

Statistical Analyses and Summary of Analytical Round Robin #5 – a Data Comparability Study

Report prepared by Raymond E. Leary December 2012

Samples collected October 18, 2010 from the Florida State University Coastal and Marine Laboratory and Alligator Harbor, FL Preserved and split October 19, and shipped October 20, 2010 at the Florida Department of Environmental Protection's Central Laboratory, Tallahassee,

Table of Contents

1. Introduction	1
2. Determining comparability	4
3. Results and Discussion	6
A. Total Kjeldahl Nitrogen	6
B. Ammonia	12
C. Total Nitrate + Nitrite	16
D. Dissolved Nitrite	21
E. Total Phosphorus	25
F. Orthophosphate	31
G. Total Organic Carbon	36
H. Chlorophyll a	41
I. Biochemical Oxygen Demand	47
J. Carbonaceous Biochemical Oxygen Demand	50
4. Conclusions	53
5. References	55
Appendix 1. Results	56
Appendix 2. Summary Statistics	60
Appendix 3. Boxplots	62

1. Introduction

Many groups routinely take measurements in ambient waters of the Gulf of Mexico. However, each group uses slightly different standard operating procedures (SOPs), equipment, and standards, which leads to an unknown amount of variability in the data collected. This lack of data comparability has been the subject of many discussions. The Gulf of Mexico Alliance (GOMA) identified the need to assess this variability and to explore ways to decrease variability in the data values based solely on changes to SOPs. The GOMA initiated its analytical round robin efforts in February 2008 to address this need.

In September 2007, GOMA workshop participants established a core set of analytes (see Table 1 for the analytes analyzed in this round robin and their method of preservation) for adoption by Gulf of Mexico monitoring programs. This fifth analytical round robin addresses the variability in these analytes among participating Gulf of Mexico laboratories. This report presents information on the collection and methods used to prepare the water for analyses, the results from the laboratories, and the statistical analyses that were conducted to assess the comparability of the data.

Analyte	Acid preserved	0.45-µm filtered
Chlorophyll a (it is unclear if results are corrected or uncorrected for phaeophytin)	No	No
Biochemical Oxygen Demand	No	No
Carbonaceous Biochemical Oxygen Demand	No	No
Total Kjeldahl Nitrogen	Yes	No
Ammonia	Yes	No
Total Nitrate + Nitrite	Yes	No
Total Phosphorous	Yes	No
Total Organic Carbon	Yes	No
Dissolved Nitrite	No	Yes
Orthophosphate	No	Yes

Table 1. Core analytes and preservation methods for this round robin.

A total of ten laboratories, representing local, state, federal, academic, and private laboratories participated in this round robin. Samples were collected on 18 October 2010 from the Florida State University Coastal and Marine Laboratory (FSU CML) and from Alligator Harbor, FL by Linda Sedlacek and Heather Ritchie. Sites were selected in an effort to provide one sample that was high in nutrients and another low in nutrients. Water was collected from FSU CML using its seawater system which had been unused for months prior and was not flushed before collection. Dead algae were noted in the system, and may elucidate the effects of a significant phaeophytin fraction upon chlorophyll results. Field measurements are listed in Table 2.

	FSU CML	Alligator Harbor
Depth (m)	~2	~0.3
Temperature (°C)	23.3	23.9
pН	7.66	8.02
Dissolved Oxygen (mg/L)	5.72	7.12
Salinity (PSU)	33.42	32.19
Conductivity (mS)	48.044	46.605

Table 2. Field measurements.

The Florida Department of Environmental Protection's Central Laboratory in Tallahassee, FL hosted the round robin event.

For each participating laboratory, samples were split to provide:

• 1 L of unfiltered, unpreserved sample for chlorophyll a (ChlA)

- 1 L of unfiltered, unpreserved sample for biochemical oxygen demand (BOD)
- 1 L of unfiltered, unpreserved sample for carbonaceous biochemical oxygen demand (CBOD)
- \bullet 250 mL of unfiltered, acid-preserved sample for total nitrate + nitrite (NO_x), ammonia (NH₃), Total Kjeldahl Nitrogen (TKN), total phosphorous (TP), and total organic carbon (TOC)
- 125 mL of 0.45-μm filtered, unpreserved sample for orthophosphate (OP) and dissolved nitrite (DNO₂)

Samples for each bottle type were kept homogenized by constant stirring. In an effort to ensure that some values were above the laboratories' detection limits, the FSU CML filtered, unpreserved sample was spiked with orthophosphate (enough to raise the value $0.008~\rm mg/L)$ and nitrite (enough to raise the value $0.011~\rm mg/L)$ before splitting; the FSU CML acid-preserved, unfiltered sample was spiked with ammonia (enough to raise the value $0.110~\rm mg/L)$ before splitting. Each laboratory received three replicates of each of the above sample types for sites. Samples were kept in a walk-in cooler at 4 $^{\rm o}$ C until shipment, and were shipped on ice in coolers.

Laboratories were given approximately six weeks to complete their analyses and provide results. Many of the methods utilized by participating laboratories involved are considered "equivalent." Table 3 lists the methods used. One of the goals of this, and future round robins, is to test the true equivalency of these methods. We measured "true equivalency" by statistically analyzing the variability in data reported between methods; our analyses required that each laboratory report only values above its detection limit.

TKN	NH ₃	Total NO _x	Dissolved NO ₂	TP	OP	TOC	ChlA	BOD	CBOD
EPA 351.2	EPA 350.1	EPA 353.2	EPA 353.2	EPA 365.1	EPA 365.1	EPA 415.1	EPA 445.0	SM 5210 B	SM 5210 B
Lachat 10- 107-06-2- D	Lachat 10- 107-06-1- C	Lachat 10-107- 04-1-C	Lachat 10- 107-04-1- C	EPA 365.4	Lachat 31- 115-01-1- I	SM 5310 B	SM 10200 H		SM 5210 C
USGS I- 4515-91	SM 4500 NH ₃ G	SM 4500 NO ₃ F	SM 4500 NO ₂ B	Lachat 10- 115-01-1- C	SM 4500 P E	SM 5310 C			
		USGS I- 2545-90	USGS I- 2540-90		SM 4500 P F				
					USGS I- 2601-90				

Table 3. Methods used by laboratories participating in the fifth analytical round robin.

Laboratories participating in Analytical Round Robin #5:

ADEM_Mon - Alabama Department of Environmental Management, Montgomery, Field Operations Central Laboratory (AL)

EPA - U.S. Environmental Protection Agency, Region 4 Laboratory (GA)

EPCHC - Environmental Protection Commission of Hillsborough County (FL)

FDEP - Florida Department of Environmental Protection Central Laboratory, Tallahassee (FL)

MDEQ - Mississippi Department of Environmental Quality (MS)

Sanders – Sanders Laboratories, Inc. (FL)

SERC - Florida International University, Southeast Environmental Research Center (FL)

SWFWMD – Southwest Florida Water Management District, Data Collection Bureau, Chemistry Laboratory (FL)

TCEQ - Texas Commission on Environmental Quality, Houston Laboratory (TX)

USGS - USGS National Water Quality Laboratory (CO)

2. Determining comparability

In all analyses, the actual value reported by the laboratory was used regardless of significant figures, with the exception of those requiring conversion (e.g., $\mu g/L$ to mg/L). However, data in this report are typically displayed to two or three decimal places. Data values reported by the laboratories are displayed graphically.

Data were analyzed using statistical methods developed by Hoaglin et al (1983) which are used in the U.S. Geological Survey's Standard Reference Samples (SRS) round robins (e.g., Woodworth and Connor 2003). Variability among laboratories was measured by calculating Fpseudosigma, which approximates the standard deviation without the assumption of normal distribution. It is considered a robust statistic because outliers have little influence resulting from a higher breakdown point than that of the mean. The %F-pseudosigma, which is equivalent to % relative standard deviation (%RSD) under normal distributions, was also calculated. In order to evaluate inter-laboratory variability, Z-values were calculated; the average of these was used to rate the laboratories' performance. The absolute Z-values are rated as follows: 0.00 - 0.50 = excellent; 0.51 - 1.00 = good; 1.01 - 1.50 = satisfactory; 1.51 - 2.00 = goodmarginal; and >2.00 = unsatisfactory. Z-values greater than 6 typically are the result of mistakes due to unit conversions, calculation errors, dilution errors, transcription errors (and other typographical errors), etc. (e.g., QUASIMEME 2012). Although this system of rating will be used, it is important to note that, as the group's precision increases, the Z-values can become inflated, making comparable values appear to be non-comparable. These three methods are used when at least seven laboratories report at least three detectable values (i.e., N≥21; roughly a 60% chance of being able to detect a difference in values based on power analysis). In situations where less than 21 values are reported, summary statistics and robust estimators (based on Kaplan-Meier; e.g., Helsel 2012) are provided; no further analyses are performed. In addition, robust estimators are given for analytes with non-values (i.e., data reported or qualified as qualifier codes such as: <, <PQL, BDL, etc.). False negatives are evaluated using the U.S.G.S. SRS method. To be considered a false negative, a result must be reported as a nonvalue and the detection/quantitation limit must be more than 2 F-pseudosigma below the median.

Outliers are evaluated using a variety of statistical methods, including Mahalanobis D², Rosner's test and Dixon's test. For post hoc comparisons (between subjects tests for interlaboratory comparisons), if only one value was reported, it was combined with the laboratory reporting multiple results whose mean and median were closest to the individual value and whose range of data contained that individual value. Whether statistical assumptions (normality, homoscedasticity, independence, balanced design, etc.) are met or not guides the selection of statistical tests employed.

Note: The breakdown point of a statistic is a measure of how many values one would have to change in order to have the statistic change. For the mean, it requires only one extreme outlier to do this. To change the median, at least one-half of all values must become extreme outliers. For example, in a set of five values: 1, 2, 1, 3, and 2, the mean is 1.8 and the median is 2. If the 3 in this set is increased to 300, the mean becomes 61.2; however, the median is still 2.

Note: Within-subjects tests are comparisons of three or more groups. They indicate only that there is a difference among groups, but do not identify which ones or distinguish how they differ. Examples are ANOVA and Kruskal-Wallis. Between-subjects tests are a follow-up to the within-subjects test (i.e., post hoc). They identify the group(s) that is different and how they

differ. These include Gabriel's test, Dunnett's T³, Tukey's Honestly Significant Difference (HSD), Tukey-Kramer test, t-tests, Mann-Whitney, and many other pair-wise comparisons. In a comparison of only two groups, the within-subjects test and the between-subjects tests render the same results.

Table 4 lists the analytes and the number of laboratories that carried out each.

-	FSU	U CML	Alliga	ator Harbor
Analyte	N laboratories	aboratories N values >MDL		N values >MDL
TKN	7	21	7	21
NH_3	9	27	9	12*
NO_x	8	24	8	7*
DNO_2	9	27	9	6*
TP	9	27	9	26*
OP	9	27	9	6*
TOC	6	18	6	18
ChlA	9	27	9	27
BOD	6	10*	6	15
CBOD	6	7*	6	11*

^{*} More results were reported as above the MDL, but no value was given (i.e., only a qualifier [<PQL, I, etc.] was listed). These were treated as non-detects.

Laboratory identities were concealed by assigning letter designations so that laboratories do not feel judged by their results. Furthermore, in order to maintain anonymity, laboratories are not listed with the analyses they conducted or the number of results they reported. The GOMA round robins are critical in helping achieve data comparability, and serve as a tool for groups to speak freely about what they are and are not comfortable with in their methodology, rather than as a way to grade programs on their results.

Table 4. Analytes of interest for this round robin; the number of laboratories that ran each; and the number of values above a given laboratory's detection limit.

3. Results and Discussion

A. Total Kjeldahl Nitrogen. Seventeen of the 21 values for FSU CML were within acceptable ranges. Lab E reported two values outside acceptable ranges, and Labs A and I both reported one value outside acceptable ranges. There were no statistical outliers. The %F-pseudosigma value was moderate (between 20 and 30%), indicating a lack of precision among laboratories. Of the 21 reported values, 62% were within 1 F-pseudosigma and 81% were within 2 F-pseudosigma. Method Lachat 10-107-06-2-D was statistically significantly lower than the other methods.

At Alligator Harbor, 16 of the 21 values were within acceptable ranges. Labs E and I reported two values outside acceptable ranges, and Lab G reported one value outside acceptable ranges. The %F-pseudosigma value was small (between 10 and 20%), indicating a high degree of precision among laboratories. Of the 21 reported values, 67% were within 1 F-pseudosigma and 76% were within 2 F-pseudosigma. At both locations, Lab E's values were highly variable, and Lab I's values were higher than most of the other values. There was no statistical difference among methods; however, Lachat 10-107-06-2-D was considerably lower than the other two methods. See Figures 1 – 3 and Table 5 - 11 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, inter-laboratory comparisons, and method comparisons.

	Total Kjeld	lahl Nitrogen						
		FSU CML						
	F-pseudosigma	% F-pseudosigma	Median	Range				
	0.177	20.42%	0.866	1.046				
Method	N	Mean	Median	Range				
EPA 351.2	15	0.987	0.890	0.796				
Lachat 10-107-06-2-D	3	0.530	0.540	0.050				
USGS I-4515-91	3	0.892	0.900	0.044				
		Alligator Harbor						
	F-pseudosigma	% F-pseudosigma	Median	Range				
	0.118	15.36%	0.770	0.823				
Method	N	Mean	Median	Range				
EPA 351.2	15	0.789	0.790	0.823				
Lachat 10-107-06-2-D	3	0.667	0.660	0.020				
USGS I-4515-91	3	0.798	0.812	0.075				

Table 5. F-pseudosigma values for TKN.

TKN

			FSU CM	L		Al	lligator Ha	ırbor
Lab ID	N	Lab Median	Range	Mean Z-value	N	Lab Median	Range	Mean Z-value
A	3	0.540	0.050	1.90	3	0.660	0.020	0.88
В	3	0.827	0.045	0.21	3	0.744	0.014	0.26
C	3	0.900	0.044	0.15	3	0.812	0.075	0.24
Е	3	1.319	0.591	2.30	3	0.791	0.036	0.60
G	3	0.850	0.060	0.05	3	0.770	0.280	0.68
I	3	1.160	0.160	1.74	3	1.090	0.120	2.43
J	3	0.770	0.140	0.35	3	0.800	0.180	0.08

Table 6. Summary statistics and Z-values by laboratory for TKN.

Descriptives

Total Kjeldahl Nitrogen mg/L

_	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	.53000	.026458	.015275	.46428	.59572	.500	.550
В	3	.82933	.022591	.013043	.77322	.88545	.808	.853
C	3	.89200	.023065	.013317	.83470	.94930	.866	.910
E	3	1.27333	.298135	.172128	.53273	2.01394	.955	1.546
G	3	.85667	.030551	.017638	.78078	.93256	.830	.890
I	3	1.17333	.080829	.046667	.97254	1.37412	1.100	1.260
J	3	.80333	.075719	.043716	.61524	.99143	.750	.890
Total	21	.90829	.255736	.055806	.79188	1.02470	.500	1.546

Table 7. Descriptive statistics by laboratory for TKN for FSU CML.

Descriptives

Total Kjeldahl Nitrogen mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	.66667	.011547	.006667	.63798	.69535	.660	.680
В	3	.73933	.008083	.004667	.71925	.75941	.730	.744
C	3	.79833	.039323	.022703	.70065	.89602	.754	.829
E	3	.69933	.384778	.222152	25651	1.65518	.277	1.030
G	3	.69000	.156205	.090185	.30197	1.07803	.510	.790
I	3	1.05667	.066583	.038442	.89126	1.22207	.980	1.100
J	3	.76000	.096437	.055678	.52044	.99956	.650	.830
Total	21	.77290	.186275	.040648	.68811	.85770	.277	1.100

Table 8. Descriptive statistics by laboratory for TKN for Alligator Harbor.

