	s CaCO3)		138	Hach	₹W		Food B					GSL-5	36-90			
Total Amm	onia (mg/L as N)		(0,01)	Denver	mf		Chamb	er size:	1000 m	L						
Salinity (pp	th):			41	Mettler	BA		Test vo	lume: _	500 ml	per repli	cate			UNC	ORREC	TED
	_		N	umber Li	re		pH (SU)		Tem	perature f	· c)	1).O. (mg/	0	Con	L (umhom	Vcm)
Conc.	Rep.	Chambers	0 hr	24 hr	48 hr	0 hr	24 hr	48 hr	0 hr	24 hr	48 hr	0 hr	24 hr	48 hr	0 hr	24 hr	48 hr
MBT BT			-48 hr	-72-hr	96 hr	48 hr	-92 hr	96 hr	-48 kr	-72 hr	98 Nr	₹8 NF	-72 hr	-96 hr	_18 hr	-72 hr	-96 hr
	A	AD	10	10	10	8.0		8,2	24,8		24.8	7.1		7.0	0,277		a 298
Control	В	A14	10	10	/0		8,2	,		24.9			6.8			0.340	
Condo	c														7		
	D															-	
7	٨	415	10	d ip	9	7.9		8.1	25.2		25.1	7.1		19	oto		10.21
- C	В	Alle	10	9.0	4	1	80		-3	24,9	23.1	···	64		CAC	10.1	10.2.
60	c	1170		7	7			-		27.1			-/		-	1000	-
	D						-		_		-	_			_		
		A17	7.2	820	2.0	78		8.1	200	-		- 1		11	1 - 45		12.43
	A		16	64D	710	10	80	0,1	255		25.1	7.1	13	6.6	12,65		12.13
7.0	В	A18	10	640	6		80	_	_	250		_	6.3	<u> </u>		12.2	_
3	c								_								-
	D																
	A	A19	10	310	20	7.8		181	25,4		253	7.0		6.5	14.32		14.15
80	В	AZO	10	190	1	1	80			25.1			6.1			13.9	
uv	c								-			-					
	D		. 3						75 E								
	A	A21	10	1140	1	78		81	25.3		25.1	7.1		16.3	15,77		15.64
12000	В	A23-	10	OioD	_	-	7.9	-		25.3		1.1	6.2			15.5	
90	c	112															
	D		5.0														
		423	10	UPI	010	7.%		8,1	253		24.9	70		1.3	17.49	-	17.01
	Α.	AH	10	192	010	110	8.0	D.	202	25,1	-1. 1	1.0	6.0	6.3	17.77	121	177.01
10.0	В	HVY	10		0	-	2.0	_	-	23,1		_	6.0	-	_	121	
10.0	С		_	_	-	_		_	-	-				-	-	_	-
_	D			_	_	_	_				_	-	_	-	-	-	-
	A		-		-	-	-					_	_	-	-		-
	В						-	_		(1)		_	-	_			-
	С		Same	-								_					_
	D							-	J								_
Loa	ded / n	reasured by:	79	BA.	79	BA	20)	BA	BN	BA	BA	BA	7)	BA	BA	70	BA
	- 1	Recorded by:	88	BA	13	BA	20	BA	BA	BA	BA	B#	70	BA	DA	20	1519

Concentrations prepared by: BA/ >>
Loading verified by: SS area Darid frat Frieland Fin My Markall Fairbit Light Intensity: 50-100 Ft. candles Photoperiod: 16 hours Light / 8 hours dark Temperature Range °C: Incubator # 3 min. 349 max. 956 mean 25.3 Incubator # ____ min._ Nixle Weller of Room B246 min. 24.7. max. 25.1 mean 245

Investigators' Signatures

Statistical Results: Method: Spearman-Karber @196 hour LC50: 7.20 95% Confidence Interval: lower 6 87 upper 7.54

Remarks:

Page 000050

		: Americam; Method 200 Ceriodaphi Method 200	nia dubia 2.0	Cyprin Mesh	a beryllina ad 2006.0 ella leeds ad 2000.0	Pime	ella aztec Mehod 100. phales pri Mehod 200	omelas on	Other		_		Test Typ	Station	/Static	A 100 A	7
Diluent/ B Foxicant/	atchi Batch	#: We h# Na	1 5-1 LIS-	06								Ti		10			
Water Qu Fotal Resid		Parameter		Diluent ©.03	Method Hach	Initials SP	ř.	Organis Feeding	m Batch	#/ Age:	9-06	1 4 de	ays				
		as CaCO ₃):		148	Hach	Ele	ĥ	Food:		YCT			Artem	ia			
Hardness (r	ng/L a	s CaCO3)		138	Hach	EW		Food Ba	atch:	-	-		GSL-S	3690			
Total Amm	onia (mg/L as N)		20017	Denver	mf				1000 n							
Salinity (pp	th):			<1	Mettler	BA	l	Test vol	lume: _5	00 mL	per repli	cate				ORREC	
			N	umber Li	re		pH (SU)		Tem	perature (.0	L).O. (mg/l	9	Cone	L (µmhon	v/cm)
Conc	Rep.	Chambers	-O-hr	24 hr	4870	- 0 kr	-24 hr	48 hr	24	-24-40-	- 48 hr	0 40	34 hr	48 hr	- 0 hr	- 21hr	46
µg/L (€/L)		10	48 hr	72 hr	96 hr	48 hr	72 hr	96 hr	48 hr	72 hr	96 hr	48 hr	72 hr	96 hr	48 hr	72 hr	
	A	A13	10	10	10	8,0		8,4	240	45	25.9	7,0		7.1	0,290		430
Control	В	AN	10	10	10	ores 8	8.1		-	25.4			6.9			0.286	-
	D						-								-		
	-	1-	9	9	9	7.9		8.2	24.4	-	25.4	10		69	10.05		10.1
8	_A	AIS		-	9	7.4	0.5	0.7	21.4	20.0	25.8	EH	6.4	6-1	10,05	10.2	10,1
60	В	Alb	9	9	-1		8.0	-	_	25.2		-	6.4			10.2	
60	¢																
	D	-	_											7.3	2.0		
	A	A17	710	7	7	7,9		8.3	24.6		25.7	6.8		6.9	12.12		12
70	В	A18	6	6	510	211 - 21	8.1			<i>\$</i> 5.5	P17.5511107		6.6		0.000	12.4	
10	С							L					0 A 4 C C				
	D			5-20-7-													
	A	A19	210	119	1	7.4		8.3	247		259	4.8		7.0	347		13
00	В	A20	T	1	1		8.1	_		25.4			6.7			13.6	1
80	c																
	D																
	A	431	1	1	1	20		8.3	247		25.8	7.0		6.9	15.48		15.
•		432	-	=	-	0.0	8.2	0.3	-1,1	25.4	×	7.0	69	0.1	1 3.10	15.7	13.
90	В	177		-			0.0			271			4.1			12,1	\vdash
85)	C		-	-			-	-	-		-		_				-
	D	1-2	-	-		-		_				_	-		-	-	Η-
100	A	A23		2000	-	-		-	-		-			-			1
10.0	В	424	-	-	-		-	-		201			-		_	_	\vdash
15	С						-		-					-	-		\vdash
	D	_		_									-		_		\vdash
	A	-			-	_	-				_		-				-
	В			_		-											\vdash
	c																_
	D														_		1
Loa		neasured by:	27	3	MF	134	80	mf	BA	80	ma	RA	80	MF	15A	0	m
1841	D ded/n	Recorded by: Signatures Signatures Classed With	70	Concent Loading Light In Photope Tempera Incubate	m F m F rations pr verified tensity: 50 riod: 16 h sture Ran or # 3	by: St. 0-100 Ft. nours Ligh nge °C: min. 24.4	candles	s dark	BA	10000000	MF MF ks:		86 30	mF MF	BA BA Method:	БР БР	K