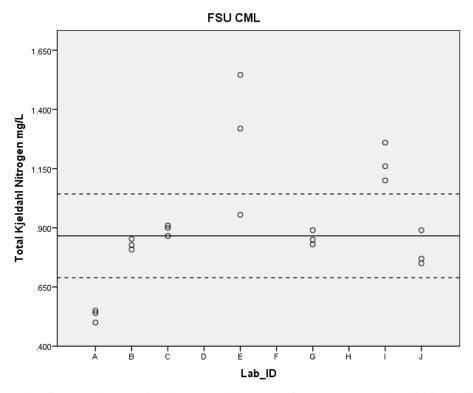


Figure 1. Scatter-plot of TKN values obtained by seven laboratories for FSU CML. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

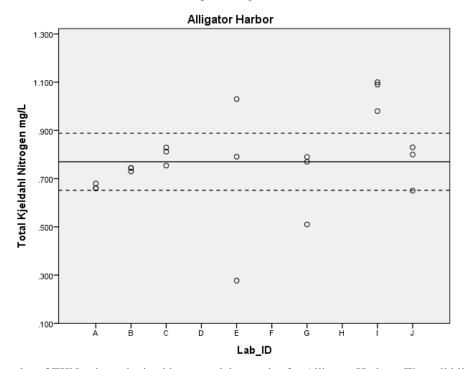
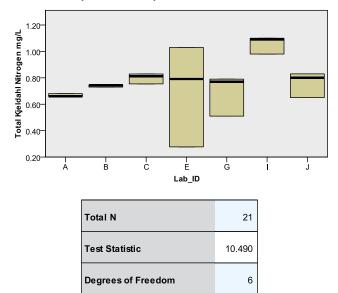



Figure 2. Scatter-plot of TKN values obtained by seven laboratories for Alligator Harbor. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

	Hypothe	esis T	Test Summary		
	Null Hypothesis		Test	Sig.	Decision
1	The distribution of Total Kjeldahl Nitrogen mg/L is the same across categories of Lab_ID.	he Independent-Samples Kruskal-Wallis Test		.007	Reject the null hypothesis.
Asympto	otic significances are displaye	ed. T	he significance level	is .05.	
Homoge	neous Subsets based on Tota	ıl Kje	ldahl Nitrogen mg/L	,	
		Subs	set		
		1	2	3	
	A	2.00	0		
	J	7.16	7.167		
	В	7.66	7.667		
Sample ¹	G	9.83	9.833		
	C		13.333	13.33	33
	I			18.00	00
	Е			19.00	00
Test Stat	tistic	7.11	5.468	5.600)
Sig. (2-sided test)		.068	.141	.061	
Adjusted Sig. (2-sided test)		.162	.315	.189	
	neous subsets are based on a nce level is .05.	symp	totic significances.	Гће	
¹ Each ce	ll shows the sample average	rank	of Total Kjeldahl Ni	trogen	mg/L.

Table 9. Kruskal-Wallis and post hoc inter-laboratory comparisons for TKN from FSU CML.

Independent-Samples Kruskal-Wallis Test

- The test statistic is adjusted for ties.
 Multiple comparisons are not performed because the overall test does not show significant differences across samples.

.105

Asymptotic Sig. (2-sided test)

Figure 3. Results of Kruskal-Wallis test of TKN by laboratory for Alligator Harbor.

Multiple Comparisons

Dependent Variable: Total Kjeldahl Nitrogen mg/L

Γ	(I) Method	ID (J) Method ID	Mean D	ifference (I-J)	Std. Error	Sig.	95% Confide	nce Interval
								Lower Bound	Upper Bound
	EPA 351.2	Lachat	t 10-107-06-2-	·D	.457200*	.062908	.000	.28978	.62462
	EFA 331.2	USGS	I-4515-91		.095200	.062461	.368	07135	.26175
Ι	Ounnett's Lachat 10-107-	06-2- EPA 3	51.2		457200 [*]	.062908	.000	62462	28978
7	Γ^3 D	USGS	I-4515-91		362000 [*]	.020265	.000	43858	28542
	USGS I-4515-9	EPA 3	51.2		095200	.062461	.368	26175	.07135
	USUS 1-4313-5	Lacha	t 10-107-06-2-	D	.362000*	.020265	.000	.28542	.43858
	Method ID	N	Subset for a	lpha = 0.05					
			1	2					

- '		
	1	2
3	.53000	
3		.89200
15		.98720
	3 3 15	3 .53000 3 15

^{*.} The mean difference is significant at the 0.05 level.

Table 10. Post hoc comparisons for TKN values by method for all reported values for FSU CML.

Test of Homogeneity of Variances

Total Kjeldahl Nitrogen mg/L

Levene's Statistic	df1	df2	Sig.
1.912	2	18	.177

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.040	2	.020	.546	.588
Within Groups	.654	18	.036		
Total	.694	20			

	TKN_ID	N	Subset for alpha = 0.05
			1
	Lachat 10-107-06-2-D	3	.66667
Gabriel ^{a,b}	EPA 351.2	15	.78907
Gabriei	USGS I-4515-91	3	.79833
	Sig.		.695

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 4.091.

b. The group sizes are unequal. The harmonic mean of the group

sizes is used. Type I error levels are not guaranteed.

Table 11. ANOVA and post hoc comparisons for TKN values by method for all reported values for Alligator Harbor.

B. Ammonia. Fifteen of the 27 reported values for FSU CML were within acceptable ranges. Labs A, C, E, and I reported all values outside acceptable ranges. No values were determined to be statistical outliers; however, Lab I's values were quite high. There were no results that were reported as non-values. The %F-pseudosigma value was moderate (between 20 and 30%), indicating a lack of precision among laboratories. Of the 27 reported values, 56% were within 1 F-pseudosigma; no other values were within 2 F-pseudosigma. Method Lachat 10-107-06-1-J was significantly lower than the other methods.

At Alligator Harbor, twelve of the 27 results were reported values; the other 56% were reported as qualifiers. There were no statistical outliers. The MDLs ranged from 0.0017 to 0.02 mg/L; and the PQLs for Labs A, E, and G ranged from 0.02 to 0.05 mg/L. There were no values reported as less than detection/quantitation limits that were determined to be false negatives. Method EPA 350.1 was the only method to report values. No other analyses were conducted for ammonia for Alligator Harbor. Values reported by Lab I were high for both sites. See Figures 4 & 5 and Tables 12 - 18 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, inter-laboratory comparisons, and method comparisons.

	Ammonia								
		FSU CML							
	F-pseudosigma	% F-pseudosigma	Median	Range					
	0.017	21.31%	0.080	0.194					
Method	N	Mean	Median	Range					
EPA 350.1	21	0.099	0.082	0.194					
Lachat 10-107-06-1-J	3	0.040	0.040	0.000					
SM 4500 NH3 G	3	0.069	0.069	0.005					
		Alligator Harbor							
	F-pseudosigma	% F-pseudosigma	Median	Range					
	0.082	208.78%	0.770	0.145					
Method	N	Mean	Median	Range					
EPA 350.1	21 (nine non-values)	0.062	0.040	0.145					
Lachat 10-107-06-1-J	3	All Non-detect	N/A	N/A					
SM 4500 NH3 G	3	All Non-detect	N/A	N/A					

Table 12. F-pseudosigma values for ammonia.

NH_3

	· -J								
			FSU CM	IL	Alligator Harbor				
Lab ID	N	Lab Median	Range	Mean Z-value	N	Lab Median	Range	Mean Z-value	
A	3	0.040	0.000	2.35	3*	NR	NR	NR	
В	3	0.079	0.005	0.08	3	0.020	0.002	N/A	
C	3	0.129	0.044	2.84	3	0.061	0.004	N/A	
E	3	0.027	0.001	3.14	3*	NR	NR	NR	
F	3	0.069	0.005	0.67	3*	NR	NR	NR	
G	3	0.070	0.010	0.39	3*	NR	NR	NR	
Н	3	0.082	0.009	0.22	3	0.016	0.001	N/A	
I	3	0.220	0.010	8.04	3	0.150	0.010	N/A	
J	3	0.085	0.002	0.29	3*	NR	NR	NR	

^{*} One or more non-value reported. NR = all non-values reported.

Table 13. Summary statistics and Z-values by laboratory for ammonia.

Ammonia							
Method	MDL Range	PQL Range					
ALL	0.0017 - 0.02	0.012 - 0.05					
EPA 350.1	0.003 - 0.02	0.012 - 0.05					
Lachat 10-107-06-1-J	0.0017	0.04					
SM 4500 NH3 G	0.007	0.028					

Table 14. Methods and detection/quantitation limits for NH₃.

Descriptives

Ammonia mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	.04000	.000000	.000000	.04000	.04000	.040	.040
В	3	.07867	.002517	.001453	.07242	.08492	.076	.081
C	3	.12833	.003055	.001764	.12074	.13592	.125	.131
E	3	.02667	.000577	.000333	.02523	.02810	.026	.027
F	3	.06867	.002517	.001453	.06242	.07492	.066	.071
G	3	.07333	.005774	.003333	.05899	.08768	.070	.080
H	3	.08367	.004726	.002728	.07193	.09541	.080	.089
I	3	.21667	.005774	.003333	.20232	.23101	.210	.220
J	3	.08500	.001000	.000577	.08252	.08748	.084	.086
Total	27	.08900	.053727	.010340	.06775	.11025	.026	.220

Table 15. Descriptive statistics by laboratory for ammonia for FSU CML.

Descriptives

Ammonia mg/L

7 Millioni	u mg/ D							
	N	Mean	Std. Deviation	Std. Error	95% Confidence I	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
В	3	.02000	.001000	.000577	.01752	.02248	.019	.021
C	3	.06033	.002082	.001202	.05516	.06550	.058	.062
Н	3	.01567	.000577	.000333	.01423	.01710	.015	.016
I	3	.15333	.005774	.003333	.13899	.16768	.150	.160
Total	12	.06233	.057873	.016707	.02556	.09910	.015	.160

Table 16. Descriptive statistics by laboratory for ammonia for Alligator Harbor.

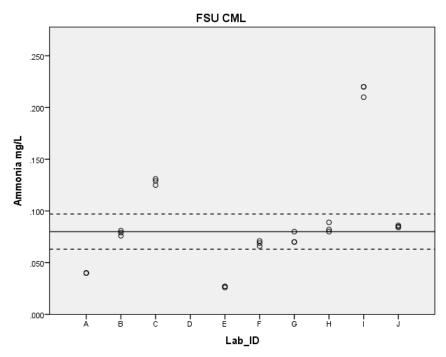


Figure 4. Scatter-plot of ammonia values obtained by nine laboratories for FSU CML. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

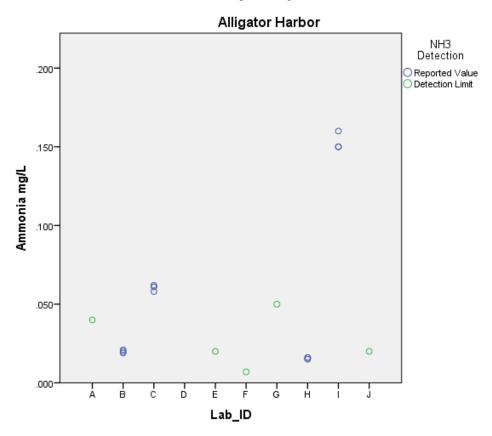


Figure 5. Scatter-plot of ammonia values and detection/quantitation limits obtained by nine laboratories for Alligator Harbor.

	Hypot	hesis Test	Summary				
Null Hypothesi	S	Test		Sig.	Decision		
The distribution the same across		Independent-Samples Kruskal-Wallis Test		Reject the null hypothesis.			
Asymptotic signif	ficances are displayed. T	he significa	ance level is .	05.			
	Homogeneous Su	bsets base	d on Ammon	ia mg/L			
				Sul	oset		
		1	2	3	4	5	6
	Е	2.000					
	A		5.000				
	F			8.667			
	G			11.167	11.167		
Sample ¹	В			13.667	13.667		
	Н				17.500	17.500	
	J				19.000	19.000	
	C					23.000	
	I						26.000
Test Statistic		.2	.2	4.392	7.682	5.600	.2
Sig. (2-sided test)				.111	.053	.061	•
Adjusted Sig. (2-s	sided test)			.325	.127	.189	
Homogeneous sul	bsets are based on asymp	ototic signif	ficances. The	significanc	ce level is .05.		
¹ Each cell shows	the sample average rank	of Ammon	ia mg/L.				
² Unable to compu	ite because the subset co	ntains only	one sample.				

Table 17. Kruskal-Wallis and post hoc inter-laboratory comparisons for ammonia from FSU CML.

Multiple Comparisons

Dependent Variable: Ammonia mg/L

Bependent	variable. 7 till									
	(I) Method l	ID (J) Method ID	Mean Di	Mean Difference (I-J) S		Sig.	95% Confide	95% Confidence Interval	
								Lower Bound	Upper Bound	
	EPA 350.1	Lachat	10-107-06-1-	.J	.058905*	.012396	.000	.02675	.09106	
	EFA 550.1	SM 45	00 NH3 G		.030238	.012481	.071	00207	.06255	
Dunnett's	Lachat 10-107-	06-1- EPA 3	50.1		058905 [*]	.012396	.000	09106	02675	
T^3	J	SM 45	00 NH3 G		028667 [*]	.001453	.005	03788	01945	
	SM 4500 NH3	EPA 3	50.1		030238	.012481	.071	06255	.00207	
	SM 4300 NH3	Lachat	10-107-06-1-	.J	.028667*	.001453	.005	.01945	.03788	
Me	thod ID	N	Subset for a	lpha = 0.05						
			1	2						
Lachat 10-	-107-06-1-J	3	.04000							
SM 4500 N	NH3 G	3		.06867						

.09890

EPA 350.1

^{*.} The mean difference is significant at the 0.05 level.

Table 18. Post hoc comparisons for ammonia values by method for all reported values for FSU CML.

C. Total Nitrite + Nitrate. Twenty-one of the 24 reported values for FSU CML were within acceptable ranges. Lab E reported all three values outside acceptable ranges, two of which were statistical outliers (0.46 mg/L for both). The %F-pseudosigma value was large (greater than 30%), indicating a lack of precision among laboratories. Of the 24 reported values, 75% were within 1 F-pseudosigma and 88% were within 2 F-pseudosigma. There was no statistical difference among the four methods.

At Alligator Harbor, seven of the 24 results were reported values; the other 71% were reported as qualifiers. There were no statistical outliers. The MDLs ranged from 0.002 to 0.02 mg/L; and the PQLs for Labs A and G ranged from 0.02 to 0.04 mg/L. There were no values reported as less than detection/quantitation limits that were determined to be false negatives. No other analyses were conducted for NO_x for Alligator Harbor, due to the paucity of reported values. See Figures 6 - 8 and Tables 19 – 24 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, inter-laboratory comparisons, and method comparisons.

	N	O_{x}				
		FSU CML				
	F-pseudosigma	% F-pseudosigma	Median	Range		
	0.061	37.87%	0.161	0.321		
Method	N	Mean	Median	Range		
EPA 353.2	15	0.200	0.155	0.321		
Lachat 10-107-04-1-C	3	0.240	0.240	0.000		
SM 4500 N03 F	3	0.180	0.181	0.002		
USGS I-2545-90	3	0.162	0.163	0.002		
		Alligator Harbor	gator Harbor			
	F-pseudosigma	% F-pseudosigma	Median	Range		
	0.065	250.90%	0.026	0.098		
Method	N	Mean	Median	Range		
EPA 353.2	15 (eleven non-values)	0.008	0.002	0.024		
Lachat 10-107-04-1-C	3	0.090	0.090	0.020		
SM 4500 N03 F	3	All Non-detect	N/A	N/A		
USGS I-2545-90	3	All Non-detect	N/A	N/A		

Table 19. F-pseudosigma values for NO_x.

NO_x

			FSU CM	ſL	Alligator Harbor			
Lab ID	N	Lab Median	Range	Mean Z-value	N	Lab Median	Range	Mean Z-value
A	3	0.240	0.000	1.30	3	0.090	0.020	N/A
В	3	0.181	0.002	0.32	3*	NR	NR	NR
C	3	0.163	0.002	0.02	3*	NR	NR	NR
Е	3	0.160	0.001	0.02	3	0.002	0.000	N/A
F	3	0.139	0.003	0.34	3*	NR	NR	NR
G	3	0.460	0.160	4.03	3*	NR	NR	NR
I	3	0.155	0.009	0.14	3*	0.026	N/A	N/A
J	3	0.140	0.000	0.34	3*	NR	NR	NR

Table 20. Summary statistics and Z-values by Laboratory for NO_x.

No	$O_{\mathbf{x}}$	
Method	MDL Range	PQL Range
All	0.002 - 0.02	0.01 - 0.05
EPA 353.2	0.002 - 0.02	0.01 - 0.05
Lachat 10-107-04-1-C	0.0023	0.02
SM 4500 N03 F	0.003	0.012
USGS I-2545-90	0.02	Not Reported

Table 21. Methods and detection/quantitation limits for NO_x.