Page 000051

FDEP Biology Section - Acute SRT Bench Sheet

Fest Orga	inism	: Americam, Method 200 Ceriodaphi Method 200	n.o nia dubia) Cypnin	a berydina od 2006.0 eila leeds od 2000.0	/ Pimer	olia azteci Method 100. Ohales pro Method 2000	i EPA-400-1 omelas			_		Test Ty	pe: Defi Stati	PA-821-R nitive c/Static of 2	Renewal	
		#: DAW h# NaCl						Test En	ding:	Date:	5-2-01 5-6-01	Ti	me: 08	30_			
Water Qu	ality	Parameter	s:	Diluent	Method	Initials		Organis	m Batch	#/ Age:	20-06	1 <24	hrs				
otal Resid		-		<0.13	Hach	88			_		or to renev						
		as CaCO ₅):	-	87	Hach	έM		Food:		YCT	P.subcap		Artem	12			
	_	s CaCO3):		93	Hach	EM			er size:		_			_			
otai Amm alinity (pp		mg/L = N):		<000	Denver Mettler	MF BA					ner repli	cate			Cone	ORREC	OM
	_			umber Li			pH (SU)			erature ().O. (mg/			(µmhom	
Conc.	Rep.	Chambers	0 hr	24 hr	48 hr	0 hr	24 hr	48 hr	0 hr	24 hr	48 hr	0 hr	24 hr	48 hr	0 hr	24 hr	48 hr
INT OF	_		48 hr	72 h r	96 hr	-48 hr	73 Ar	26 hr	-48 hr	-73 hr	96 hr	48 hr	-72 hr	96 Ar	48-hr	72 hr	96 hr
	Α.	A	5	5	5	7.7		811	240		240	65		7,3	0,190		0,20
Control	В	В	5	5	5							W ===				-	
	С	C	5	5	5		-				-					_	
	D	D	5	5	5	_								_	40 5		-3 45
	A	A	5	5	5	7.7		80	24.5		243	7,1	_	7,1	135		33.95
1.5	В	13	5	5	5									\$			
	c	С	5	5	5												
	D	D	5	S	5										400		
	A	A	5	5	U 19	7,8		8.1	24.8		24,34	7.3		7.2	4778		501
2.0	В	B	5	5	U 10												
7.	c	C	5	5	2		3		1								
	D	ワ	5	5	5	ļ					8 4						
	Α.	A	5	5	3 10	7.9		8.1	246		24.3	7.2		7.0	4,32		5,34
15	В	B	5	5	250			10			1						1
25	С	C	5	5	1 10									1			
	D	0	5	5	050												
	A	A	5	410	079	80		3.2	24.5		242	7.3		69	5.41		1,91
3.0	В	B.	5	5	550												
).0	c	C	5	4.7	040												
	D	D	5	320	03		-3-3-3						-				
	A	A	5	050	-	8.0		-	24.5		-	7.4		-	7.32		
4.0	В	E	5	CSD	_		8.0			21.0	1 0000	1-0-	7.6	-		8.2	
7.0	c	C	5	050	_				7		1						
10	D	D	5	420	u									12.5			ļ
	A				-			1000		les .	y i						
	В											100	(11)	(=)			
	c												===	1			
	D																
Loc	ded/	measured by:	DA		MF		BA	36	BA		BA	DA	CA	BA	BA	BA	BA
1,07/0		Recorded by:	9	BAJOP	me	BA	BA	34	BA	VA	734	BA	BA	BA	BA	OA	GA
	1	Signatures inclinated in family	<u>-</u> ر	Loading Light In Photope Temper locubat	verified tensity: 5 rriod: 161 ature Rar or # 2	by: Geo- 0-100 Ft. nours Light nge °C: min_ 25/	candles at / 8 hour	69 mess		Statisti	cal Resu	3,25,	as of		Method: 8	Бреагнал-	Karber
Nizol REVIEW	e ^R N	Jellery	-	Room I	Page	<u> 242</u>	000 wasi		45					2,19	upper	2.44 Revised 02	21/06

FDEP Biology Section - Acute SRT Bench Sheet

Test Organism: Americamysis bahia Menidia beryllina Hyalella azteca

Total Residual Cl₂ (mg/L):

Alkalinity (mg/L as CaCO₃):

Hardness (mg/L as CaCO3):

Method 2007.0 Ceriodaphnia dubra Cyprinella leedsi

Mirched 2006.0 Method 2000.0

<0.03 Hach 80

87 Hach Ew

93

Hach Ew

Method 100.1 EPA-600-R-99-064 Pimephales prometas Other:_ Method 2000.0

Method from EPA-821-R-02-012 Test Type: Definitive

Static / Static Renewal
Test Page 2 of 2

Diluent/ Batch#: DAW / 11-6Ce

Toxicant Batch# NaCl 16-06 Water Quality Parameters: Diluent Method Initials Test Beginning: Date: 5-2-06 Time: 1230
Test Ending: Date: 5-6-06 Time: 05 20

Organism Batch #/ Age: 20-06 / 424 hrs Feeding: Prior to test Prior to renewally Daily Food: YCT P.subcapitata
Food Batch: 5-45 2-06

Conc.		mg/L as N):		20017	Denver	MA		Chambi	ar elvas	30_n	AT.						
Conc.	i):					1111											
Conc.			-	<	Mettler	BA		Test vol	ume: _ c	20 mL	per repli	cate			Con	CORREC (mmhos	VOLO
Conc.			N	umber Li	ve		pH (SU)	32.0	Temp	erature (' C)	I).O. (mg/	U	Con	d (µmhon	v(cm)
NOT WILL	tep.	Chambers	-0 hr	24 111	_18 hr	- 0 hr	9+4+		0 hr	34 hr.	48.hr	-0 hr	24 kr	-48 AP	-0 hr	34 hr	48.4
			48 hr	72 hr	96 hr	48 hr	72 hr	96 hr	48 hr	72 hr	96 hr	48 hr	72 hr	96 hr	48 hr	72 hr	96 /
1	٨	A G	24/15	5	5	24.41	r	8.1	8.00		24.2	6.7		7.6	0.225	_	0,22
Control	В	В	5	5	5				9							_	
	C	C	5	5	419									_			
	D	D	5	5	5												_
L	A	A	25.25	410	3 10	25.2		8.1	7.4		24.5	6.4		7.6	292		335
1.5	В	В	5	40	ч	A = 1 = 9					1120						
(.5	С	C	5	5	5								8. F				
	D	D	5	410	4												
		A	125,2	041)	-	252		8,2	8.0		24.8	7.1		7.6	2,86		4.31
2.0	В	В	4	310	120												
2.0	С	C	5	5	410												
	D	D	3	5	5						150 .50						
	٨	A	325.1	030		25.1		-	8.0		-	7,0			4.6		-
T	В	В	2	D22			8.0			45			7.8		-	4.79	
15	c	C	1	DID	-	1 3							-				
Г	D	D	0	4	1 2 1	8 9											
	٨	A	2490	-	-	24.1	-	-	8.1		-	6.8			5.38		-
3.0	В	8	0	-	_							-	7.0				
5.0	c	C	0	-				-	-						000		
	D	D	0	-	-												
	A	A	-	-	-	_		-	-		-	-			-		-
110	В	В	_		_												
4.0	c	C	_	-	_												
-	D	D	-	-	-								1	00 U	(V		
	۸																
- 1	В						A 749										
	c												7=11 3	8			
	D					-	- 11	2000			- 300			- 1			
_	d/m	easured by: ecorded by:	mF mV	BA	ME	GA GA	BA	MF	13A GA	BA RA	ME ME	TSA TSA	BA	MA	BA BA	BA	MF MF

Inve	tigators' Signatures	,
-	wal Prichad	
N	arshall fairlet	1
13	an anna	

Concentrations prepared by: 00-Loading verified by: Light Intensity: 50-100 Ft. candles Photoperiod: 16 hours Light / 8 hours dark Temperature Range °C: Incubator # 2 min 25/ max 269 mes 26 2

Remarks Tra	nser# to	on error	! Number	tre
Remarks Tra	Rep A:	cm1:5,	1.5% 5	L, 2084
2,5	%3.	3.0%0	GA	*
B ?H 3 to	of swife	4d @ 45 1	w, rep A	SA.