Descriptives

Total $NO_3 + NO_2 mg/L$

	N	Mean	Std. Deviation	Std. Error	95% Confidence	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	.24000	.000000	.000000	.24000	.24000	.240	.240
В	3	.18033	.001155	.000667	.17746	.18320	.179	.181
C	3	.16233	.001155	.000667	.15946	.16520	.161	.163
E	3	.15967	.000577	.000333	.15823	.16110	.159	.160
F	3	.14000	.001732	.001000	.13570	.14430	.139	.142
G	3	.40667	.092376	.053333	.17719	.63614	.300	.460
I	3	.15267	.004933	.002848	.14041	.16492	.147	.156
J	3	.14000	.000000	.000000	.14000	.14000	.140	.140
Total	24	.19771	.090543	.018482	.15948	.23594	.139	.460

Table 22. Descriptive statistics by laboratory for NO_x for FSU CML.

Descriptives

Total NO3 + NO2 mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	.09000	.010000	.005774	.06516	.11484	.080	.100
E	3	.00200	.000000	.000000	.00200	.00200	.002	.002
Ι	1	.02600	N/A	N/A	N/A	N/A	.026	.026
Total	7	.04314	.045016	.017015	.00151	.08478	.002	.100

Table 23. Descriptive statistics by laboratory for NO_x for Alligator Harbor.

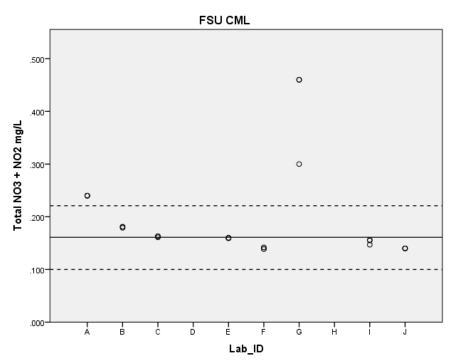


Figure 6. Scatter-plot of NO_x values obtained by eight laboratories for FSU CML. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

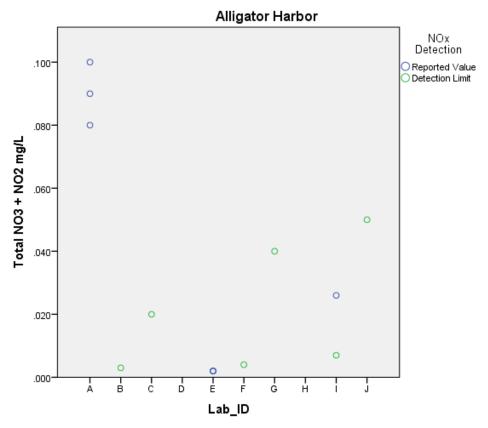
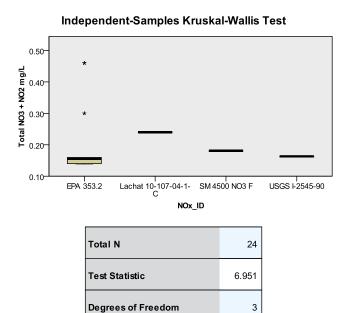



Figure 7. Scatter-plot of NO_x values and detection/quantitation limits obtained by eight laboratories for Alligator Harbor.

	Hypot	hesis	Test Summary				
	Null Hypothesis	Т	est	Sig.	Decision		
1	The distribution of Total NO ₃ + NO ₂ mg/L is the same across categories of Lab_ID.	Independent-Samples Kruskal-Wallis Test		.002	Reject the null hypothesis.		
Asympto	otic significances are displayed. T	he sig	gnificance level is .05.				
	Homogeneous Subset	s bas	ed on Total NO3 + NO	2 mg/L	ı		
				Subse	et		
		1	2	3	4	5	6
	F	3.00	0				
	J	4.00	0				
	I	8.00	0				
C 1 - 1	Е		11.000				
Sample ¹	С			14.000			
	В				17.000		
	A					20.000	
	G						23.000
Test Stat	istic	5.84	3 .2	.2	2	.2	.2
Sig. (2-si	ided test)	.054					
Adjusted Sig. (2-sided test)		.168					
Homoge	neous subsets are based on asymp	totic	significances. The signi	ficance	level is .05.		
Each ce	ll shows the sample average rank	of To	otal NO ₃ + NO ₂ mg/L.				
² Unable	to compute because the subset co	ntains	s only one sample.				

Table 24. Kruskal-Wallis and post hoc inter-laboratory comparisons for NO_x from FSU CML.

- The test statistic is adjusted for ties.
 Multiple comparisons are not performed because the overall test does not show significant differences across samples.

.073

Asymptotic Sig. (2-sided test)

Figure 8. Results of Kruskal-Wallis method comparisons for NO_x from FSU CML.

D. Dissolved Nitrite. Twenty-four of the 27 reported values for FSU CML were within acceptable ranges. Lab G reported two values outside acceptable ranges, and Lab I reported one. There were no statistical outliers. The %F-pseudosigma value was very small (less than 10%), indicating a high degree of precision among laboratories. Of the 27 reported values, 67% were within 1 F-pseudosigma and 89% were within 2 F-pseudosigma. Results derived from Method SM 4500 NO2 B were statistically lower than results from all other methods; Lachat 10-107-04-1-C results were significantly lower than those from USGS I-2540-90, and EPA 353.2 results were equivalent to both Lachat 10-107-04-1-C and USGS I-2540-90.

At Alligator Harbor, six of the 27 results were reported values; the other 78% were reported as qualifiers. There were no statistical outliers. The MDLs ranged from 0.0003 to 0.004 mg/L; and the PQLs for Labs A and G ranged from 0.005 to 0.02 mg/L. There were no values reported as less than detection/quantitation limits that were determined to be false negatives. Method EPA 353.2 was the only method to report values. No other analyses were conducted for DNO₂ for Alligator Harbor. See Figures 9 & 10 and Tables 25 – 31 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, inter-laboratory comparisons, and method comparisons.

	Di	NO_2							
		FSU CML							
	F-pseudosigma	% F-pseudosigma	Median	Range					
	0.007	6.01%	0.111	0.023					
Method	N	Mean	Median	Range					
EPA 353.2	18	0.115	0.111	0.021					
Lachat 10-107-04-1-C	3	0.112	0.113	0.002					
SM 4500 N02 B	3	0.108	0.107	0.002					
USGS I-2540-90	3	0.119	0.119	0.000					
	Alligator Harbor								
	F-pseudosigma	% F-pseudosigma	Median	Range					
	0.001	87.86%	0.001	0.002					
Method	N	Mean	Median	Range					
EPA 353.2	18 (twelve non-values)	0.001	0.001	0.002					
Lachat 10-107-04-1-C	3	All Non-detect	N/A	N/A					
SM 4500 N02 B	3	All Non-detect	N/A	N/A					
USGS I-2540-90	3	All Non-detect	N/A	N/A					

Table 25. F-pseudosigma values for DNO₂.

DNO_2

			FSU CM	IL		Alligator Harbor				
Lab ID	N	Lab Median	Range	Mean Z-value	N	Lab Median	Range	Mean Z-value		
A	3	0.113	0.002	0.19	3*	NR	NR	NR		
В	3	0.107	0.002	0.48	3*	NR	NR	NR		
C	3	0.119	0.000	1.14	3*	NR	NR	NR		
E	3	0.111	0.001	0.05	3	0.002	0.000	N/A		
F	3	0.111	0.001	0.05	3*	NR	NR	NR		
G	3	0.130	0.010	2.24	3*	NR	NR	NR		
Н	3	0.110	0.002	0.09	3	0.0004	0.0003	N/A		
I	3	0.122	0.004	1.76	3*	NR	NR	NR		
J	3	0.110	0.000	0.14	3*	NR	NR	NR		

^{*} One or more non-values reported. NR = all non-values reported.

Table 26. Summary statistics and Z-values by Laboratory for DNO₂.

DNO_2									
Method	MDL Range	PQL Range							
All	0.0003 - 0.004	0.005 - 0.022							
EPA 353.2	0.0003 - 0.004	0.01 - 0.022							
Lachat 10-107-04-1-C	0.002	0.005							
SM 4500 N02 B	0.002	0.008							
USGS I-2540-90	0.001	Not Reported							

Table 27. Methods and detection/quantitation limits for DNO₂.

Descriptives

Dissolved Nitrite mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	.11233	.001155	.000667	.10946	.11520	.111	.113
В	3	.10767	.001155	.000667	.10480	.11054	.107	.109
C	3	.11900	.000000	.000000	.11900	.11900	.119	.119
E	3	.11133	.000577	.000333	.10990	.11277	.111	.112
F	3	.11067	.000577	.000333	.10923	.11210	.110	.111
G	3	.12667	.005774	.003333	.11232	.14101	.120	.130
H	3	.11040	.001153	.000666	.10754	.11326	.110	.112
I	3	.12333	.002309	.001333	.11760	.12907	.122	.126
J	3	.11000	.000000	.000000	.11000	.11000	.110	.110
Total	27	.11460	.006693	.001288	.11195	.11725	.107	.130

Table 28. Descriptive statistics by laboratory for DNO₂ for FSU CML.

Descriptives

Dissolved Nitrite mg/L

DIBBOTTCC	rittitte mg/r	<u>, </u>						
	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
E	3	.00200	.000000	.000000	.00200	.00200	.002	.002
Н	3	.00050	.000173	.000100	.00007	.00093	.000	.001
Total	6	.00125	.000829	.000338	.00038	.00212	.000	.002

Table 29. Descriptive statistics by laboratory for DNO₂ for Alligator Harbor.

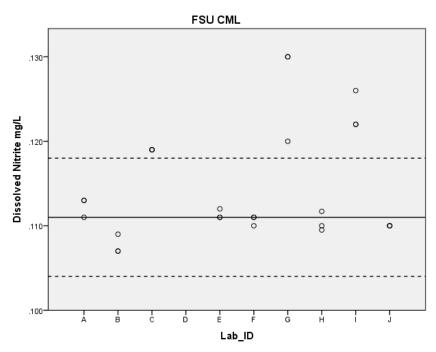


Figure 9. Scatter-plot of DNO_2 values and detection limits obtained by nine laboratories for FSU CML. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

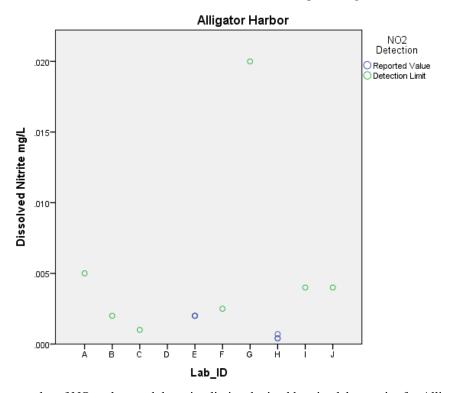


Figure 10. Scatter-plot of NO₂ values and detection limits obtained by nine laboratories for Alligator Harbor.

Dissolved Nitrite mg/L

	Lab_ID	N	Subse	et for alpha =	0.05
			1	2	3
	В	3	.10767		
	J	3	.11000		
	Н	3	.11040		
	F	3	.11067		
Gabriel ^a	E	3	.11133		
Gabrier	A	3	.11233		
	C	3		.11900	
	I	3		.12333	.12333
	G	3			.12667
	Sig.		.375	.490	.854

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 3.000.

Table 30. Post hoc inter-laboratory comparisons for DNO₂ from FSU CML.

Multiple Comparisons

Dependent Variable: Dissolved Nitrite mg/L

	(I) Method ID	(J)	Method ID	Mean Diffe	erence (I-J)	Std. Error	Sig.	95% Confid	lence Interval
								Lower Bound	Upper Bound
		Lachat 1	0-107-04-1-C		.003067	.001867	.495	00237	.00851
	EPA 353.2	SM 4500) N02 B		$.007733^{*}$.001867	.003	.00229	.01317
		USGS I-	2540-90		003600	.001744	.265	00874	.00154
		EPA 353.2		1	003067	.001867	.495	00851	.00237
	Lachat 10-107-04-1	at 10-107-04-1-C SM 4500 N02 B			$.004667^{*}$.000943	.033	.00055	.00878
D T3	I	USGS I-	USGS I-2540-90		006667*	.000667	.030	01176	00157
Dunnett's T ³		EPA 353	3.2	1	007733*	.001867	.003	01317	00229
	SM 4500 N02 B	Lachat 1	Lachat 10-107-04-1-C		004667*	.000943	.033	00878	00055
		USGS I-	USGS I-2540-90		011333*	.000667	.010	01643	00624
		EPA 353	3.2		.003600	.001744	.265	00154	.00874
	USGS I-2540-90	Lachat 1	0-107-04-1-C	İ	$.006667^*$.000667	.030	.00157	.01176
		SM 4500	SM 4500 N02 B		.011333*	.000667	.010	.00624	.01643
M	ethod ID	N	Subs	et for alpha =	0.05				
			1	2	3				

Method ID	N	Subset for alpha = 0.05					
		1	2	3			
SM 4500 N02 B	3	.10767					
Lachat 10-107-04-1-C	3		.11233				
EPA 353.2	18		.11540	.11540			
USGS I-2540-90	3			.11900			

^{*.} The mean difference is significant at the 0.05 level.

Table 31. Post hoc comparisons for DNO_2 values by method for FSU CML.

E. Total Phosphorus. All of the 27 reported values for FSU CML were within acceptable ranges. There were no outliers or non-values reported. The %F-pseudosigma value was moderate (between 10 and 20%), indicating a high degree of precision among laboratories. Of the 27 reported values, 78% were within 1 F-pseudosigma and 100% were within 2 F-pseudosigma. Method EPA 365.4 was significantly higher than the other two methods.

At Alligator Harbor, 22 of the 26 values were within acceptable ranges. Labs B and I reported two values outside acceptable ranges. Lab G reported the only non-value; however, this was not a false-negative. The %F-pseudosigma value was high (greater than 30%), indicating a lack of precision among laboratories. Of the 26 reported values, 69% were within 1 F-pseudosigma and 85% were within 2 F-pseudosigma. Results derived from Method EPA 365.1 were statistically lower than those from the other two methods. See Figures 11 & 12 and Tables 31 – 38 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, inter-laboratory comparisons, and method comparisons.

TP									
		FSU CML							
	F-pseudosigma	% F-pseudosigma	Median	Range					
	0.030	19.77%	0.150	0.082					
Method	N	Mean	Median	Range					
EPA 365.1	15	0.141	0.141	0.029					
EPA 365.4	9	0.189	0.190	0.049					
Lachat 10-115-01-1-C	3	0.153	0.150	0.030					
		Alligator Harbor							
	F-pseudosigma	% F-pseudosigma	Median	Range					
	0.024	54.33%	0.044	0.070					
Method	N	Mean	Median	Range					
EPA 365.1	15	0.039	0.038	0.013					
EPA 365.4	9 (one non-value)	0.086	0.093	0.035					
Lachat 10-115-01-1-C	3	0.067	0.044	0.070					

Table 31. F-pseudosigma values for TP.

TP

			FSU CM	L	Alligator Harbor			
Lab ID	N	Lab Median	Range	Mean Z-value	N	Lab Median	Range	Mean Z-value
A	3	0.150	0.030	0.11	3	0.070	0.010	0.94
В	3	0.204	0.006	1.82	3	0.094	0.002	2.06
C	3	0.155	0.004	0.12	3	0.038	0.003	0.24
E	3	0.148	0.001	0.06	3	0.036	0.000	0.33
F	3	0.141	0.001	0.31	3	0.036	0.005	0.35
G	3	0.190	0.010	1.22	3*	0.070	0.00	1.08
Н	3	0.128	0.018	0.58	3	0.044	0.006	0.03
I	3	0.180	0.028	0.84	3	0.098	0.035	1.90
J	3	0.130	0.000	0.67	3	0.043	0.003	0.06

^{*} One non-value reported.

Table 32. Summary statistics and Z-values by Laboratory for TP.