Incubator # ___ min.___ max._ Myole Weller & Room B246 min. 242 max 251 mean 245 Statistical Results: Method: Spearman-Karber 48 /6 hour LC50: 1.9.5 95% Confidence Interval: lower 1.79 upper 2.13

Page

000057

59

Appendix H

Typical Values for Selected Parameters in Florida Waters Percentile Distribution (1617 stations)

CONTROL SITE

Parameter	5%	10%	20%	30%	40%	50%	60%	70%	80%	90%	95%	Measured
												<u> </u>
Periphyton												
Chlorophyll a (mg/m²)	0.31	0.43	0.77	1.04	2.16	2.94	6.45	10.51	17.00	39.51	60.85	ND
Hester-Dendy Diversity	0.84	2.12	2.48	2.74	2.88	3.09	3.25	3.40	3.52	3.76	3.90	3.99
Hester-Dendy Taxa Richness	6	6.5	9	11.5	13	15	17	21.5	26	29	32	41
Dipnet Taxa Richness	9	12	17	20	22	24.5	26	28	<mark>31</mark>	37	53	31
Total Kjeldahl Nitrogen	0.30	0.39	0.56	0.73	0.87	1.00	1.11	1.26	1.49	1.93	2.80	0.68
Total Ammonia	0.02	0.02	0.04	0.05	0.06	0.08	0.11	0.14	0.20	0.34	0.60	0.12
Nitrate plus Nitrite	0.01	0.01	0.03	0.05	0.07	0.10	0.14	0.20	0.32	0.64	1.05	0.33
Total Phosphorus	0.02	0.03	0.05	0.06	0.10	0.13	0.18	0.25	0.39	0.74	1.51	0.54
Orthophosphate	0.01	0.01	0.03	0.04	0.05	0.08	0.11	0.17	0.27	0.59	1.37	0.4
Turbidity (NTU)	0.60	0.90	1.20	1.45	2.10	2.80	<mark>3.60</mark>	4.50	6.65	10.45	16.30	4.3

TEST SITE

Parameter	5%	10%	20%	30%	40%	50%	60%	70%	80%	90%	95%	Measured
					-			-		-	ā.	
Periphyton	0.31	0.43	0.77	1.04	2.16	2.94	6.45	10.51	17.00	39.51	60.85	ND
Chlorophyll a (mg/m ²)	0.31	0.43	0.77	1.04	2.10	2.94	0.43	10.51	17.00	39.51	00.05	ND
Hester-Dendy Diversity	0.84	2.12	2.48	2.74	2.88	3.09	3.25	3.40	3.52	3.76	3.90	3.6
Hester-Dendy Taxa Richness	6	6.5	9	11.5	13	15	17	21.5	26	29	<mark>32</mark>	47
Dipnet Taxa Richness	9	12	17	20	22	<mark>24.5</mark>	26	28	31	37	53	24
Total Kjeldahl Nitrogen	0.30	0.39	0.56	0.73	0.87	1.00	1.11	1.26	1.49	1.93	2.80	0.32 I
Total Ammonia	0.02	0.02	0.04	0.05	0.06	0.08	0.11	0.14	0.20	0.34	0.60	0.11 I
Nitrate plus Nitrite	0.01	0.01	0.03	0.05	0.07	0.10	0.14	0.20	0.32	0.64	1.05	1.2
Total Phosphorus	0.02	0.03	0.05	0.06	0.10	0.13	0.18	0.25	0.39	<mark>0.74</mark>	1.51	0.86 A
Orthophosphate	0.01	0.01	0.03	0.04	0.05	0.08	0.11	0.17	0.27	<mark>0.59</mark>	1.37	0.72
Turbidity (NTU)	0.60	0.90	<mark>1.20</mark>	1.45	2.10	2.80	3.60	4.50	6.65	10.45	16.30	1.3

Taxa richness and diversity values are for benthic macroinvertebrates. Hester-Dendy sample= benthic macroinvertebrates collected from a standardized multi-plate sampler. Dipnet taxa richness = number of taxa collected in standardized dipnet sweep samples. Diversity = Shannon-Weaver H'. NTU = Nephelometric turbidity units. Adapted from Joe Hand, FDER, personal communication, 1991 (data collected 1980-1989). ND = No data.

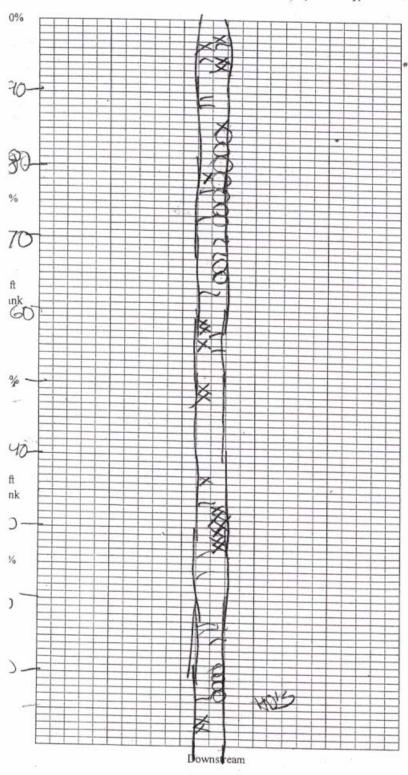
Appendix I

Habitat Assessment Field Sheets

DEP-SOP-001/01: Form FD 9000-3 (December 11, 2001)
PHYSICAL/CHEMICAL CHARACTERIZATION FIELD SHEET

SUBMITTING AGENCY CODE: SUBMITTING AGENCY NAME:		STORET STATION	NUMBER:	DATE (M/D/Y):	TIME	WATER 3	G BODY OF
REMARKS:	10.00			5/00/06	2.0	aceti-	>Alasia R
REMARKS:	COUNTY:	LOCATION:	17:21	-1	FIELD	ID/NAME:	
2.00	POIK	Mosuc	MICK	1015	Co	ntrol 5	rta
NDADIAN ZONGIORO					30	-mile.	wat
RIPARIAN ZONE/STREAM FEAT							The same of
REDOMINANT LAND-USE IN WATER	RSHED (specify rela	tive percent in each	category):		1.010-11-1	7	
OREST/NATURAL SILVICULTURE	E FIELD/PASTURE	AGRICULTURAL	RESIDENTIA	L COMMERC	IAI IN	DUSTRIAL	OTHER (SPECIFY)
					- I	DOSTRIAL	OTTER (SPECIFI)
		7.2				50	
OCAL WATERSHED EROSION (che	eck box): None	11 8	light 🔀	Modera	to I	Heavy	
OCAL WATERSHED NPS POLLUTIO		idence I S	Slight 🔲	Moderate p		,	s sources
VIDTH OF RIPARIAN VEGETATION (m				400000000000000000000000000000000000000			A STATE OF THE PARTY OF THE PAR
On least buffered side:		MAP DOMINANT TION ON BACK	TYPICAL W	IDTH (M) DEPTH (M	/VELOCITY	(M/SEC) TRANS	ECT m wide
ARTIFICIALLY CHANNELIZED X no				······			
recent, se	evere some recovery mos	stly recovered	0.15	m/s (2.2	m/s	0.15 m/s
ARTIFICIALLY IMPOUNDED yes		re sinuous					
			1				
HIGH WATER MARK \ 5	+ () ()						
	0.7	107	175 2	a daaw			
	er level) (present depth in n	n) (m above bed)	0.3	n deepj ().3 m de	ep C	, H m deep
ANOPY COVER % : OPEN:	LIGHTLY SHADED		MODERA	TELY SHADED (46-8	80%)- []	HEAVIE	Y SHADED:
SEDIMENT/SUBSTRATE				OI IFELD (40°C	70 /0J. [HEAVIL	SHADED.
EDIMENT ODORS: NORMAL:	SEWAGE:	Democratic D	_				+
EDIMENT OILS: ABSENT: X	SLIGHT:	PETROLEUM: MODERATE:	CHEMICAL:	ANAEROBIO		OTHER:	
EDIMENT DEPOSITION: SLUDGE: S	SAND SMOTHERING: NONE		PROFUSE:	L NORE			
	SLIGHT		ALI SMOTHERING		ODERATE OT	HER	
SUBSTRATE TYPE	% # TIME	S	1		%	# TIMES	
	OVERAGE SAMPLE	METHOD	SUBSTRA	ATE TYPES CO	VERAGE	SAMPLED	METHOD
VOODY DEBRIS (SNAGS)(5)	8 4		SAND		0	un	
EAF PACKS OF MATS -		_	MUD/MUC		_	MI	
QUATIC VEGETATION -			OTHER:				
OCK OR SHELL RUBBLE (5)	18 11		OTHER:				
NDERCUT BANKS/ROOTS	10 711		DRAW AE	RIAL VIEW SKET CH	OF HABITAT	S FOUND IN 100	M SECTION
WATER QUALITY DEPTH (M):	TEMP. (°C): P	H (SU): D.O. (M	COL	ND (WMHO/CM)	OF TIADITAL	STOOMS IN 100	SECCHI (M):
OP (M)			UR :	SALINITY (PPT):			Occorn (m).
IID-DEPTH							_
	-05 31 7	W2 / D					
OTTOM ONL		.83 6.8	0	557			
OTTOM ONL	DRDER 5TH - 6TH O	RDER			Ectura	D 07:15-	
OTTOM YSTEM TYPE: STREAM 1s1-2400 3R0-4THO	ORDER 5TH - 6TH O	RDER OR GREATER L	AKE:	WETLAND:		RY: OTHER:	
OTTOM YSTEM TYPE: STREAM 181-2800 390-47HO WATER ODORS (CHECK BOX):	ORDER 5TH - 6TH OF ORDER OF ORDER STHORDER STHORDER	RDER OR GREATER L SEWAGE: PETROL	AKE:	WETLAND:	ESTUAR OTHER: [: 0
OTTOM YSTEM TYPE: STREAM 131-2000 3**0-41+0 ATER ODORS (CHECK BOX): ATER SURFACE OILS (CHECK BOX	ORDER 5TH - 6TH ORDER IN ORMAL: S X): None: X	RDER OR GREATER L SHEEN: PETROLI SHEEN: GL	AKE:	WETLAND: CHEMICAL: SLICK:			:
OTTOM YSTEM TYPE: STREAM 191-2000 390-41HO WATER ODORS (CHECK BOX): WATER SURFACE OILS (CHECK BOX): LARITY (CHECK BOX):	ORDER 5TH - 6TH O ORDER 7TH ORDER I NORMAL: S (X): None: S CLEAR: SLIGHTLY	RDER OR GREATER L SEWAGE: PETROLI SHEEN: GL TURBID: TUR	AKE: EUM: OBS: RBID:	WETLAND: CHEMICAL: SLICK: OPAQUE:			: 0 \
OTTOM YSTEM TYPE: STREAM 191-2000 390-41HO WATER ODORS (CHECK BOX): WATER SURFACE OILS (CHECK BOX): CLARITY (CHECK BOX):	ORDER 5TH - 6TH ORDER IN ORMAL: S X): None: X	RDER OR GREATER L SEWAGE: PETROLI SHEEN: GL TURBID: TUR	AKE:	WETLAND: CHEMICAL: SLICK:			
SOTTOM SYSTEM TYPE: STREAM 191-2000 390-41HO WATER ODORS (CHECK BOX): WATER SURFACE OILS (CHECK BOX CLARITY (CHECK BOX): COLOR (CHECK BOX):	ORDER 5TH - 6TH O ORDER 7TH ORDER I NORMAL: S (X): None: S CLEAR: SLIGHTLY	RDER OR GREATER L SEWAGE: PETROL SHEEN: GL TURBID: TUR ALGAE): CL	AKE: EUM: OBS: RBID:	WETLAND: CHEMICAL: SLICK: OPAQUE:			ABUNDANT
SYSTEM TYPE: STREAM 181-200 390-41H O WATER ODORS (CHECK BOX): WATER SURFACE OILS (CHECK BOX CLARITY (CHECK BOX); COLOR (CHECK BOX); WEATHER CONDITIONS/NOTES:	ORDER 5TH - 6TH O ORDER 7TH ORDER I NORMAL: S (X): None: S CLEAR: SLIGHTLY	ROER OR GREATER L SEWAGE: PETROLI SHEEN: GL TURBID: TUR ALGAE): CL	AKE: EUM: OBS: RBID: EAR: ABUNDANCE: PERIPHYTON	WETLAND: CHEMICAL: SLICK: OPAQUE: OTHER:	OTHER: [2017
EYSTEM TYPE: STREAM 191-2000 390-41HO WATER ODORS (CHECK BOX): WATER SURFACE OILS (CHECK BOX CLARITY (CHECK BOX):	ORDER 5TH - 6TH O ORDER 7TH ORDER I NORMAL: S (X): None: S CLEAR: SLIGHTLY	FOER OR GREATER LEWAGE: PETROLI SHEEN: GL TURBID: TUR ALGAE): CL	AKE: O	WETLAND: CHEMICAL: SLICK: OPAQUE: OTHER:	OTHER: [2017
OTTOM YSTEM TYPE: STREAM 191-2000 390-47HO WATER ODORS (CHECK BOX): WATER SURFACE OILS (CHECK BOX): LARITY (CHECK BOX): OLOR (CHECK BOX): WEATHER CONDITIONS/NOTES:	ORDER 5TH - 6TH O ORDER 7TH ORDER I NORMAL: S (X): None: S CLEAR: SLIGHTLY	ROER OR GREATER L SEWAGE: PETROL SHEEN: GL TURBID: TUR ALGAE): CL	AKE: EUM: OBS: OBS: RBID: EAR: ABUNDANCE: PERIPHYTON FISH AQUATIC MACI	WETLAND: CHEMICAL: SUCK: OPAQUE: OTHER: ABSENT ROPHYTES X	OTHER:	COMMON	2017
OTTOM YSTEM TYPE: STREAM 191-2000 390-47HO WATER ODORS (CHECK BOX): WATER SURFACE OILS (CHECK BOX): CLARITY (CHECK BOX): COLOR (CHECK BOX): WEATHER CONDITIONS/NOTES:	ORDER 5TH - 6TH O ORDER 7TH ORDER I NORMAL: S (X): None: S CLEAR: SLIGHTLY	ROER OR GREATER L SEWAGE: PETROL SHEEN: GL TURBID: TUR ALGAE): CL	AKE: EUM: OBS: OBS: CBID: CBID: ABID: ABUNDANCE: PERIPHYTON FISH	WETLAND: CHEMICAL: SUCK: OPAQUE: OTHER: ABSENT ROPHYTES X	OTHER:	COMMON	ary.
OTTOM YSTEM TYPE: STREAM (131-2400) 390-471H O ATER ODORS (CHECK BOX): ATER SURFACE OILS (CHECK BOX LARITY (CHECK BOX): OLOR (CHECK BOX): ÆATHER CONDITIONS/NOTES:	ORDER 5TH - 6TH O PROER 7TH ORDER 1 NORMAL: S S S S CLEAR: S SLIGHTLY TANNIC: GREEN (ROER OR GREATER Liewage: PETROL SHEEN: GL TURBID: TUR ALGAE): CL	AKE: EUM: OBS: OBS: RBID: EAR: ABUNDANCE: PERIPHYTON FISH AQUATIC MACI	WETLAND: CHEMICAL: SUCK: OPAQUE: OTHER: ABSENT ROPHYTES X BACTERIA	OTHER:	COMMON	ary.

DEP-SOP-001/01: Form FD 9000-5 (December 11, 2001)


STATE OF FLORIDA, DEPARTMENT OF ENVIRONMENTAL PROTECTION

SUBMITTING AGENCY CO SUBMITTING AGENCY NA	DDE: ME:	STO	RET STATION NUMBER:	DATE (MARBOTT):	RECEIVING BODY OF	FWATER: ECK-> Alasta R.
REMARKS:	POIK	LOCATION:	ic Nichols	10/00/06	FIELD IDMAME: S	ta, 30-mile Cred
Habitat Parameter		Optimal	Suboptimal			9
Primary Habitat Components Substrate Diversity	roots/unde vegetation decayed),	ore productive resent [snags, tree ercut banks, aquatic i, leaf packs (partially rock]	Three productive habitat present. Adequate hab	itat. presen e new habitat remove		Poor One or less productive habitat. Lack of habitat is obvious, substrates unstable or smothered
Substrate Availability 15	habitat pre	an 30% productive sent at site	16% to 30% productive by aerial extent	habitat, 6% to	0 9 8 7 6 15% productive habitat 0 9 8 7 6	5 4 3 2 1 Less than 5% productive habitat 5 4 3 2 1
Water Velocity 12	transect: :	rved at typical > 0.25 m/sec. But < 1	Max. observed at typical transect: 0.1 to 0.25 m/s	ec transec	bserved at typical at: 0.05 to 0.1 m/sec	Max. observed at typical transect: <0.05 m/sec; or spate occurring: > 1 m/sec
Smothering 15	affected by accumulati	19 18 17 16	20%-50% of habitats affi by sand or silt accumula	ected Smother tion habitati shallow movem	ering of 50% -80% of the s with sand or silt, pools v, frequent sediment	Smothering of >80% of habitats with sand or silt, as severe problem, pools absen
Secondary Habitat Components Artificial Channelization	No artificia dredging, sinuous pa	I channelization or Stream with normal, Item	May have been channel the past (>20 yrs), but n recovered, fairly good sin pattern 15 14 13 12	zed in Channostly recover	elized, somewhat red, but > 80% of area	Artificially channelized, box- cut banks, straight, instream habitat highly altered
Bank Stability	Stable No	avidence of erosion		1.0	0 9 0 1 6	5 4 3 2 1