Descriptives

Total Phosphorus mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	.15333	.015275	.008819	.11539	.19128	.140	.170
В	3	.20467	.003055	.001764	.19708	.21226	.202	.208
C	3	.15367	.002309	.001333	.14793	.15940	.151	.155
E	3	.14833	.000577	.000333	.14690	.14977	.148	.149
F	3	.14067	.000577	.000333	.13923	.14210	.140	.141
G	3	.18667	.005774	.003333	.17232	.20101	.180	.190
H	3	.13267	.009866	.005696	.10816	.15717	.126	.144
I	3	.17533	.014572	.008413	.13914	.21153	.159	.187
J	3	.13000	.000000	.000000	.13000	.13000	.130	.130
Total	27	.15837	.025314	.004872	.14836	.16838	.126	.208

Table 33. Descriptive statistics by laboratory for TP for FSU CML.

Descriptives

Total Phosphorus mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	.06667	.005774	.003333	.05232	.08101	.060	.070
В	3	.09333	.001155	.000667	.09046	.09620	.092	.094
C	3	.03833	.001528	.000882	.03454	.04213	.037	.040
E	3	.03600	.000000	.000000	.03600	.03600	.036	.036
F	3	.03567	.002517	.001453	.02942	.04192	.033	.038
G	2	.07000	.000000	.000000	.07000	.07000	.070	.070
Н	3	.04333	.003055	.001764	.03574	.05092	.040	.046
I	3	.08967	.018930	.010929	.04264	.13669	.068	.103
J	3	.04267	.001528	.000882	.03887	.04646	.041	.044
Total	26	.05681	.023252	.004560	.04742	.06620	.033	.103

Table 34. Descriptive statistics by laboratory for TP for Alligator Harbor.

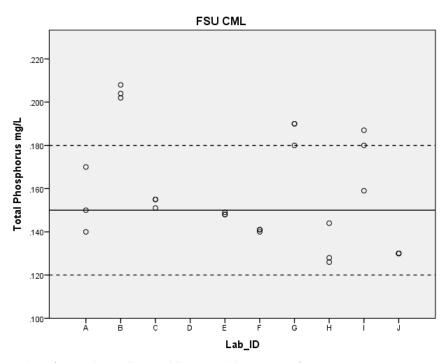


Figure 11. Scatter-plot of TP values obtained by nine laboratories for FSU CML. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

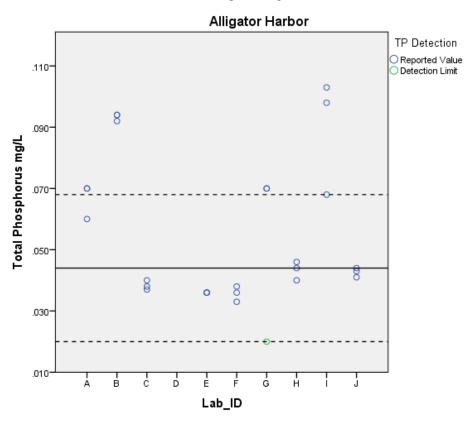


Figure 12. Scatter-plot of TP values and one detection limit obtained by nine laboratories for Alligator Harbor. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

Hypothesis Test Summary							
	Null Hypothesis]	Test	Sig.	Decision		
1	The distribution of Total Phosphorus mg/L is the same across categories of Lab_ID.		ndependent-Samples Kruskal-Wallis Test	.003	Reject the null hypothesis.		
Asymptotic significances are displayed. The significance level is .05.							
Homogeneous Subsets based on Total Phosphorus mg/L							
Subset							
		1	2	3	4	5	
	J	4.000					
	Н	4.333	4.333				
	F	7.833	7.833				
	Е	12.00	12.000	12.000			
Sample ¹	A	13.16	13.167	13.167			
	С		16.000	16.000			
	I			20.167	20.167		
	G				22.500		
	В					26.000	
Test Stat	istic	9.139	9.241	7.256	1.818	.2	
Sig. (2-si	ided test)	.058	.055	.064	.178		
Adjusted	Sig. (2-sided test)	.112	.108	.153	.624		
Homoge	neous subsets are based on asy	mptot	ic significances. The si	gnifican	ce level is .05.		
¹ Each ce	ll shows the sample average ra	nk of	Total Phosphorus mg/L	<i>.</i> .			
² Unable	to compute because the subset	conta	ins only one sample.				

Table 35. Kruskal-Wallis and nonparametric post hoc inter-laboratory comparisons for TP for FSU CML.

Hypothesis Test Summary							
	Null Hypothesis	Test			Sig.	Decision	
1	The distribution of Total Phosphorus mg/L is the sam across categories of Lab_ID			dependent-Samples uskal-Wallis Test	.003 Reject the nu hypothesis.		
Asympto	otic significances are displaye	d. T	he	significance level is	.05.		
Homogeneous Subsets based on Total Phosphorus mg/L							
				Subs	et		
		1		2	3	4	
	E	3.5	00				
	F		00				
	C	7.6	67	7.667			
	J			12.167	12.16	7	
Sample ¹	Н			12.667	12.66	7 12.667	
	A				18.33	3 18.333	
	G					19.500	
	I					22.667	
	В					23.000	
Test Stat	istic	4.1	83	4.949	5.582	9.467	
Sig. (2-si	ided test)	.12	3	.084	.061	.050	
Adjusted Sig. (2-sided test) .356 .254 .190 .098							
Homogeneous subsets are based on asymptotic significances. The significance level is .05.							
¹ Each ce	ll shows the sample average i	ank	of	Total Phosphorus m	g/L.		

Table 36. Kruskal-Wallis test and results of nonparametric inter-laboratory comparisons of TP for Alligator Harbor.

Total Phosphorus mg/L

Tukey-Kramer^{a,b}

Method ID	N	Subset for alpha = 0.05		
		1	2	
EPA 365.1	15	.14107		
Lachat 10-115-01-1-C	3	.15333		
EPA 365.4	9		.18889	
Sig.		.229	1.000	

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 5.870.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Table 37. Post hoc comparisons for TP values by method for FSU CML.

Multiple Comparisons

Dependent Variable: Total Phosphorus mg/L

	(I) Metho	d ID (J) Method ID		Mean I	nn Difference (I-J) Std. Error		Sig.	95% Confide	ence Interval
								Lower Bound	Upper Bound
	EPA 365.1	EP	A 365.4		039578*	.008650	.005	06502	01413
	EPA 303.1	Lac	chat 10-115-01-1-C		027467*	.003472	.021	04614	00879
Dunnett's T ³	EDA 265 4	EP.	A 365.1	1	$.039578^*$.008650	.005	.01413	.06502
Dunnett 8 1	EPA 303.4	Lac	chat 10-115-01-1-C		.012111	.009219	.499	01411	.03833
	Lachat 10-115	OL LC EP	A 365.1	1	$.027467^{*}$.003472	.021	.00879	.04614
	Lachat 10-113	-01-1-C EP.	A 365.4		012111	.009219	.499	03833	.01411
Meth	od ID	N	Subset for alpha =	= 0.05					

Method ID	N	Subset for alpha $= 0.0$	
		1	2
EPA 365.1	15	.03920	
Lachat 10-115-01-1-C	3		.06667
EPA 365.4	9		.07878

^{*.} The mean difference is significant at the 0.05 level.

Table 38. Post hoc comparisons for TP values by method for all reported values for Alligator Harbor.

F. Orthophosphate. Twenty-six of the 27 reported values for FSU CML were within acceptable ranges. Lab A reported the only value outside acceptable ranges; this was a statistical outlier (0.111 mg/L). The %F-pseudosigma value was very low (less than 10%), indicating a high degree of precision among laboratories. Of the 27 reported values, 74% were within 1 F-pseudosigma and 96% were within 2 F-pseudosigma. There was no statistically significant difference between use of methods EPA 365.1, SM 4500 P E and SM 4500 P F, whereas results from USGS I-2601-90 were significantly greater than those using the three previous methods; results obtained from Lachat 10-115-01-1-I were significantly higher than all other methods.

At Alligator Harbor, six of the 27 results were reported values; the other 78% were reported as qualifiers. The MDLs ranged from 0.0019 to 0.009 mg/L; and the PQLs for Labs A and G ranged from 0.005 to 0.04 mg/L. There were no values reported as less than detection/quantitation limits that were determined to be false negatives. Methods EPA 365.1 and USGS I-2601-90 were the only methods to report values. No other analyses were conducted for OP for Alligator Harbor. See Figures 13 & 14 and Tables 39 – 45 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, inter-laboratory comparisons, and method comparisons.

OP								
		FSU CML						
	F-pseudosigma	% F-pseudosigma	Median	Range				
	0.007	8.24%	0.090	0.032				
Method	N	Mean	Median	Range				
EPA 365.1	12	0.087	0.086	0.015				
Lachat 10-115-01-1-I	3	0.102	0.098	0.014				
SM 4500 P E	3	0.083	0.083	0.002				
SM 4500 P F	6	0.088	0.088	0.004				
USGS I-2601-90	3	0.094	0.094	0.001				
		Alligator Harbor						
	F-pseudosigma	% F-pseudosigma	Median	Range				
	0.002	28.54%	0.006	0.003				
Method	N	Mean	Median	Range				
EPA 365.1	12 (nine non-values)	0.005	0.005	0.001				
Lachat 10-115-01-1-I	3	All Non-detect	N/A	N/A				
SM 4500 P E	3	All Non-detect	N/A	N/A				
SM 4500 P F	6	All Non-detect	N/A	N/A				
USGS I-2601-90	3	0.007	0.007	0.001				

Table 39. F-pseudosigma values for OP.

OP

			FSU CM	IL	Alligator Harbor			
Lab								
ID	N	Lab Median	Range	Mean Z-value	N	Lab Median	Range	Mean Z-value
A	3	0.098	0.014	1.71	3*	NR	NR	NR
В	3	0.090	0.000	0.00	3*	NR	NR	NR
C	3	0.094	0.001	0.62	3	0.007	0.001	N/A
Е	3	0.085	0.001	0.67	3	0.005	0.001	N/A
F	3	0.086	0.000	0.57	3*	NR	NR	NR
G	3	0.090	0.010	0.48	3*	NR	NR	NR
Н	3	0.082	0.003	1.29	3*	NR	NR	NR
I	3	0.083	0.002	1.00	3*	NR	NR	NR
J	3	0.094	0.001	0.52	3*	NR	NR	NR

^{*} One or more non-values reported. NR = all non-values reported.

Table 40. Summary statistics and Z-values by Laboratory for OP.

OP		
Method	MDL Range	PQL Range
All	0.0019 - 0.009	0.005 - 0.04
EPA 365.1	0.0019 - 0.008	0.01 - 0.04
Lachat 10-115-01-1-I	0.0025	0.005
SM 4500 P E	0.008	0.032
SM 4500 P F	0.004 - 0.009	0.016 - 0.036
USGS I-2601-90	0.004	Not Reported

Table 41. Methods and detection/quantitation limits for OP.

Descriptives

Orthophosphate mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	.10200	.007810	.004509	.08260	.12140	.097	.111
В	3	.09000	.000000	.000000	.09000	.09000	.090	.090
C	3	.09433	.000577	.000333	.09290	.09577	.094	.095
E	3	.08533	.000577	.000333	.08390	.08677	.085	.086
F	3	.08600	.000000	.000000	.08600	.08600	.086	.086
G	3	.08667	.005774	.003333	.07232	.10101	.080	.090
Н	3	.08100	.001732	.001000	.07670	.08530	.079	.082
I	3	.08300	.001000	.000577	.08052	.08548	.082	.084
J	3	.09367	.000577	.000333	.09223	.09510	.093	.094
Total	27	.08911	.006913	.001330	.08638	.09185	.079	.111

Table 42. Descriptive statistics by laboratory for OP for FSU CML.

Descriptives

Orthophosphate mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
С	3	.00680	.000286	.000165	.00609	.00751	.006	.007
E	3	.00467	.000577	.000333	.00323	.00610	.004	.005
Total	6	.00573	.001238	.000505	.00443	.00703	.004	.007

Table 43. Descriptive statistics by laboratory for OP for Alligator Harbor.

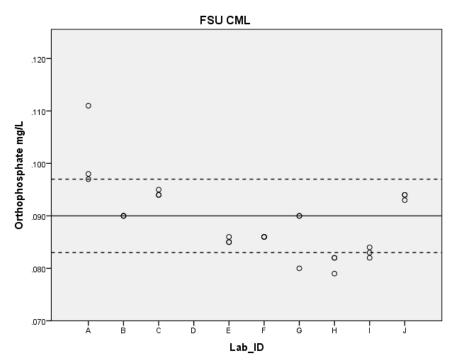


Figure 13. Scatter-plot of OP values obtained by nine laboratories for FSU CML. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

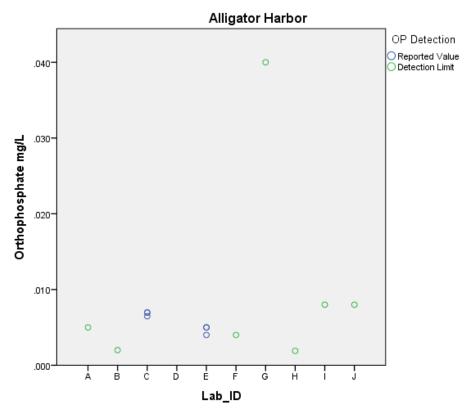


Figure 14. Scatter-plot of OP values and detection/quantitation limits obtained by nine laboratories for Alligator Harbor.

Hypothesis Test Summary									
	Null Hypothesis	Test			Sig.	Deci	Decision		
1	The distribution of Orthophosphate mg/L is the same across categories of Lab_ID.	Independent-Samples Kruskal-Wallis Test		(1()-		et the null thesis.			
Asympto	tic significances are displayed	d. Tł	ne si	ignificance leve	l is .05.				
Homogeneous Subsets based on Orthophosphate mg/L									
			Subset						
		1		2	3		4		
	Н	3.000							
	I	5.66	57	5.667					
	E	9.50	00	9.500					
	G	11.3	333	11.333					
Sample ¹	F	11.5	500	11.500					
	В			16.000					
	J				20.6	67			
	C				22.3	33			
	A						26.000		
Test Statistic		7.78	31	8.495	1.66	7	.2		
Sig. (2-sided test))	.075	.197				
Adjusted Sig. (2-sided test))	.144	.666				
Homoger .05.	neous subsets are based on as	ymp	totio	e significances.	The sign	ificanc	e level is		
¹ Each cel	ll shows the sample average r	ank	of C	Orthophosphate	mg/L.				
² Unable 1	to compute because the subse	t cor	ntair	ns only one sam	ple.				

Table 44. Kruskal-Wallis test and results of nonparametric pair-wise comparisons of OP for FSU CML.

	Hypothesis Te	est Sumr	nary		
	Null Hypothesis	Test		Sig.	Decision
	The medians of Orthophosphate mg/L are the same across categories of OP_ID.	Indepen Samples Median	S	.002	Reject the null hypothesis.
2	The distribution of Orthophosphate mg/L is the same across categories of OP_ID.	Indepen Samples Kruskal Test	S	.004	Reject the null hypothesis.
Asympto	tic significances are displayed. The	significa	nce leve	l is .05.	
	Homogeneous Subsets based	l on Ort	hophosp	hate mg	/L
			Subset		
		1	2	3	
	SM 4500 P E	5.667			
	EPA 365.1	11.125			
Sample ¹	SM 4500 P F	13.750			
	USGS I-2601-90		22.333		
	Lachat 10-115-01-1-I			26.000	
Test Stat	istic	3.477	.2	.2	
Sig. (2-si	ided test)	.176			
Adjusted	Sig. (2-sided test)	.275			
	neous subsets are based on asymptotic nee level is .05.	ic signifi	cances.	The	
¹ Each ce	ll shows the sample average rank of	Orthopho	osphate 1	mg/L.	
² Unable	to compute because the subset contain	ns only	one sam	ple.	

Table 45. Kruskal-Wallis test and results of nonparametric pair-wise comparisons of OP by method for FSU CML.

G. Total Organic Carbon. Although there were only eighteen reported values for TOC at both locations (vs. the 21 needed) analyses were run; however, caution should be exercised in interpreting the results due to the lack of statistical power. Fifteen of the eighteen reported values for FSU CML were within acceptable ranges. Lab A reported all three values outside acceptable ranges. No results were reported as below detection limits. The %F-pseudosigma value was moderate (>20% and <30%), indicating a lack of precision among laboratories. Of the eighteen reported values, 78% were within 1 F-pseudosigma and 83% were within 2 F-pseudosigma. There was no statistical difference between the three methods used.