1 46 1	TOTAL SCORE	8 7 6	- 5 4	3 2 1
Vegetation Quality Right Bank Left Bank Secondary Soore	Over 80% of riparian surfaces consist of native plants, including trees, understory shrubs, or non-woody macrophytes. Normal, expected plant community for given sunlight & habitat conditions.	50% to 80% of riparian zone is vegetated, and/or one class of plants normally expected for the sunlight & habitat conditions is not represented. Some disruption in community evident.	25% to 50% of riparian zone is vegetated, and/or one or two expected classes of plants are not represented. Patches of bare soil or closely cropped vegetation, disruption obvious.	Less than 25% of stream bank surfaces are vegetated and/or poor plant community (e.g. grass monoculture or exotics) present. Vegetation removed to stubble height of 2 inches or less
Zone Width Right Bank Left Bank Riparian Zone	(least buffered side) greater than 18 m	Width of native vegetation (least buffered side) 12 to 18 m	Width of native vegetation 6 to 12 m. human activities still close to system 5 4	Less than 6 m of native buffer zone due to intensive human activities 3 2 1
Right Bank Left Bank Logical Riparian Buffer	Stable. No evidence of erosion or bank failure. Little potential for future problems.	Moderately stable. Infrequent or small areas of erosion, mostly healed over. 8 7 6	Moderately unstable. Moderate areas of erosion, high erosion potential during floods. 5 4	Unstable. Many (60% -80%) raw, eroded areas. Obvious bank sloughing. 3 2 1
Artificial Channelization Bank Stability	dredging. Stream with normal, sinuous pattern	May have been channelized in the past (>20 yrs), but mostly recovered, fairly good sinuous pattern 15 14 13 12 11	Channelized, somewhat recovered, but > 80% of area affected	Artificially channelized, box- cut banks, straight, instream habitat highly altered
Primary Score 57 Secondary Habitat	Less than 20% of habitats affected by sand or silt accumulation 20 19 18 17 16 No artificial channelization or	20% -50% of habitats affected by sand or silt accumulation	Smothering of 50% -80% of the habitats with sand or silt, pools shallow, frequent sediment movement 10 9 8 7 6	5 4 3 2 1 Smothering of >80% of habitats with sand or silt, as severe problem, pools absent
Habitat	20 19 18 17 16	15 14 13 (12)11	10 9 8 7 6	5 4 3 2 1

Secondary 30	given sunlight & habitat conditions 10 9	disruption in community evident.	vegetation, disruption obvious.	removed to stubble height a 2 inches or less
137 T WALYSIS DATE: 5/26	OTAL SCORE	rst. Jacki Ch	SIGNATURE:	1104
3/33	1/56	- 40a Or	ampian se	ehi Champion

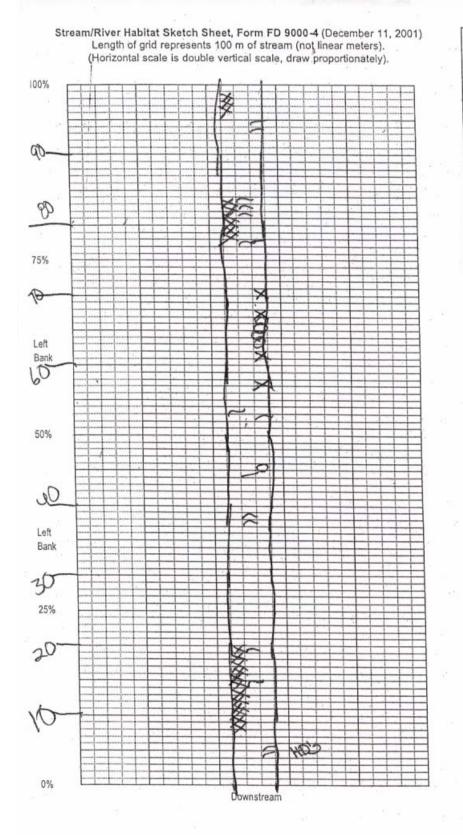
Stream/River Habitat Sketch Sheet, Form FD 9000-4 (June 1, 2001)
Length of grid represents 100 m of stream (not linear meters).
(Horizontal scale is double vertical scale, draw proportionately).

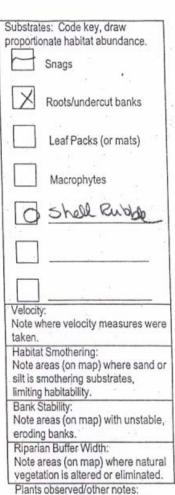
0.1.	
	tes: Code key, draw
proporti	ionate habitat
abundar	nce.
	Snags
X	Roots/undercut banks
	Leaf Packs (or mats)
	Macrophytes
0	Shell Rubble
Velocit	
Note w	here velocity
measur	es were taken.
Habita	t Smothering:
Note an	reas (on map) where
sand or	silt is something
	tes, limiting
habitab	oility.
** 1 -	tability:
Bank S	
	reas (on map) with
Note an	e, eroding banks.
Note an unstabl	
Note an unstabl Riparia	e, eroding banks.
Note ar unstabl Riparia Note ar	e, eroding banks. in Buffer Width:

Mosaic Nichols Control Site Thirty-mile Creek 5/20/06

DEP-SOP-001/01: Form FD 9000-3 (December 11, 2001) PHYSICAL/CHEMICAL CHARACTERIZATION FIELD SHEET

UBMITTING AGENCY CODE:UBMITTING AGENCY NAME:	_ STORET STATIO	N NUMBER:	DATE (M/D/Y		RECEIVING BOIL	DY OF mule → Hlofiali.
EMARKS: COUNTY:	LOCATION: Moso Test	ic Nic	nols	FIELD ID	st Site	cek
RIPARIAN ZONE/STREAM FEATURES			1			
REDOMINANT LAND-USE IN WATERSHED (specif	y relative percent in each	ch category):				
OREST/NATURAL SILVICULTURE FIELD/PAST	URE AGRICULTURAL	RESIDENTIA	L COMME	RCIAL INC	USTRIAL OTHI	ER (SPECIFY)
\times						
OCAL WATERSHED EROSION (check box):	None	Slight 🔀	. Mod	derate	Heavy	
OCAL WATERSHED NPS POLLUTION (check box):	No evidence	Slight	Moderat	e potential	Obvious so	urces 🔲
VIDTH OF RIPARIAN VEGETATION (m) On least buffered side: ARTIFICIALLY CHANNELIZED OF THE CONTROL OF THE CONTRO	rery mostly recovered more sinuous depth in m) (m above bed) SHADED (11-45%): PETROLEUM: MODERATE: SI NONE MODERATE SEVERE # TIMES METH	MODER CHEMICAL PROFUSE SILT SMOTHER	m deep ATELY SHADED	(46-80%): Moderate O	HEAVILY S	m wide
WOODY DEBRIS (SNAGS)(5)	SAMPLED	SAND	(5)	COVERAGE 9.3	HH	
LEAF PACKS OF MATS	HT1		UCK/SILT	0~	411	
AQUATIC VEGETATION		OTHER	the second second second			
ROCK OR SHELL RUBBLE (5)	HH	OTHER			1	
UNDERCUT BANKS/ROOTS(5)	UH			ET CH OF HABIT	ATS FOUND IN 100	M SECTION
WATER QUALITY DEPTH TEMP. (°C		O MON .	OND. (UMHO/O	(M)	1 = 1 /	SECCHI (M
TOP (W).			ON ONLINET PE	11.		1
MID-DEPTH	1 1					
BOTTOM 0.3 24.0	6 7.81	8.44	441			7
	5TH - 6TH ORDER	4.1	-		- C	202 201 4
	TH ORDER OR GREATER	LAKE:	WETLAND	EST	UARY: OTHER	: 🗆
WATER ODORS (CHECK BOX): NORMAL: X	Sewage:	PETROLEUM:	CHEMICAL:	OTHER	: 🗆	
WATER SURFACE OILS (CHECK BOX): None:		GLOBS:	Suck:		. / .	
the second secon	SLIGHTLY TURBID:	TURBIC:	OPAQUE:			
COLOR (CHECK BOX): TANNIC:	GREEN (ALGAE):	CLEAR:			2.	
WEATHER CONDITIONS/NOTES;	OREH (MUNE). LI	ABUNDA PERIPHY FISH AQUATIO	NCE: AB	SENT RAI	COMMON	ABUNDANT
SAMPLING TEAM: Sampion S	cott Rose	SIGMA		vonmpio	^	DATE