At Alligator Harbor, fourteen of the eighteen values were within acceptable ranges. Lab A reported all values outside acceptable ranges, Lab G reported one. The %F-pseudosigma value was very low (less than 10%), indicating a high degree of precision among the laboratories. Of the eighteen reported values, 50% were within 1 F-pseudosigma and 78% were within 2 F-pseudosigma. There was no statistical difference between the three methods used. At both sites, Lab A reported values that were 1.6 - 2.7 times greater than all the other laboratories' results, and may be due to a faulty SO_3 scrubber. See Figures 14 & 17 and Tables 46 - 51 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, inter-laboratory comparisons, and method comparisons.

	T	OC		
		FSU CML		
	F-pseudosigma	% F-pseudosigma	Median	Range
	0.014	25.36%	3.58	5.30
Method	N	Mean	Median	Range
EPA 415.1	3	3.43	3.49	0.32
SM 5310 B	9	3.87	3.70	1.39
SM 5310 C	6	5.50	5.30	5.30
		Alligator Harbor		
	F-pseudosigma	% F-pseudosigma	Median	Range
	0.019	9.62%	5.14	8.70
Method	N	Mean	Median	Range
EPA 415.1	3	5.01	4.95	0.18
SM 5310 B	9	5.71	5.93	1.50
SM 5310 C	6	7.60	7.95	8.70

Table 46. F-pseudosigma values for TOC.

TOC

			FSU CM	L	Alligator Harbor				
Lab ID	N	Lab Median	Range	Mean Z-value	N	Lab Median	Range	Mean Z-value	
A	3	8.10	0.70	6.31	3	11.00	0.80	6.12	
В	3	4.20	0.77	1.16	3	6.20	0.10	1.08	
F	3	3.51	0.03	0.11	3	5.14	0.86	0.24	
G	3	3.00	0.00	0.83	3	4.00	2.00	1.15	
Н	3	3.49	0.32	0.21	3	4.95	0.18	0.13	
J	3	3.70	0.30	0.22	3	5.10	1.50	0.40	

^{*} One non-value reported. NR = All non-values reported.

Table 47. Summary statistics and Z-values by Laboratory for TOC.

Descriptives

Total Organic Carbon mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	8.0000	.36056	.20817	7.1043	8.8957	7.60	8.30
В	3	4.3900	.41869	.24173	3.3499	5.4301	4.10	4.87
F	3	3.5000	.01732	.01000	3.4570	3.5430	3.48	3.51
G	3	3.0000	.00000	.00000	3.0000	3.0000	3.00	3.00
H	3	3.4300	.16823	.09713	3.0121	3.8479	3.24	3.56
J	3	3.7333	.15275	.08819	3.3539	4.1128	3.60	
Total	18	4.3422	1.74896	.41223	3.4725	5.2120	3.00	8.30

Table 48. Descriptive statistics by laboratory for TOC from FSU CML.

Descriptives

Total Organic Carbon mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	11.2000	.43589	.25166	10.1172	12.2828	10.90	11.70
В	3	6.2133	.05132	.02963	6.0859	6.3408	6.17	6.27
F	3	5.3800	.47760	.27574	4.1936	6.5664	5.07	5.93
G	3	4.0000	1.00000	.57735	1.5159	6.4841	3.00	5.00
Н	3	5.0100	.10392	.06000	4.7518	5.2682	4.95	5.13
J	3	5.5333	.83865	.48419	3.4500	7.6167	5.00	6.50
Total	18	6.2228	2.44203	.57559	5.0084	7.4372	3.00	11.70

Table 49. Descriptive statistics by laboratory for TOC from Alligator Harbor.

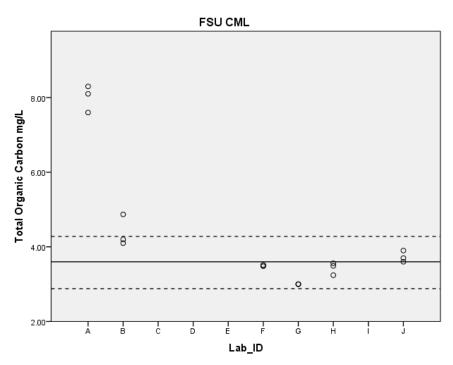


Figure 14. Scatter-plot of TOC values obtained by six laboratories for FSU CML. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

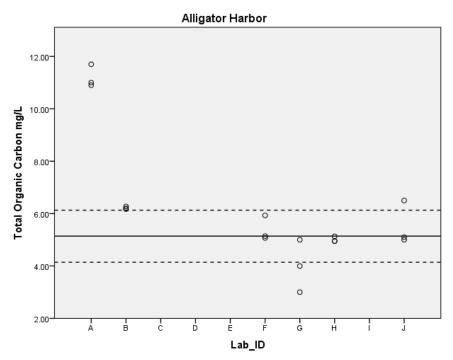
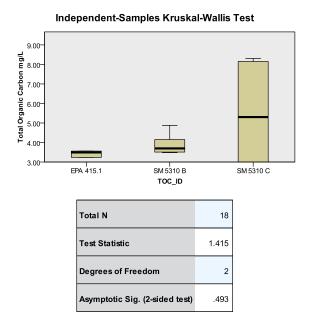


Figure 15. Scatter-plot of TOC values obtained by six laboratories for Alligator Harbor. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

Hypothesis Test Summary									
	Null Hypothesis	T	est	Sig.	Decision				
1	The distribution of Total Organic Carbon mg/L is the same across categories of Lab_ID.		ndependent-Samples Truskal-Wallis Test	.006	Reject the null hypothesis.				
Asympto	tic significances are displaye	ed. Tl	he significance level i	s .05.					
Homogeneous Subsets based on Total Organic Carbon mg/L									
			Subs	set					
		1	2	3	4				
	G	2.000	0						
	Н	6.333	6.333						
Sample ¹	F	6.66	6.667						
Sample	J		11.000						
	В			14.000					
	A				17.000				
Test Stat	istic	5.658	5.468	.2	.2				
Sig. (2-si	ided test)	.059	.065						
Adjusted	Sig. (2-sided test)	.184	.201						
Homogeneous subsets are based on asymptotic significances. The significance level is .05.									
¹ Each cel	ll shows the sample average	rank	of Total Organic Carl	oon mg/L.					
² Unable t	to compute because the subs	et cor	ntains only one sampl	e.					

Table 50. Kruskal-Wallis test and results of nonparametric pair-wise comparisons of TOC by laboratory for all reported values for FSU CML.


Total Organic Carbon mg/L

Total Organic Carbon hig/L										
	Lab_ID	N	Subse	et for alpha =	0.05					
			1	2	3					
	G	3	4.0000							
	Н	3	5.0100	5.0100						
	F	3	5.3800	5.3800						
Gabriel ^a	J	3	5.5333	5.5333						
	В	3		6.2133						
	A	3			11.2000					
	Sig.		.098	.291	1.000					

Means for groups in homogeneous subsets are displayed.

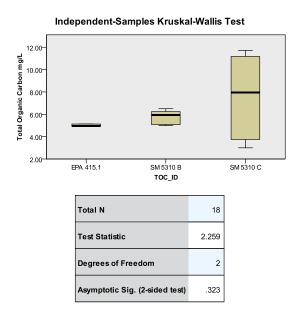

a. Uses Harmonic Mean Sample Size = 3.000.

Table 51. Post hoc inter-laboratory comparisons for TOC from Alligator Harbor.

- The test statistic is adjusted for ties.
 Multiple comparisons are not performed because the overall test does not show significant differences across samples.

Figure 16. Results of Kruskal-Wallis test of TOC by method for FSU CML.

- The test statistic is adjusted for ties.
 Multiple comparisons are not performed because the overall test does not show significant differences across samples.

Figure 17. Results of Kruskal-Wallis test of TOC by method for Alligator Harbor.

H. Chlorophyll a. Twenty-five of the 27 reported values for FSU CML were within acceptable ranges. Lab I each reported one value outside acceptable ranges. Lab I reported one statistical outlier ($12 \mu g/L$). Lab I's results were also highly variable. The %F-pseudosigma value was large (greater than 30%), indicating a lack of precision among laboratories. Of the 27 reported values, 81% were within 1 F-pseudosigma and 93% were within 2 F-pseudosigma. There was no statistical difference in ChlA methods at this site.

At Alligator Harbor, all 27 values were within acceptable ranges. There were no outliers or non-values reported. The %F-pseudosigma value was moderate (between 20 and 30%), indicating a lack of precision among the laboratories. Of the 27 reported values, 78% were within 1 F-pseudosigma and 100% were within 2 F-pseudosigma. Results reported for method SM 10200 H were significantly greater than those reported for EPA 445.0. See Figures 18 - 20 and Tables 52 – 58 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, inter-laboratory comparisons, and method comparisons.

	Chlor	ophyll a							
		FSU CML							
	F-pseudosigma	% F-pseudosigma	Median	Range					
	1.96	36.79%	3.58	5.30					
Method	N	Mean	Median	Range					
EPA 445.0	9	6.28	6.60	2.75					
SM 10200 H	18	5.56	4.89	10.93					
	Alligator Harbor								
	F-pseudosigma	% F-pseudosigma	Median	Range					
	3.11	28.30%	11.00	8.75					
Method	N	Mean	Median	Range					
EPA 445.0	9	8.17	8.00	2.14					
SM 10200 H	18	11.44	11.85	8.75					

Table 52. F-pseudosigma values for ChlA.

ChlA

		_	FSU CM	īL	Alligator Harbor			
Lab ID	N	Lab Median	Range	Mean Z-value	N	Lab Median	Range	Mean Z-value
A	3	6.60	0.60	0.61	3	8.00	0.60	1.03
В	3	6.90	1.70	0.81	3	12.70	1.50	0.60
D	3	5.12	1.06	0.11	3	8.34	1.44	0.77
Е	3	4.27	4.27	0.91	3	12.82	4.27	0.81
F	3	4.32	0.65	0.42	3	11.93	0.16	0.28
G	3	7.25	0.37	0.94	3	7.78	1.82	0.94
Н	3	4.84	0.43	0.26	3	8.07	0.90	1.01
I	3	9.00	5.00	2.04	3	11.00	0.00	0.00
J	3	4.20	0.20	0.58	3	13.00	6.40	0.17

Table 53. Summary statistics by Laboratory for ChlA.

Descriptives

Chlorophyll a µg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence l	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	6.5333	.30551	.17638	5.7744	7.2922	6.20	6.80
В	3	6.9333	.85049	.49103	4.8206	9.0461	6.10	7.80
D	3	5.1200	.53000	.30600	3.8034	6.4366	4.59	5.65
E	3	3.5600	2.22178	1.28274	-1.9592	9.0792	1.07	5.34
F	3	4.5167	.36692	.21184	3.6052	5.4282	4.29	4.94
G	3	7.1867	.19296	.11141	6.7073	7.6660	6.97	7.34
Н	3	4.8367	.21502	.12414	4.3025	5.3708	4.62	5.05
I	3	9.3333	2.51661	1.45297	3.0817	15.5849	7.00	12.00
J	3	4.2000	.10000	.05774	3.9516	4.4484	4.10	4.30
Total	27	5.8022	2.01651	.38808	5.0045	6.5999	1.07	12.00

Table 54. Descriptive statistics by laboratory for ChlA for FSU CML.

Descriptives

Chlorophyll a µg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	7.8000	.34641	.20000	6.9395	8.6605	7.40	8.00
В	3	12.8667	.76376	.44096	10.9694	14.7640	12.20	13.70
D	3	8.6133	.75791	.43758	6.7306	10.4961	8.03	9.47
E	3	13.5300	2.22178	1.28274	8.0108	19.0492	11.75	16.02
F	3	11.8833	.08963	.05175	11.6607	12.1060	11.78	11.94
G	3	8.0867	.94796	.54731	5.7318	10.4415	7.33	9.15
Н	3	7.8367	.49329	.28480	6.6113	9.0621	7.27	8.17
I	3	11.0000	.00000	.00000	11.0000	11.0000	11.00	11.00
J	3	11.5333	3.44287	1.98774	2.9808	20.0859	7.60	14.00
Total	27	10.3500	2.50514	.48211	9.3590	11.3410	7.27	16.02

Table 55. Descriptive statistics by laboratory for ChlA for Alligator Harbor.

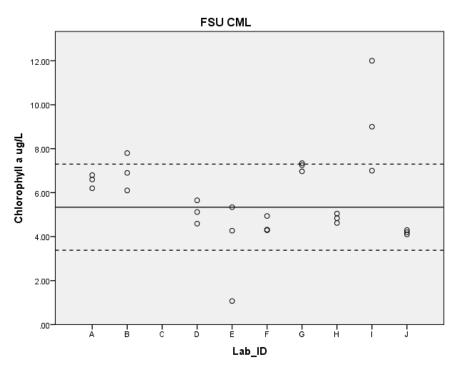


Figure 18. Scatter-plot of ChlA values obtained by nine laboratories for FSU CML. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

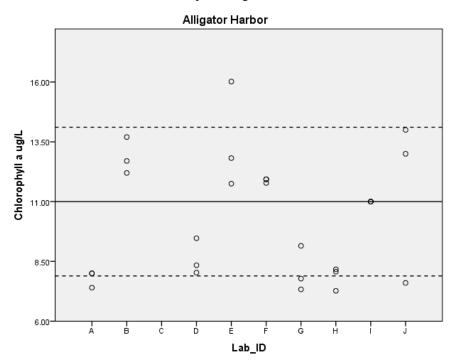
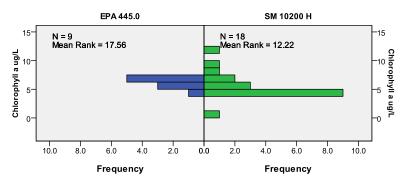


Figure 19. Scatter-plot of ChlA values obtained by nine laboratories for Alligator Harbor. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

	Hypot	hesis	з Те	est Summary					
	Null Hypothesis		Tes	st	Sig.	Decision			
1	The distribution of Chlorophyll a µg/L is the sa across categories of Lab_ID	ıme		ependent-Samples ıskal-Wallis Test	.004	Reject the null hypothesis.			
Asympto	otic significances are display	ed. 7	Гће	significance level is	.05.				
Homogeneous Subsets based on Chlorophyll a μg/L									
				Subse	et				
		1		2	3	4			
	J	3.66	57						
	Е	6.33	33	6.333					
	F	7.66	57	7.667					
	Н	10.3	333	10.333					
Sample ¹	D	12.0	000	12.000	12.00	0			
	A			18.000	18.00	0 18.000			
	В				20.33	20.333			
	G					22.667			
	I					25.000			
Test Stat	istic	6.46	57	8.633	5.600	6.282			
Sig. (2-si	ided test)	.167	7	.071	.061	.099			
Adjusted	Sig. (2-sided test)	.306	5	.137	.189	.229			
Homoge .05.	neous subsets are based on a	ısym	pto	tic significances. The	e signi	ficance level is			
¹ Each ce	ll shows the sample average	rank	cof	Chlorophyll a µg/L.					


Table 56. Kruskal-Wallis test and results of nonparametric inter-laboratory comparisons of ChlA from FSU CML.

Hypothesis Test Summary							
	Null Hypothesis		Tes	st	Sig.	Decision	
1	The distribution of Chlorophyll a µg/L is the same across categories of Lab_ID.			ependent-Samples ıskal-Wallis Test	.019	Reject the	
Asymptotic significances are displayed. The significance level is .05.							
	Homogeneous Subs	ets l	oase	ed on Chlorophyll a	μg/L		
				Subset			
		1		2	3		
	A	5.33	33				
	G	6.33	33				
	Н		67	6.667			
	D	10.	667	10.667	10.66	7	
Sample ¹	I	15.0	000	15.000	15.000		
	J	18.000		18.000	18.000		
	F	19.0	000	19.000	19.00	0	
	Е			22.333	22.333		
	В				22.66	7	
Test Stat	istic	12.0	022	10.494	9.413		
Sig. (2-sided test)		.06	1	.062	.094		
Adjusted Sig. (2-sided test) .087 .102 .151							
Homogeneous subsets are based on asymptotic significances. The significance level is .05.							
Each ce	ll shows the sample average	ranl	c of	Chlorophyll a µg/L.			

Table 57. Kruskal-Wallis test and results of nonparametric inter-laboratory comparisons of ChlA for Alligator Harbor.