DEP-SOP-001/01: Form FD 9000-5 (December 11, 2001)


STATE OF FLORIDA, DEPARTMENT OF ENVIRONMENTAL PROTECTION STREAM/RIVER HABITAT ASSESSMENT FIELD SHEET

SUBMITTING AGENCY CO SUBMITTING AGENCY NA	DE:	STORET STATION NUMBER:	DATE (MANDOYY):	RECEIVING BODY O	FWATER: Alogia R,
REMARKS:	POIK LOCATION	saic Nichols Test Sile	Spal00	FIELD ID/NAME:	rech, Test Site
Habitat Parameter	Optimal	Suboptimal		W 1	
Primary Habitat Components	Four or more productive habitats present [snags, roots/undercut banks, at vegetation, leaf packs (p	Three productive habit tree present. Adequate ha	ats Two probitat, present	Marginal oductive habitats t. Less than desirable frequently disturbed or	Poor One or less productive habitat. Lack of habitat is obvious, substrates unstable

ridbitat Faraineter	Optimal	Suboptimal	Marginal	Poor
Primary Habitat Components Substrate Diversity	Four or more productive habitats present [snags, tree roots/undercut banks, aquatic vegetation, leaf packs (partially decayed), rock] 20 19 18 17 16	Three productive habitats present. Adequate habitat. Some substrates may be new fall (fresh leaves or snags)	Two productive habitats present. Less than desirable habitat, frequently disturbed or removed	One or less productive habitat. Lack of habitat is obvious, substrates unstable or smothered
Substrate Availability	Greater than 30% productive habitat present at site 20 19 18 17 16	16% to 30% productive habitat, by aerial extent 15 14 13 12 11	10 9 8 7 6 6% to 15% productive habitat	5 4 3 2 1 Less than 5% productive habitat
Water Velocity 13	Max. observed at typical transect: > 0.25 m/sec. But < 1 m/sec	Max. observed at typical transect: 0.1 to 0.25 m/sec	10 9 8 7 6 Max. observed at typical transect: 0.05 to 0.1 m/sec 10 9 8 7 6	5 4 3 2 1 Max. observed at typical transect: <0.05 m/sec; or spate occurring: > 1 m/sec
Habitat Smothering 17 Primary Score 57 Secondary Habitat	Less than 20% of habitats affected by sand or silt accumulation	20%-50% of habitats affected by sand or silt accumulation	Smothering of 50% -80% of the habitats with sand or silt, pools shallow, frequent sediment movement 10 9 8 7 6	5 4 3 2 1 Smothering of >80% of habitats with sand or silt, as severe problem, pools absent
Components Artificial Channelization	No artificial channelization or dredging. Stream with normal, sinuous pattern 20 19 18 17 16	May have been channelized in the past (>20 yrs), but mostly recovered, fairly good sinuous pattern 15 14 13 12 11	Channelized, somewhat recovered, but > 80% of area affected	Artificially channelized, box- cut banks, straight, instream habitat highly altered
Bank Stability Right Bank Left Bank Left Bank	Stable. No evidence of erosion or bank failure. Little potential for future problems.	Moderately stable, Infrequent or small areas of erosion, mostly healed over. 8 7 6	Moderately unstable. Moderate areas of erosion, high erosion potential during floods. 5 4	Unstable. Many (60% -80%) raw, eroded areas. Obvious bank sloughing. 3 2 1
Riparian Buffer Zone Width Right Bank Left Bank	Width of native vegetation (least buffered side) greater than 18 m	Width of native vegetation (least buffered side) 12 to 18 m	Width of native vegetation 6 to 12 m. human activities still close to system 5 4	Less than 6 m of native buffer zone due to intensive human activities
Riparian Zone Vegetation Quality Right Bank Left Bank Secondary Score	Over 80% of riparian surfaces consist of native plants, including trees, understory shrubs, or non-woody macrophytes. Normal, expected plant community for given sunlight & habitat conditions 10 9	50% to 80% of riparian zone is vegetated, and/or one class of plants normally expected for the sunlight & habitat conditions is not represented. Some disruption in community evident.	25% to 50% of riparian zone is vegetated, and/or one or two expected classes of plants are not represented. Patches of bare soil or closely cropped vegetation, disruption obvious.	Less than 25% of stream bank surfaces are vegetated and/or poor plant community (e.g. grass monoculture or exotics) present. Vegetation removed to stubble height of 2 inches or less

Secondary Score | Secondary Sc

Appendix J-1

Taxa list and density (number/cm²) for qualitative natural periphyton collections from Mosaic Phosphates Nichols facility discharge, May 22, 2006.

	Control Site	Effluent	Test Site
Bacillariophyta			
Achnanthes sp.	2	4	-
Achnanthes clevei	1	-	-
Achnanthes curvirostrum	-	-	4
Achnanthes exigua	7	40	8
Achnanthes lanceolata	3	-	6
Achnanthes lanceolata apiculata	1	2	2
Achnanthes lanceolata rostrata	33	11	32
Amphipleura pellucida	1	-	-
Amphora sp.	1	-	6
Aulacoseira sp.	-	-	10
Bacillaria paxillifer	1	-	63
Bacillariophyceae	1	11	6
Capartogramma crucicula	13	4	24
Cocconeis fluviatilis	10	-	4
Cocconeis placentula	12	23	12
Craticula sp.	_	-	48
Cyclostephanos invisitatus	1	-	_
Cyclotella sp.	_	4	_
Cyclotella meneghiniana	8	21	4
Diadesmis confervacea	3	48	18
Diadesmis contenta	1	-	<u>-</u>
Diploneis ovalis	1	-	_
Diploneis pseudovalis	2	-	8
Encyonema minutum	_	4	<u>-</u>
Eunotia sp.	_	6	_
Fragilaria sp.	2	-	10
Fragilaria capucina	-	_	2
Fragilaria pinnata	3	_	10
Fragilariaceae	6	6	57
Fragilariophyceae	1	-	-
Frustulia sp.	1	_	2
Gomphonema sp.	5	71	10
Gomphonema affine	-	2	-
Gomphonema gracile	_	<u>-</u>	2
Gomphonema grovei lingulatum	_	_	6
Gomphonema grover inigalatam Gomphonema parvulum	_	69	4
Gyrosigma sp.	1	-	6
Gyrosigma scuminatum	4	_	4
Hippodonta sp.	4	_	28
	6	6	4
Hippodonta capitata Hippodonta hungarica	-	2	8
Luticola sp.	-	2	U
·	2	<u> -</u>	-
Melosira sp.	30	13	- 77
<i>Navicula</i> sp.	30	13	11