Independent-Samples Mann-Whitney U Test

Total N	27
Mann-Whitney U	113.000
Wilcoxon W	158.000
Test Statistic	113.000
Standard Error	19.442
Standardized Test Statistic	1.646
Asymptotic Sig. (2-sided test)	.100
Exact Sig. (2-sided test)	.106

Figure 20. Results of Mann-Whitney test of ChlA by method for FSU CML.

Group Statistics

				Std.	Std. Error
Method ID		N	Mean	Deviation	Mean
Chlorophyll a µg/L	SM 10200 H	18	11.4417	2.35906	.55604
	EPA 445.0	9	8.1667	.72519	.24173

Independent Samples Test

					it bumpies iv					
		Equ	e's Test for uality of riances			t-tes	t for Equality o	of Means		
		F	c:	Sig. (2- Mean Std. Error 95% Confidence Int of the Difference			fference			
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
Chlorophyll a µg/L	Equal variances assumed	5.756	.024	4.035	25	.000	3.27500	.81164	1.60339	4.94661
	Equal variances not assumed			5.402	22.338	.000	3.27500	.60631	2.01870	4.53130

Table 58. Results of t-test comparisons of ChlA by method for Alligator Harbor.

I. Biochemical Oxygen Demand. Ten of the eighteen results for FSU CML were reported as values; the other 44% were reported as qualifiers. The MDLs for all participating laboratories ranged from 0.1 to 2 mg/L; the PQLs for Labs A, E and G ranged from 2 to 3 mg/L. No other analyses were conducted for BOD for FSU CML.

At Alligator Harbor, Fifteen of the eighteen results were reported values; the other 17% were reported as qualifiers. The MDLs for all participating laboratories ranged from 0.1 to 2 mg/L; the PQLs for Labs A, E and G ranged from 2 to 3 mg/L. There were no values reported as less than detection/quantitation limits that were determined to be false negatives for either site. No other analyses were conducted for BOD for Alligator Harbor. See Figures 21 - 23 and Tables 59 - 63 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, inter-laboratory comparisons, and method comparisons.

Biochemical Oxygen Demand							
	F-pseudosigma	% F-pseudosigma	Mean	Median	Range		
FSU CML	0.11	5.56%	2.05	2.00	1.80		
Alligator Harbor	0.96	24.71%	3.17	3.40	1.80		

Table 59. F-pseudosigma values for BOD.

BOD

		FSU CML				Alligator Harbor			
Lab ID	N	Lab Median	Range	Mean Z-value	N	Lab Median	Range	Mean Z-value	
A	3	NR	NR	NR	3	2.30	0.40	N/A	
В	3	1.90	0.80	N/A	3	2.50	0.10	N/A	
Е	3*	2.10	N/A	N/A	3	3.60	0.30	N/A	
G	3	NR	NR	NR	3	NR	NR	NR	
I	3	2.00	1.00	N/A	3	4.00	0.00	N/A	
J	3	2.10	0.20	N/A	3	3.40	0.50	N/A	

^{*} One non-value reported. NR = All non-values reported.

Table 60. Summary statistics and Z-values by Laboratory for BOD.

BOD						
Method	MDL Range	PQL Range				
SM 5210 B	0.1 - 2	0.4 - 3				

Table 61. Method and detection/quantitation limits for BOD.

Descriptives

Biochemical Oxygen Demand mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
В	3	1.7000	.43589	.25166	.6172	2.7828	1.20	2.00
E	1	2.1000	N/A	N/A	N/A	N/A	2.10	2.10
I	3	2.3333	.57735	.33333	.8991	3.7676	2.00	3.00
J	3	2.1000	.10000	.05774	1.8516	2.3484	2.00	2.20
Total	10	2.0500	.43269	.13683	1.7405	2.3595	1.20	3.00

Table 62. Descriptive statistics by laboratory for BOD for FSU CML.

Descriptives

Biochemical Oxygen Demand mg/L

_	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	2.3667	.20817	.12019	1.8496	2.8838	2.20	2.60
В	3	2.4667	.05774	.03333	2.3232	2.6101	2.40	2.50
E	3	3.6333	.15275	.08819	3.2539	4.0128	3.50	3.80
I	3	4.0000	.00000	.00000	4.0000	4.0000	4.00	4.00
J	3	3.3667	.25166	.14530	2.7415	3.9918	3.10	3.60
Total	15	3.1667	.68208	.17611	2.7889	3.5444	2.20	4.00

Table 63. Descriptive statistics by laboratory for BOD for Alligator Harbor.

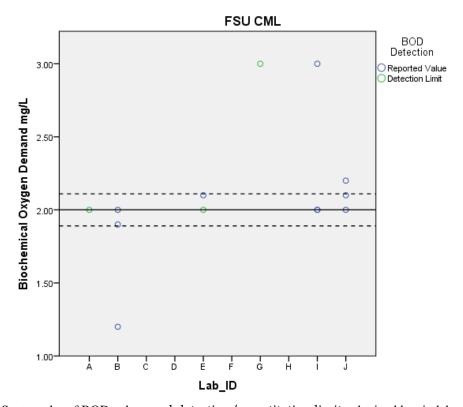


Figure 21. Scatter-plot of BOD values and detection/quantitation limits obtained by six laboratories for FSU CML. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

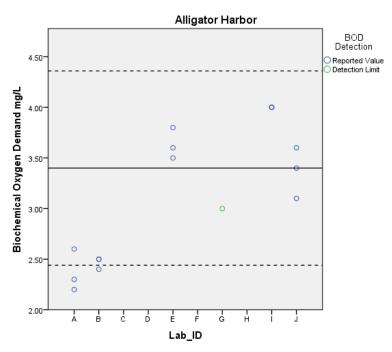


Figure 22. Scatter-plot of BOD values and detection/quantitation limits obtained by six laboratories for Alligator Harbor. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

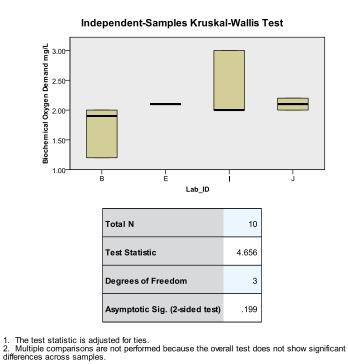


Figure 23. Results of Kruskal-Wallis test of BOD by laboratory for FSU CML.

J. Carbonaceous Biochemical Oxygen Demand. Seven of the eighteen results for FSU CML were reported as values; the other 61% were reported as qualifiers. The MDLs for all participating laboratories ranged from 0.2 to 2 mg/L; the PQLs for Labs A, E and G ranged from 2 to 3 mg/L. No other analyses were conducted for CBOD for FSU CML.

At Alligator Harbor, eleven of the eighteen results were reported values; the other 39% were reported as qualifiers. The MDLs for all participating laboratories ranged from 0.2 to 2 mg/L; the PQLs for Labs A, E and G ranged from 2 to 3 mg/L. There were no values reported as less than detection/quantitation limits that were determined to be false negatives from either location. No other analyses were conducted for CBOD for Alligator Harbor. See Figures 24 - 25 and Tables 64 – 68 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, inter-laboratory comparisons, and method comparisons.

	Carbonaceous Biochemical Oxygen Demand								
		FSU CML							
	F-pseudosigma	% F-pseudosigma	Median	Range					
	0.67	33.36%	2.00	1.10					
Method	N	Mean	Median	Range					
SM 5210 B	15	1.84	2.00	1.10					
SM 5210 C	3	All Non-detect	N/A	N/A					
		Alligator Harbor							
	F-pseudosigma	% F-pseudosigma	Median	Range					
	0.67	24.71%	2.70	1.20					
Method	N	Mean	Median	Range					
SM 5210 B	15	2.55	2.70	1.20					
SM 5210 C	3	All Non-detect	N/A	N/A					

Table 64. F-pseudosigma values for CBOD.

CBOD

	0202								
			FSU CM	IL .	Alligator Harbor				
Lab ID	N	Lab Median	Range	Mean Z-value	N	Lab Median	Range	Mean Z-value	
A	3	NR	NR	NR	3	NR	NR	NR	
В	3	2.20	0.90	N/A	3	2.70	0.30	N/A	
Е	3*	2.20	N/A	N/A	3	2.20	0.10	N/A	
G	3	NR	NR	NR	3	NR	NR	NR	
I	3	NR	NR	NR	3	2.00	0.00	N/A	
J	3	1.90	0.90	N/A	3	3.10	0.40	N/A	

^{*} One non-value reported. NR = All non-values reported.

Table 65. Summary statistics and Z-values by Laboratory for CBOD.

CBOD							
Method	MDL Range	PQL Range					
SM 5210 B	0.2 - 2	0.8 - 3					
SM 5210 C	2	2					

Table 66. Methods and detection/quantitation limits for CBOD.

Descriptives

Carbonaceous Biochemical Oxygen Demand mg/L

=	N	Mean	Std. Deviation	Std. Error	95% Confidence	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
В	3	1.9000	.51962	.30000	.6092	3.1908	1.30	2.20
E	1	2.2000	N/A	N/A	N/A	N/A	2.20	2.20
J	3	1.6667	.49329	.28480	.4413	2.8921	1.10	2.00
Total	7	1.8429	.45774	.17301	1.4195	2.2662	1.10	2.20

Table 67. Descriptive statistics by laboratory for CBOD from FSU CML.

Descriptives

Carbonaceous Biochemical Oxygen Demand mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
В	3	2.8000	.17321	.10000	2.3697	3.2303	2.70	3.00
E	3	2.1667	.05774	.03333	2.0232	2.3101	2.10	2.20
I	2	2.0000	.00000	.00000	2.0000	2.0000	2.00	2.00
J	3	3.0333	.20817	.12019	2.5162	3.5504	2.80	3.20
Total	11	2.5455	.45687	.13775	2.2385	2.8524	2.00	3.20

Table 68. Descriptive statistics by laboratory for CBOD from Alligator Harbor.

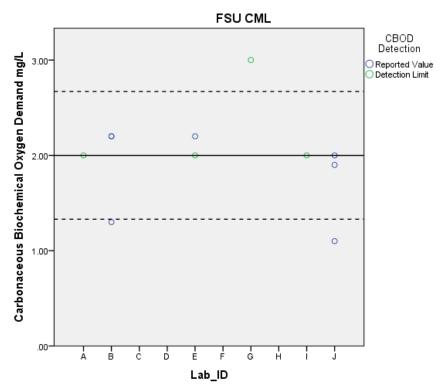


Figure 24. Scatter-plot of CBOD values and detection/quantitation limits obtained by six laboratories for FSU CML. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

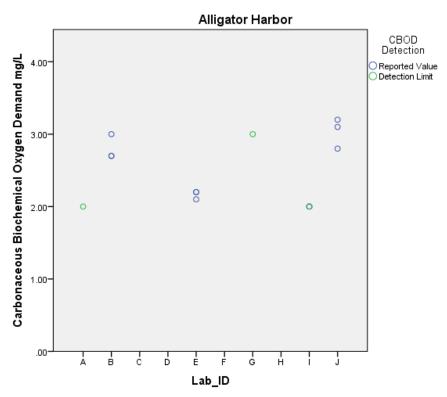


Figure 25. Scatter-plot of CBOD values and detection/quantitation limits obtained by six laboratories for Alligator Harbor.

4. Conclusions and Recommendations

Total Kjeldahl Nitrogen: There was little variability among laboratories for total Kjeldahl nitrogen from the unspiked aliquot, but was quite variable in the spiked aliquot. However, values from Lab E were highly variable from both sites, and values from Lab I were typically higher than all other laboratories' values. Detection and quantitation limits were not an issue for this analyte. The three methods used were statistically the same for the Alligator Harbor site; however, results for Lachat 10-107-06-2-D were significantly lower at the FSU CML site.

Ammonia: Ammonia was extremely variable at lower concentrations. At higher concentrations, the variability among results was reduced but remained quite variable. Results reported from Lab I were very high for both locations and may be due to the method of digestion. Detection and quantitation limits need to be addressed, as more than one-half of the results from Alligator Harbor (the unspiked site) were non-values. Results from the FSU CML aliquot showed method Lachat 10-107-06-1-J to be significantly lower than methods EPA 350.1 and SM 4500 NH3 G (the two of which were statistically the same). Analyses of methods were not run for Alligator Harbor due to the large number of non-values reported; however, EPA 350.1 was the only method to report values.

Total Nitrite + Nitrate: There was little variability among most results for NO_x for FSU CML. Lab G reported two statistical outliers for FSU CML; results for Lab G at this site were highly variable. Results reported by Lab A from Alligator Harbor were approximately an order of magnitude higher than the other laboratories' values, and may represent typographical errors. Detection and quantitation limits were issues for this analyte in the unspiked sample from Alligator Harbor, as more than half of the results were non-values.

Dissolved Nitrite: There was very little variability in results for DNO₂ from the spiked aliquot. Labs G and I reported values outside acceptable ranges at this site. Method SM 4500 NO2 B was statistically lower than all other methods at FSU CML; EPA 353.2 was equivalent to both Lachat 10-107-04-1-C and USGS I-2540-90. At the low concentration site, the variability was very high, due mostly to the large number of non-values reported. Method EPA 353.2 was the only method to report values. Detection and quantitation limits need to be addressed, as nearly 80% of the results from Alligator Harbor were non-values.

Total Phosphorus: Results from the FSU CML site were all within acceptable ranges for TP. In addition, there were no outliers or non-values reported. Results obtained using Method EPA 365.4 were significantly higher than those obtained using the other methods at this site. Results from the Alligator Harbor site were more variable than those of the FSU CML site. Labs B and I reported values outside acceptable ranges, and Lab G reported a non-detect. At Alligator Harbor, results from method EPA 365.1 were statistically lower than those obtained from the other two methods. Other than the one non-detect, detection and quantitation limits were not an issue for this analyte during this round robin.

Orthophosphate: With the exception of one outlier reported by Lab A, results from the FSU CML site varied little. Results from three of the five methods employed at this site were statistically equivalent (EPA 365.1, SM 4500 P E and SM 4500 P F), whereas those from USGS I-2601-90 were significantly greater than the prior three methods; results obtained using Lachat 10-115-01-1-I were significantly higher than all other methods. At Alligator Harbor, nearly 80% of the results were reported as non-values. Methods EPA 365.1 and USGS I-2601-90 were the only methods to report values from this site. Detection and quantitation limits need to be addressed for OP.

Total Organic Carbon: There was little variability among laboratories, or within laboratories, for TOC; however, Lab A reported all values outside of acceptable ranges and on the high end for both sites; this may be due to an improperly functioning SO₃ scrubber. No values were reported as below detection or quantitation limits for either site.

Chlorophyll a: Variability among laboratories was moderate for chlorophyll a for both sites. This is most likely due to the fact that results were reported as "chlorophyll a" and not either "chlorophyll a, corrected for phaeophytin" or "chlorophyll a, uncorrected for phaeophytin." This is evidenced by the fact that scatter-plots from both sites appear to be centered around two values (one high and one low) at each site. Lab E was highly variable at both sites. Lab I reported the only outlier from both sites. At FSU CML, there was no statistical difference in ChlA methods; however, at Alligator Harbor, results from method SM 10200 H were significantly greater than those reported for EPA 445.0.

Biochemical Oxygen Demand and Carbonaceous Biochemical Oxygen Demand: Very few values were reported for BOD and CBOD. In addition, few laboratories participated in analyzing the particular analyte. Therefore, detection and quantitation limits need to be addressed, as well as laboratory participation.

Overall: Although the data were quite similar among most laboratories, modifying or standardizing the practices of participating labs could further minimize variability. For example, variability in results could be reduced by laboratories adopting the following practices:

- improve the accuracy in calculating and reporting their detection and quantitation limits;
- revise methods to better quantify their techniques to reduce the amount of variability within the methods employed;
- minimize gross errors due to unit conversions, calculation errors, dilution errors, transcription errors (and other typographical errors), etc. through automation, improved quality control and quality assurance plans;
- report the results for a round robin as the output of the analyses, not as a reporting limit for a database (e.g., report the values out to 2 to 3 decimal places rather than rounding to whole numbers).

The greatest challenge to the round robin project and to achieving data comparability in the Gulf is addressing the high number of nutrient, ChlA, BOD, and CBOD results reported as below detection and quantitation limits. In order to adequately monitor water quality in and around the Gulf of Mexico, the detection problem must be resolved. As technology advances, allowing equipment to gain greater accuracy and precision, the detection limits should come down; in addition, calculations for quantitation limits need to better quantify noise.

We recommend that laboratories that have the capabilities to detect and quantify nutrients within these waters coordinate with laboratories that do not have this ability in order to help them achieve detectable and quantifiable results. It is recommended that future round robins include a greater number of laboratories that conduct analyses around the Gulf and increase the number of analytes of interest in order to better assess comparability around the Gulf and increase the power of statistical analyses. Finally, we recommend that GOMA and its partners obtain funding to facilitate laboratory education and information exchange to address the challenges listed above.

5. References

- Helsel, D.R. 2012. Statistics for Censored Environmental Data Using Minitab® and R. 2nd Edition. John Wiley, Inc. New York, NY.
- Hoaglin, D.C, F. Mosteller, and J.W. Tukey Eds. 1983. Understanding Robust and Exploratory Data Analysis. John Wiley, Inc. New York, NY.
- Quality Assurance of Information in Marine Environmental Monitoring (QUASIMEME). 2012. QUASIMEME Laboratory Performance Studies. WEPAL. Netherlands.
- Woodworth, M.T and B.F. Connor. 2003. Results of the U.S. Geological Survey's Analytical Evaluation Program for Standard Reference Samples Distributed in March 2003. U.S. Geological Survey, U.S. Department of Interior. OFR 03-261. Lakewood, CO.

GOMA Analytical Round Robin #5 Results - October 20, 2010

Samples collected from the Florida State University Coastal and Marine Laboratory, Florida

Where an actual number was given for results listed below the MDL or PQL, the reported number is given. However, when the result was simply listed as less than the MDL or PQL, a U qualifier is listed for below MDL and an I qualifier is listed for below PQL.

Only the laboratories that ran analyses for a particular analyte are listed with that analyte.

Calculations include all reported values.

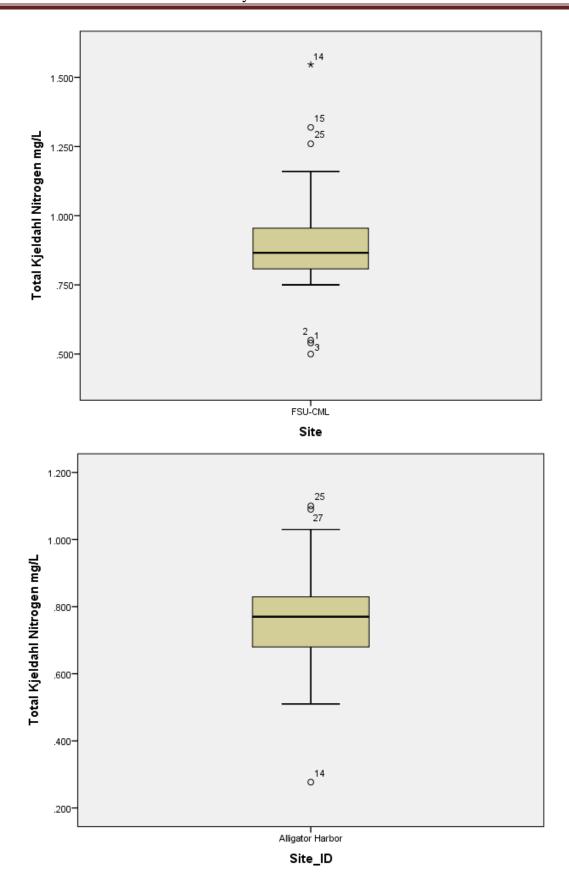
^{* =} Less than PQL

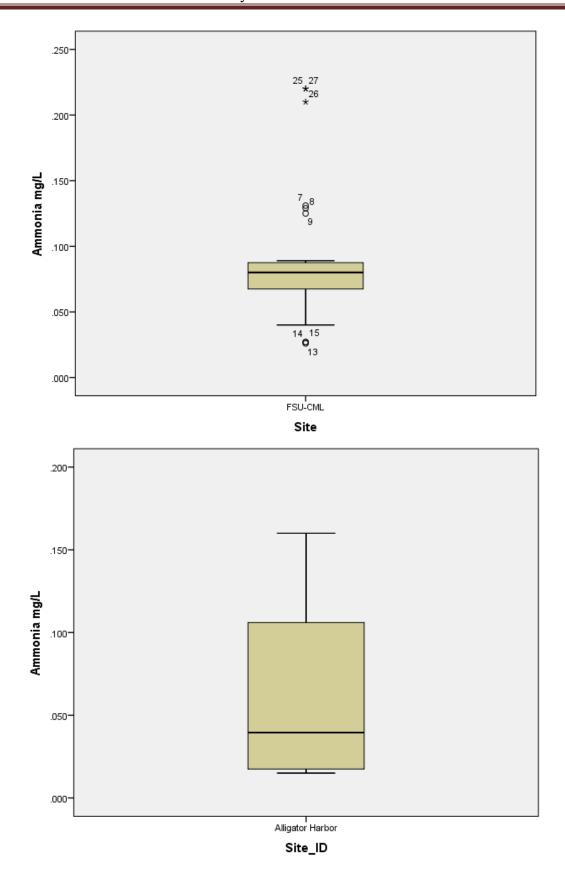
- Less IIIa	= Less than PQL Total Kjeldahl Nitrogen mg/L													
									Nitrogen mg/					
Average: Std. Dev.	A 0.540 0.550 0.500 0.530 0.026	B 0.853 0.808 0.827 0.829 0.023	C 0.900 0.910 0.866 0.892 0.023	D	E 0.955 1.546 1.319 1.273 0.298	F	G 0.850 0.830 0.890 0.857 0.031	Н	1 1.260 1.100 1.160 1.173 0.081	J 0.890 0.770 0.750 0.803 0.076				
								Ammoni	a mg/L					
Average: Std. Dev.	A 0.040 0.040 0.040 0.040 0.000	B 0.079 0.076 0.081 0.079 0.003	C 0.131 0.129 0.125 0.128 0.003	D	E 0.026 0.027 0.027 0.027 0.001	F 0.071 0.066 0.069 0.069 0.003	G 0.070 0.080 0.070 0.073 0.006	H 0.080 0.082 0.089 0.084 0.005	0.220 0.210 0.220 0.217 0.006	J 0.086 0.084 0.085 0.085 0.001				
Ota. Dev.	0.000	0.000	0.000		0.001	0.000			Nitrate mg/L					
Average: Std. Dev.	A 0.240 0.240 0.240 0.240 0.000	B 0.179 0.181 0.181 0.180 0.001	C 0.161 0.163 0.163 0.162 0.001	D	E 0.160 0.159 0.160 0.160 0.001	F 0.139 0.139 0.142 0.140 0.002	G 0.460 0.460 0.300 0.407 0.092	Н	0.155 0.156 0.147 0.153 0.005	J 0.140 0.140 0.140 0.140 0.000				
								Dissolved N	itrite mg/L					
Average: Std. Dev.	A 0.113 0.113 0.111 0.112 0.001	B 0.107 0.109 0.107 0.108 0.001	C 0.119 0.119 0.119 0.119 0.000	D	E 0.112 0.111 0.111 0.111 0.001	F 0.111 0.110 0.111 0.111 0.001	G 0.130 0.120 0.130 0.127 0.006	H 0.110 0.110 0.112 0.111 0.001	0.122 0.126 0.122 0.123 0.002	J 0.110 0.110 0.110 0.110 0.000				
								otal Phospl	norus mg/L					
Average: Std. Dev.	A 0.150 0.170 0.140 0.153 0.015	B 0.208 0.202 0.204 0.205 0.003	C 0.151 0.155 0.155 0.154 0.002	D	E 0.148 0.148 0.149 0.148 0.001	F 0.141 0.140 0.141 0.141 0.001	G 0.190 0.180 0.190 0.187 0.006	H 0.128 0.126 0.144 0.133 0.010	0.180 0.187 0.159 0.175 0.015	J 0.130 0.130 0.130 0.130 0.000				

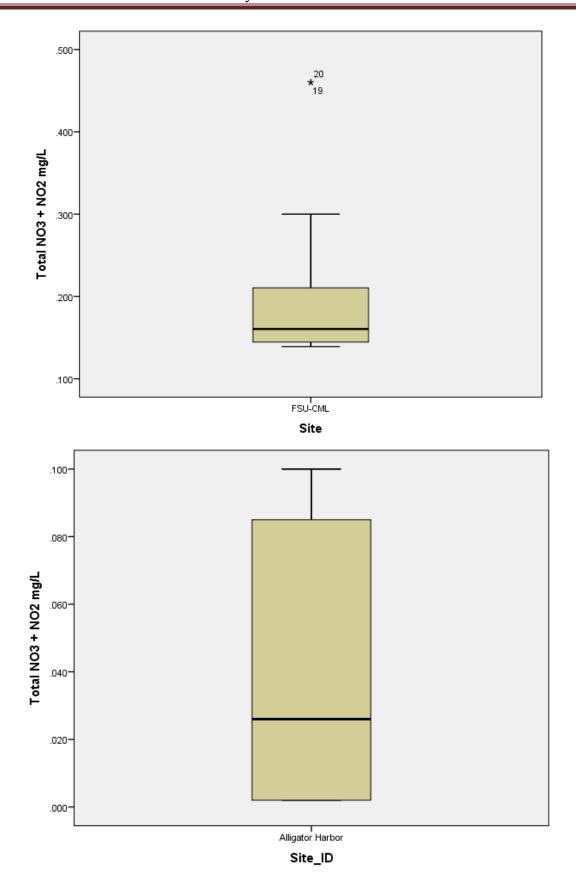
								Orthopho	sphate mg/l		
	Α	В	C*	D	Е	F	G	Н	apriate ilig/l	- J	
	0.097	0.090	0.094		0.085	0.086	0.090	0.082	0.083	0.093	
	0.098	0.090	0.094		0.086	0.086	0.090	0.079	0.084	0.094	
	0.111	0.090	0.095		0.085	0.086	0.080	0.082	0.082	0.094	
Average:	0.102	0.090	0.094		0.085	0.086	0.087	0.081	0.083	0.094	
Std. Dev.	0.008	0.000	0.001		0.001	0.000	0.006	0.002	0.001	0.001	
							T	otal Organi	c Carbon m	g/L	
	Α	В	С	D	Ε	F	G	Η	ı	J*	
	7.600	4.870				3.510	3.000	3.490		3.700	
	8.300	4.200				3.510	3.000	3.240		3.900	
	8.100	4.100				3.480	3.000	3.560		3.600	
Average:	8.000	4.390				3.500	3.000	3.430		3.733	
Std. Dev.	0.361	0.419				0.017	0.000	0.168		0.153	
Notes	Lab A's h	high values	may be du	ie to positiv	e interfere	nce due to	SO₃ detecti			eservation	n. May require an SO₃ scrubber.
		D÷	_		_	_	_		hyll a µg/L	1+	
	Α	B*	С	D	E 5 3 4 0	F	G 7.040	H	1 40 000	J*	
	6.800	6.900		4.590	5.340	4.940	7.340	5.050	12.000 9.000	4.200	
	6.200 6.600	6.100 7.800		5.120 5.650	4.270 1.070	4.290 4.320	7.250 6.970	4.840 4.620	7.000	4.100 4.300	
Average:	6.533	6.933		5.050 5.120	3.560	4.320 4.517	7.187	4.620 4.837	9.333	4.300 4.200	
Std. Dev.	0.333	0.850		0.530	2.222	0.367	0.193	0.215	2.517	0.100	
olu. Dev.	0.500	0.000		0.550	L.LLL	0.307			gen Demar		
	Α	В	С	D	Е	F	G	Н		J	
	1	1.200			U		Ü		2.000	2.000	
	I	2.000			Ū		Ü		3.000	2.200	
	ı	1.900			2.100		U		2.000	2.100	
Average:		1.700			2.100				2.333	2.100	
Std. Dev.		0.436	0.000						0.577	0.100	
							arbonaceou	ıs Biochem	ical Oxyger	Demand r	mg/L
	Α	В	С	D	E	F	G	Н	1	J*	
		1.300			U		U		U	2.000	
	ļ.	2.200			U		U		U	1.900	
_	I	2.200			2.200		U		U	1.100	
Average:		1.900			2.200					1.667	
Std. Dev.		0.520								0.493	

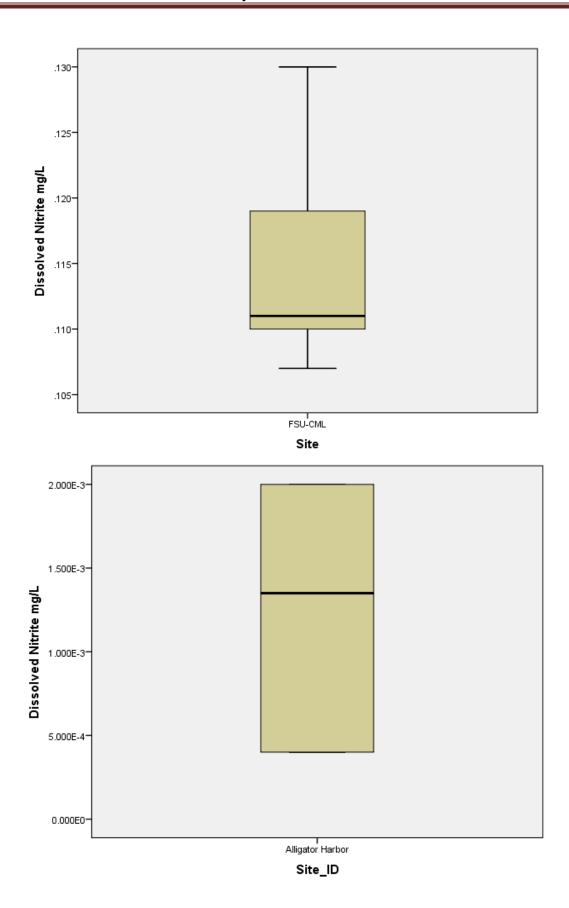
GOMA Analytical Round Robin #5 Results - October 20, 2010