Navicula constans	1	2	2
Navicula cryptocephala	2	2	2
Navicula cryptotenella	1	-	4
Navicula elginensis	-	-	2
Navicula germainii	24	-	_
Navicula kotschyi	4	-	-
Navicula latens	-	-	2
Navicula minima	7	11	12
Navicula porifera	2	-	2
Navicula radiosa	1	-	_
Navicula rostellata	6	-	_
Navicula seminulum	6	13	2
Navicula symmetrica	3	-	2
Navicula viridulacalcis	_	2	_
Naviculaceae	9	21	36
<i>Neidium</i> sp.	1	_	_
Nitzschia sp.	28	105	12
Nitzschia amphibia	<u>-</u>	2	2
Nitzschia frustulum	-	- -	2
Nitzschia palea	2	15	_
Opephora sp.	<u>-</u>	-	4
Pinnularia sp.	2	8	
Planothidium delicatulum	6	-	4
Pleurosigma sp.	-	_	2
Sellaphora sp.	1	_	_
		8	_
Sellaphora pupula	1	O	_
Stauroneis sp.	3	2	2
Stauroneis smithii	3	2	2
Surirella sp.	- 1	-	
Synedra fasciculata	1	-	4
Synedra ulna	-	4	-
Thalassiosira	-	-	2
Tryblionella acuta	1	-	-
Chlorophycota	4		
Ankistrodesmus falcatus	1	-	-
Chlamydomonas sp.	-	13	-
Chlorella sp.	-	13	4
Chlorococcum sp.	1	-	-
Crucigenia irregularis	8	-	-
Scenedesmus sp.	-	2	-
Scenedesmus abundans	-	-	2
Scenedesmus bijuga	1	-	-
Scenedesmus quadricauda	-	2	-
Selenastrum sp.	-	4	2
Tetraedron minimum	1	-	-
Chrysophyta			
Chrysophyceae sp.	1	-	-
Mallomonas sp.	-	2	-
Cryptophycophyta			
Cryptomonas sp.	1	-	2
Cyanophycota			
Anabaena sp.	1	-	2

Cyanothece aeruginosa	-	-	2
Jaaginema sp.	5	19	4
Oscillatoria sp.	-	17	-
Planktolyngbya sp.	1	13	_
Planktothrix sp.	-	-	2
Pseudanabaena sp.	-	8	-
Synechocystis sp.	1	-	-
Euglenophycota			
Lepocinclis sp.	1	4	-
Prasinophyta			
Spermatozoopsis exultans	1	-	2

Appendix J-2

Taxa list and number of individuals counted for qualitative natural periphyton collections from Mosaic Phosphates Nichols facility discharge, May 22, 2006.

	Control Site	Effluent	Test Site
Bacillariophyta			
Achnanthes sp.	2	2	-
Achnanthes clevei	1	-	-
Achnanthes curvirostrum	-	-	2
Achnanthes exigua	7	19	4
Achnanthes lanceolata	3	-	3
Achnanthes lanceolata apiculata	1	1	1
Achnanthes lanceolata rostrata	34	5	16
Amphipleura pellucida	1	-	-
Amphora sp.	1	-	3
Aulacoseira sp.	-	-	5
Bacillaria paxillifer	1	-	31
Bacillariophyceae	1	5	3
Capartogramma crucicula	14	2	12
Cocconeis fluviatilis	10	-	2
Cocconeis placentula	12	11	6
Craticula sp.	-	-	24
Cyclostephanos invisitatus	1	-	-
Cyclotella sp.	_	2	_
Cyclotella meneghiniana	8	10	2
Diadesmis confervacea	3	23	9
Diadesmis contenta	1	<u>-</u>	<u>-</u>
Diploneis ovalis	1	-	_
Diploneis pseudovalis	2	-	4
Encyonema minutum	_	2	_
Eunotia sp.	_	3	_
Fragilaria sp.	2	-	5
Fragilaria capucina	-	_	1
Fragilaria pinnata	3	_	5
Fragilariaceae	6	3	28
Fragilariophyceae	1	-	-
Frustulia sp.	1	_	1
Gomphonema sp.	5	34	5
Gomphonema affine	-	1	-
Gomphonema gracile	_	-	1
Gomphonema gravei lingulatum	_	_	3
Gomphonema grovel ilingulatarii Gomphonema parvulum	_	33	2
Gyrosigma sp.	1	-	3
Gyrosigma sp. Gyrosigma acuminatum	4	_	2
Hippodonta sp.	4	_	14
пірроdonta sp. Hippodonta capitata	6	3	2
	-	1	4
Hippodonta hungarica Luticola sp.	<u>-</u>	1	-
•	2		-
Melosira sp.	31	6	38
Navicula sp.	JI	U	30

Navicula constans	1	1	1
Navicula cryptocephala	2	1	1
Navicula cryptotenella	1	-	2
Navicula elginensis	-	-	1
Navicula germainii	25	-	_
Navicula kotschyi	4	-	_
Navicula latens	-	-	1
Navicula minima	7	5	6

Appendix K-1

Benthic macroinvertebrates collapsed taxa list and density (average number of individuals/ m^2 rounded to the nearest individual, n = 3 samples) from Hester-Dendy artificial substrates incubated for 28 days upstream and downstream of the Mosaic Phosphates Nichols facility and collected May 22, 2006. See SOP LT 7100 sect. 4.2.1 for method on collapsing taxa.

	Control Site	Test Site
Arthropoda		
Arachnida		
Acariformes		
Atractides sp.	_	3
Hygrobates sp.	_	3
Neumania sp.	_	3
Crustacea		
Amphipoda		
Hyalella azteca	8	5
Decapoda		
Cambaridae	3	-
Palaemonetes sp.	-	3
Insecta .		
Coleoptera		
Dineutus sp.	5	11
Dubiraphia vittata	3	3
Microcylloepus pusillus	73	873
Stenelmis sp.	6	169
Diptera		
Ablabesmyia rhamphe grp.	3	-
Atrichopogon sp.	3	-
Cladotanytarsus cf. daviesi	-	17
Cladotanytarsus sp. A Epler	6	-
Corynoneura sp.	17	-
Corynoneura sp. B Epler	-	6
Cricotopus bicinctus	-	9
Cricotopus sp. or Orthocladius sp.	-	3
Cryptochironomus sp.	6	-
Hemerodromia sp.	37	164
<i>Monopelopia</i> sp.	-	3
Nilotanypus fimbriatus	-	3
Palpomyia/bezzia grp.	3	13
Pentaneura inconspicua	65	63
Polypedilum fallax	11	-
Polypedilum flavum	102	49
Polypedilum scalaenum grp.	56	3
Rheocricotopus robacki	3	339
Rheotanytarsus exiguus grp.	3	20
Rheotanytarsus pellucidus	3	37
Simulium sp.	3	-
Stenochironomus sp.	3	63

Tanytarsus sp. A Epler	67	38
Tanytarsus sp. C Epler	15	28
Tanytarsus sp. S Epler	9	3
Thienemanniella lobapode	ema 14	6
Thienemanniella xena	3	-
Tribelos fuscicornis	107	6
Ephemeroptera		
Baetis intercalaris	291	16
Caenis sp.	-	323
Caenis punctata	56	-
Maccaffertium exiguum	-	27
Stenacron sp.	50	-
Megaloptera		
Corydalus cornutus	3	3
Odonata		
Coenagrionidae	8	8
Gomphidae	3	8
<i>Hetaerina</i> sp.	-	3
Trichoptera		
Cernotina sp.	-	11
Cheumatopsyche sp.	132	420
Cyrnellus fraternus	3	3
Hydropsyche sp.	-	3
<i>Hydroptila</i> sp.	8	126
Nectopsyche sp.	-	8
Neotrichia sp.	13	94
Oecetis georgia	-	3
Triaenodes sp.	-	3
Mollusca		
Gastropoda		
Ancylidae	-	5
<i>Ferrissia</i> sp.	3 3	-
<i>Haitia</i> sp.		-
Hydrobiidae	24	8

Appendix K-2

Benthic macroinvertebrates taxa list and counts (number of individuals counted) collected from Hester-Dendy artificial substrates (n= 3 samples) incubated upstream and downstream of the Mosaic Phosphates Nichols facility for 28 days and collected May 22, 2006.