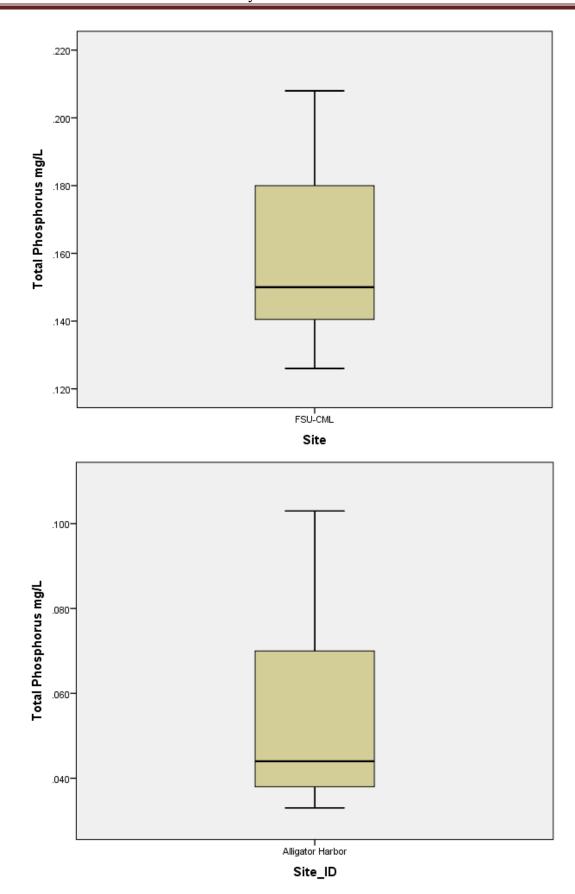
Janiples C	onecteu n	om Alligato	n naiboi, r	ioriua			To	tal Kieldah	l Nitrogen r	na/l
	Α	В	С	D	E	F	G	H	l Marogen i	J
	0.660	0.730	0.829		1.030	•	0.770	••	1.100	0.650
	0.660	0.744	0.812		0.277		0.790		0.980	0.830
	0.680	0.744	0.754		0.791		0.510		1.090	0.800
Average:	0.667	0.739	0.798		0.699		0.690		1.057	0.760
Std. Dev.	0.012	0.008	0.039		0.385		0.156		0.067	0.096
	0.0.2	0.000	0.000		0.000			Ammo	nia mg/L	0.000
	Α	В	С	D	E	F	G	Н	J.	J
	ı	0.019	0.058		1	U	Ī	0.016	0.160	U
	i	0.021	0.061		i	U	İ	0.016	0.150	U
	ı	0.020	0.062		1	U	ı	0.015	0.150	U
Average:		0.020	0.060					0.016	0.153	
Std. Dev.		0.001	0.002					0.001	0.006	
							Т		+ Nitrate m	g/L
	Α	В	С	D	E*	F	G	Н	l*	J
	0.080	U	U		0.020	U	ı		0.026	U
	0.090	U	U		0.020	U	ı		U	U
	0.100	U	U		0.020	U	ı		U	U
Average:	0.090				0.020				0.026	
Std. Dev.	0.010				0.000					
								Dissolved	Nitrite mg/	L
	Α	В	С	D	E*	F	G	H*	I	J
	1	U	U		0.002	U	1	0.0007	U	U
	1	U	U		0.002	U	1	0.0004	U	U
	1	U	U		0.002	U	1	0.0004	U	U
Average:					0.002			0.0005		
Std. Dev.					0.000			0.000		
								Total Phos	phorus mg	L
	Α	В	С	D	E	F	G	Н	1	J
	0.060	0.092	0.037		0.036	0.038	0.070	0.040	0.103	0.043
	0.070	0.094	0.040		0.036	0.036	0.070	0.046	0.098	0.041
	0.070	0.094	0.038		0.036	0.033	I	0.044	0.068	0.044
Average:	0.067	0.093	0.038		0.036	0.036	0.070	0.043	0.090	0.043
Std. Dev.	0.006	0.001	0.002		0.000	0.003	0.000	0.003	0.019	0.002


									sphate mg/l	
	Α	В	С	D	E*	F	G	Н	1	J
	I	U	0.007		0.005	U	I	U	U	U
	1	U	0.007		0.004	U	I	U	U	U
	1	U	0.006		0.005	U	1	U	U	U
Average:			0.007		0.005					
Std. Dev.			0.001		0.001					
							Т	otal Organ	ic Carbon m	g/L
	Α	В	С	D	Е	F	G	Н	1	J
	11.700	6.170				5.930	5.000	4.950		6.500
	10.900	6.200				5.070	3.000	4.950		5.100
	11.000	6.270				5.140	4.000	5.130		5.000
Average:	11.200	6.213				5.380	4.000	5.010		5.533
Std. Dev.	0.436	0.051				0.478	1.000	0.104		0.839
Notes			may he di	ie to nositi	ve interfere				by H₂SO₄ p	
	Lub A 3	gii valdes	may be ut	ao to positi	· · · · · · · · · · · · · · · · · · ·	noc due to	23, 40,000		hyll a µg/L	22017411011
	Α	В	C*	D	E	F	G	Н	I	J
	7.400	12.700		8.340	11.750	11.940	7.780	8.170	11.000	13.000
	8.000	13.700		9.470	12.820	11.780	7.330	8.070	11.000	14.000
	8.000	12.200		8.030	16.020	11.930	9.150	7.270	11.000	7.600
Average:	7.800	12.867		8.613	13.530	11.883	8.087	7.837	11.000	11.533
Std. Dev.	0.346	0.764		0.758	2.222	0.090	0.948	0.493	0.000	3.443
									ygen Demar	
	Α	В	С	D	E	F	G	Н	ı	J
	2.200	2.500			3.600		U		4.000	3.600
	2.600	2.400			3.800		U		4.000	3.400
	2.300	2.500			3.500		U		4.000	3.100
Average:	2.367	2.467			3.633		-		4.000	3.367
Std. Dev.	0.208	0.058			0.153				0.000	0.252
J.u. D	0.200	0.000			0.100	C	arbonaceou	us Biochem	ical Oxyger	
	Α	В	С	D	E	F	G	Н	I	J
	1	2.700			2.200		U		2.000	2.800
	1	3.000			2.100		U		U.000	3.100
	·	2.700			2.200		U		2.000	3.200
Average:	•	2.800			2.167		J		2.000 2.000	3.033
Std. Dev.		0.173			0.058				0.000	0.208


	TKN N			пэ	N	Ох	D	NO2	FSU CM	L P	,	OP.	T	OC .	C	hIA	D	OD	СВ	OD
	Stat.	Std. Err.	Stat.	กง Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.
	Olat.	Ota. Em.	Olul.	Old. Ell.	Olat.	Old. Ell.	Olul.	Old. Ell.	Descriptiv		Otat.	Old. Ell.	Olat.	Old. Ell.	Otat.	Old. Ell.	Otat.	Old. Ell.	otat.	Old. Lii.
N (Total)	21		27		24		27		27		27		18		27		18		18	
N (Greater than PQL)	21		27		24		27		27		27		15		23		10		5	
N Analyzed	21		27		24		27		27		27		18		27		10		7	
Mean	0.908	0.056	0.089	0.010	0.198	0.018	0.115	0.001	0.158	0.005	0.089	0.001	4.342	0.412	5.802	0.388	2.050	0.137	1.843	0.173
95% CI (LB)	0.792		0.068		0.159		0.112		0.148		0.086		3.473		5.005		1.741		1.420	
95% CI (UB)	1.025		0.110		0.236		0.117		0.168		0.092		5.212		6.600		2.360		2.266	
5% Trimmed	0.896		0.085		0.186		0.114		0.157		0.089		4.197		5.720		2.044		1.864	
Median	0.866		0.080		0.161		0.111		0.150		0.090		3.580		5.340		2.000		2.000	
Variance	0.065		0.003		0.008		0.000		0.001		0.000		3.059		4.066		0.187		0.210	
Std. Dev.	0.256		0.054		0.091		0.007		0.025		0.007		1.749		2.017		0.433		0.458	
Min	0.500		0.026		0.139		0.107		0.126		0.079		3.000		1.070		1.200		1.100	
Max	1.546		0.220		0.460		0.130		0.208		0.111		8.300		12.000		3.000		2.200	
Range	1.046		0.194		0.321		0.023		0.082		0.032		5.300		10.930		1.800		1.100	
IQR	0.239		0.023		0.082		0.009		0.040		0.010		0.950		2.650		0.150		0.900	
Skew	0.734	0.501	1.427	0.448	2.277	0.472	1.116	0.448	0.636	0.448	1.122	0.448	1.701	0.536	0.796	0.448	0.417	0.687	-1.044	0.794
Kurtosis	0.887	0.972	1.704	0.872	4.695	0.918	0.215	0.872	-0.838	0.872	2.378	0.872	1.508	1.038	2.939	0.872	3.989	1.334	-0.714	1.587
Huber's ψ	0.872		0.078		0.165		0.112	1/ 1	0.155	A) B. (1 1	0.089		3.713		5.618		2.033		1.994	
LAC: N. D	N1/A	1	NI/A		NI/A		NI/A	Kapla	an-Meier (KI	/I) Method	NI/A		L NI/A		N1/A	1	0.000		0.000	
Minimum Non-Detect	N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		2.000		2.000	
Maximum Non-Detect	N/A	N1/A	N/A	NI/A	N/A	NI/A	N/A	NI/A	N/A	NI/A	N/A	NI/A	N/A	NI/A	N/A	NI/A	3.000	0.457	3.000	0.470
Mean SD	N/A N/A	N/A	N/A N/A	N/A	N/A N/A	N/A	N/A N/A	N/A	N/A N/A	N/A	N/A N/A	N/A	N/A N/A	N/A	N/A N/A	N/A	1.870 0.443	0.157	1.624 0.433	0.179
95% KM UCL	1.005		0.134		0.229		0.117		0.167		0.091		5.059		6.464		2.143		1.936	
95% KW UCL	1.005		0.134		0.229		0.117		Normalit	v	0.091		5.059		0.404		2.143		1.930	
Test of Skew	0.136		0.004		0.000		0.018		0.148	·y	0.017		0.004		0.076		0.531		N/A	
Test of Kurtosis	0.295		0.091		0.004		0.627		0.244		0.040		0.159		0.021		0.027		0.726	
Jarque & Bera	0.412		0.008		0.000		0.083		0.280		0.015		0.021		0.018		0.490		N/A	
		ı		ı					Outliers	3						1			I.	
F Crit. (Mahalanobis D2)	7.470		8.170		7.850		8.170		8.170		8.170		7.030		8.170		5.240		4.080	
Mahalanobis D2 Max	6.220		5.950		8.390		5.290		3.840		10.020		5.120		9.450		4.820		2.630	
+ 2 Std. Dev.	1.420		0.196		0.379		0.128		0.209		0.103		7.840		9.835		2.915		2.758	
- 2 Std. Dev.	0.397		-0.018		0.017		0.101		0.108		0.075		0.844		1.769		1.185		0.927	
# Outside 2 Std. Dev.	1		3		2		2		0		1		2		2		1		0	
+ 2 F-Pseudosigma	1.220		0.114		0.282		0.124		0.086		0.105		4.980		9.270		2.220		3.330	
- 2 F-Pseudosigma	0.512		0.046		0.039		0.098		0.028		0.075		2.180		1.410		1.780		0.670	
# Outside 2 F-Pseudosigma	4		12		3		3		0		1		3		2		2		0	
# from Boxplots	6		9		2		0		0		1		3		1		2		0	
				•				Homosceda		een laborato									1	
Levene's	0.011		0.003		0.000		0.000		0.002		0.000		0.007		0.005		0.047		0.882	
		1		1					Detection L	imits						1				
< MDL	0		0		0		0		0		0		0		0		5		8	
% < MDL	0%		0%		0%		0%		0%		0%		0%		0%		28%		44%	
< PQL	0		0		0		0		0		0		3		4		3		5	
% < PQL	0%		0%	<u> </u>	0%		0%		0%		0%		17%		15%		44%		72%	
0/E Danislasi	00.400/	1	04.040/	1	07.070/		0.040/		Precisio	n	0.040/		07.050/		00.700/	ı	F F00/		22.000/	
%F-Pseudosigma	20.42%		21.31%		37.87%		6.01%		19.77%		8.24%		27.85%		36.79%		5.56%		33.36%	\vdash
%RSD	28.16%	nificant n val	60.37%	05 11	45.80%		5.82%		15.98%		7.76%		41.33%		34.75%		21.12%		24.85%	


Bold values are significant p-values at the 0.05 level.


	Alligator Harbor																			
		ΓKN		H3		Ox	_	NO2	1	ГР		OP		C		hIA		DD	CB	
	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.
N /Total)	04	1	07		0.4	1	04	 	Descriptive:	S	07		10		07		10		10	
N (Total)	21		27		24		24		27		27 3		18		27		18		18 8	
N (Greater than PQL)	21 21		12 12		7		6		26 26		6		18 18		27 27		12 15		11	
N Analyzed	0.773	0.044	0.062	0.047	0.043	0.017	0.001	0.000	0.057	0.005	0.006	0.001	6.223	0.576	10.350	0.482	3.167	0.476	2.546	0.138
Mean 95% CI (LB)	0.773	0.041	0.062	0.017	0.043	0.017	0.001	0.000	0.057	0.005	0.006	0.001	5.008	0.576	9.359	0.462	2.789	0.176	2.340	0.130
95% CI (UB)	0.858		0.020		0.002		0.000		0.047		0.004		7.437		11.341		3.544		2.852	
5% Trimmed	0.636		0.099		0.065		0.002		0.056		0.007		6.098		10.234		3.174		2.539	
Median	0.770		0.040		0.042		0.001		0.030		0.006		5.135		11.000		3.400		2.700	
Variance	0.035		0.040		0.020		0.000		0.044		0.000		5.964		6.276		0.465		0.209	
Std. Dev.	0.035		0.003		0.002		0.000		0.001		0.000		2.442		2.505		0.403		0.457	
Min	0.100		0.030		0.043		0.000		0.023		0.001		3.000		7.270		2.200		2.000	
Max	1.100		0.160		0.002		0.000		0.103		0.004		11.700		16.020		4.000		3.200	
Range	0.823		0.145		0.100		0.002		0.070		0.007		8.700		8.750		1.800		1.200	
IQR	0.023	1	0.143	†	0.030		0.002		0.070		0.003	†	1.340		4.200		1.300		0.900	
Skew	-0.450	0.501	0.983	0.637	0.314	0.794	-0.068	0.845	0.805	0.456	-0.294	0.845	1.445	0.536	0.382	0.448	-0.150	0.580	0.094	0.661
Kurtosis	1.747	0.972	-0.760	1.232	-2.468	1.587	-3.158	1.741	-0.833	0.887	-1.920	1.741	1.214	1.038	-0.925	0.872	-1.751	1.121	-1.764	1.279
Huber's ψ	0.768	0.012	0.042	1.202	0.032	1.001	0.001	1311	0.047	0.001	0.006	1.7 11	5.586	1.000	10.264	0.012	3.184	1.121	2.546	1.270
1145010 \$	000	I	0.0.2	ı	0.002	I	0.001	Kaplan-	Meier (KM)	Method	0.000	ı	0.000		.0.20		0		2.0.0	
Minimum Non-Detect	N/A		0.007		0.003		0.001		0.020		0.0019		N/A		N/A		3.000		2.000	
Maximum Non-Detect	N/A		0.05		0.050		0.02		0.020		0.04		N/A		N/A		3.000		3.000	
Mean	N/A	N/A	0.037	0.009	0.014	0.007	0.001	0.000	0.056	0.004	0.005	0.000	N/A	N/A	N/A	N/A	3.042	0.016	2.371	0.111
SD	N/A		0.044		0.029		0.001		0.023		0.001		N/A		N/A		0.666		0.429	
95% KM UCL	0.843		0.052		0.026		0.001		0.075		0.005		7.224		11.170		3.322		2.565	
				•		1			Normality			•								
Test of Skew	0.349		0.119		N/A		N/A		0.078		N/A		0.011		0.372		0.785		0.882	
Test of Kurtosis	0.108		0.576		0.046		0.025		0.261		0.239		0.220		0.171		0.008		0.049	
Jarque & Bera	0.441		0.386		N/A		N/A		0.185		N/A		0.064		0.437		0.442		0.570	
F.O.: Mahalasahia DO	7.470	1	F 000		4.000	ı	2.500	ı	Outliers		2.500		7.000		0.470		0.400		F F 40	
F Crit. (Mahalanobis D2)	7.470		5.820		4.080		3.560		8.070		3.560		7.030		8.170		6.490		5.540	
Mahalanobis D2 Max	7.090		2.850		1.600		1.050		3.950		1.960		5.030		5.120		2.010		2.050	
+ 2 Std. Dev.	1.145		0.178		0.133		0.003		0.103		0.008		11.107		15.360		4.531		3.459	
- 2 Std. Dev. # Outside 2 Std. Dev.	0.400		-0.053 0	 	-0.047 0		0.000		0.010		0.003	-	1.339		5.340		1.803		1.632 0	
+ 2 F-Pseudosigma	1.006		0.204		0.156		0.004		0.092		0.009		7.120		17.230		5.330		4.030	
- 2 F-Pseudosigma	0.534		-0.125		-0.104		-0.004		-0.004		0.009	-	3.150		4.770		1.470		1.370	
# Outside 2 F-Pseudosigma	5		-0.125	-	-0.104		-0.001		-0.004 4		0.002	-	3.150		0		0		0	
# from Boxplots	3		0		0		0		0		0	-	4		0		0		0	
# ITOTT BOXPIOLS	J		U	<u> </u>	U		ŭ	moscedasti	•	en laboratori		<u> </u>	4		U		U		U	
Levene's	0.003		0.007		0.116		0.016	,,,ooceadou	0.000	,, iaborator	0.145		0.069		0.000		0.074		0.048	
		1	I.			1	l	De	tection Lim	nits					I.					
< MDL	0		6		14		15		0		15		0		0		3		4	
% < MDL	0%		22%		58%		63%		0%		56%		0%		0%		17%		22%	
< PQL	0		9		7		9		1		9		3		0		0		3	
% < PQL	0%		56%		88%		100%		4%		89%		17%		0%		17%		39%	
	T	1				T.	l	T.	Precision											
%F-Pseudosigma	15.36%	ļ	208.78%		250.90%		87.86%		54.33%		28.54%		19.34%		28.30%		28.34%		24.71%	
%RSD	24.10%		93.55%		104.65%		100.00%		40.93%		16.67%		39.24%		24.20%		21.53%		17.95%	


Bold values are significant p-values at the 0.05 level.