	Control Site	Test Site
Arthropoda		
Arachnida		
Acariformes		
Atractides sp.	-	1
Hygrobates sp.	-	1
Neumania sp.	-	1
Crustacea		
Amphipoda		
Hyalella azteca	3	2
Decapoda		
Cambaridae	1	-
Palaemonetes sp.	-	1
Insecta		
Coleoptera		
Dineutus sp.	2	4
Dubiraphia vittata	1	1
Elmidae	4	-
Microcylloepus pusillus	24	330
Stenelmis sp.	2	64
Diptera		
Ablabesmyia rhamphe grp.	1	-
Atrichopogon sp.	1	-
Ceratopogonidae	-	2
Chironomidae	12	21
Cladotanytarsus cf. daviesi	-	6
Cladotanytarsus sp. A Epler	2	-
Corynoneura sp.	6	-
Corynoneura sp. B Epler	-	2
Cricotopus bicinctus	-	3
Cricotopus sp. or Orthocladius sp.	-	1
Cryptochironomus sp.	2	-
Empididae	-	1
Hemerodromia sp.	14	61
<i>Monopelopia</i> sp.	-	1
Nilotanypus fimbriatus	-	1
Palpomyia/bezzia grp.	1	3
Pentaneura inconspicua	23	22
Polypedilum fallax	4	-
Polypedilum flavum	36	17
Polypedilum scalaenum grp.	20	1
Rheocricotopus robacki	1	118
Rheotanytarsus exiguus grp.	1	7

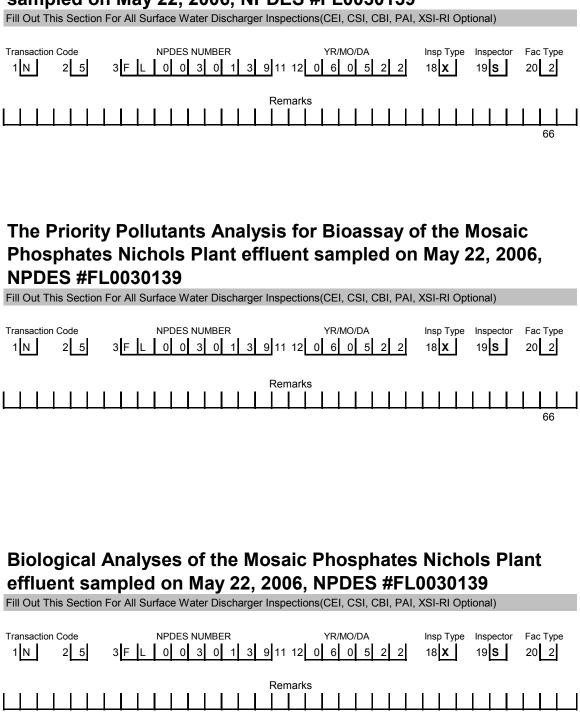
Rheotanytarsus pellucidus	1	13
Simulium sp.	1	-
Stenochironomus sp.	1	22
Tanytarsus sp.	1	2
Tanytarsus sp. A Epler	23	12
Tanytarsus sp. C Epler	5	9
Tanytarsus sp. S Epler	3	1
Thienemanniella lobapodema	5	2
Thienemanniella xena	1	_
Tribelos fuscicornis	38	2
Ephemeroptera		
Baetidae	9	-
Baetis intercalaris	101	6
Caenis sp.	16	122
Caenis punctata	5	_
Heptageniidae	4	_
Maccaffertium sp.	-	4
Maccaffertium exiguum	-	6
Stenacron sp.	15	_
Megaloptera .		
Corydalus cornutus	1	1
Odonata		
Coenagrionidae	3	3
Gomphidae	1	3
Hetaerina sp.	-	1
Trichoptera .		
Cernotina sp.	-	4
Cheumatopsyche sp.	50	158
Cyrnellus fraternus	1	1
Hydropsyche sp.	-	1
Hydroptila sp.	3	47
Hydroptilidae	-	1
Nectopsyche sp.	-	3
Neotrichia sp.	5	35
Oecetis georgia	-	1
Triaenodes sp.	-	1
Undetermined	-	1
Mollusca		
Gastropoda		
Ancylidae	-	2
Ferrissia sp.	1	-
Haitia sp.	1	-
Hydrobiidae	9	3
,	-	-

Appendix L-1

Qualitative benthic macroinvertebrate collapsed taxa list and number of individuals counted from 20-discrete-dipnet sweeps upstream and downstream of Mosaic Phosphates Nichols facility (May 22, 2006). See SOP LT 7100 sect. 4.2.1 for method on collapsing taxa.

	Control Site	Test Site
Annelida		
Hirudinea		
Helobdella stagnalis	1	-
Oligochaeta		
Stephensoniana trivandrana	1	-
Tubificidae	1	-
Arthropoda		
Crustacea		
Amphipoda		
Hyalella azteca	4	1
Insecta		
Coleoptera		
Dubiraphia vittata	12	1
Microcylloepus pusillus	8	34
Stenelmis sp.	3	8
Diptera		
Ablabesmyia mallochi	1	-
Ceratopogonidae	-	2
Cladotanytarsus cf. daviesi	-	1
Hemerodromia sp.	-	6
Pentaneura inconspicua	1	-
Polypedilum flavum	8	-
Polypedilum illinoense grp.	1	-
Polypedilum scalaenum grp.	1	4
Rheocricotopus robacki	1	2
Rheotanytarsus pellucidus	1	-
Simulium sp.	1	-
Stenochironomus sp.	3	1
<i>Tanytarsus</i> sp. A Epler	3	1
Tanytarsus sp. C Epler	-	2
Tanytarsus sp. U Epler	3	-
Tribelos fuscicornis	-	1
Ephemeroptera		
Baetis intercalaris	1	-
Caenis sp.	8	2
Callibaetis sp.	1	-
Pseudocloeon sp.	1	-
Odonata		
<i>Argia</i> sp.	5	2
Enallagma sp.	2	-
Trichoptera		
Cheumatopsyche sp.	1	5
		_

Hydropsyche sp.	-	1
Hydroptila sp.	10	9
Nectopsyche sp.	-	2
Neotrichia sp.	2	6
Oecetis sp.	1	1
Triaenodes sp.	-	1
Mollusca		
Bivalvia		
Corbicula fluminea	1	8
Gastropoda		
Hydrobiidae	17	1
Pomacea paludosa	1	-


Appendix L-2

Qualitative benthic macroinvertebrate taxa list and number of individuals counted from 20-discrete-dipnet sweeps upstream and downstream of Mosaic Phosphates Nichols facility (May 22, 2006).

	Control Site	Test Site
Annelida		
Hirudinea		
Helobdella stagnalis	1	-
Oligochaeta		
Stephensoniana trivandrana	1	-
Tubificidae	1	-
Arthropoda		
Crustacea		
Amphipoda		
Hyalella azteca	4	1
Insecta		
Coleoptera		
Dubiraphia vittata	12	1
Microcylloepus pusillus	8	34
Stenelmis sp.	3	8
Diptera '		
. Ablabesmyia mallochi	1	-
Ceratopogonidae	-	2
Chironomidae	6	2
Cladotanytarsus cf. daviesi	-	1
Hemerodromia sp.	-	6
Pentaneura inconspicua	1	-
Polypedilum flavum	5	-
Polypedilum illinoense grp.	1	_
Polypedilum scalaenum grp.	1	2
Rheocricotopus robacki	1	2
Rheotanytarsus pellucidus	1	_
Simulium sp.	1	-
Stenochironomus sp.	2	1
Tanytarsus sp. A Epler	2	1
Tanytarsus sp. C Epler	-	2
Tanytarsus sp. U Epler	2	_
Tribelos fuscicornis	-	1
Ephemeroptera		•
Baetis intercalaris	1	_
Caenis sp.	8	2
Callibaetis sp.	1	_ -
Pseudocloeon sp.	1	_
Odonata	•	
Argia sp.	3	2
,g	3	_

Coenagrionidae	3	-
Enallagma sp.	1	-
Trichoptera		
Cheumatopsyche sp.	1	5
Hydropsyche sp.	-	1
Hydroptila sp.	10	9
Nectopsyche sp.	-	2
Neotrichia sp.	2	6
Oecetis sp.	1	1
Triaenodes sp.	-	1
Mollusca		
Bivalvia		
Corbicula fluminea	1	8
Gastropoda		
Hydrobiidae	17	1
Pomacea paludosa	1	-

The Bioassay of the Mosaic Phosphates Nichols Plant effluent sampled on May 22, 2006, NPDES #FL0030139

