

Statistical Analyses and Summary of Analytical Round Robin #6 – a Data Comparability Study

Report prepared by Raymond E. Leary March 2013

Samples collected March 7, 2011 from St. Louis Bay, MS by the Mississippi Department of Environmental Quality

Preserved and split March 8, and shipped March 9, 2011 at the Florida.

Preserved and split March 8, and shipped March 9, 2011 at the Florida Department of Environmental Protection's Central Laboratory, Tallahassee,

Table of Contents

1. Introduction	1						
2. Determining comparability							
3. Results and Discussion	5						
A. Total Kjeldahl Nitrogen	5						
B. Ammonia	14						
C. Total Nitrate + Nitrite	19						
D. Dissolved Nitrite	28						
E. Total Phosphorus	34						
F. Orthophosphate	43						
G. Total Organic Carbon	53						
H. Chlorophyll a	60						
I. Biochemical Oxygen Demand	68						
J. Carbonaceous Biochemical Oxygen Demand	71						
4. Conclusions	74						
5. References	77						
Appendix 1. Results	78						
Appendix 2. Summary Statistics	82						
Appendix 3. Boxplots	85						

1. Introduction

Many groups routinely take measurements in ambient waters of the Gulf of Mexico. However, each group uses slightly different standard operating procedures (SOPs), equipment, and standards, which leads to an unknown amount of variability in the data collected. This lack of data comparability has been the subject of many discussions. The Gulf of Mexico Alliance (GOMA) identified the need to assess this variability and to explore ways to decrease variability in the data values based solely on changes to SOPs. The GOMA initiated its analytical round robin efforts in February 2008 to address this need.

In September 2007, GOMA workshop participants established a core set of analytes (see Table 1 for the analytes analyzed in this round robin and their method of preservation) for adoption by Gulf of Mexico monitoring programs. This sixth analytical round robin addresses the variability in these analytes among participating Gulf of Mexico laboratories. This report presents information on the collection and methods used to prepare the water for analyses, the results from the laboratories, and the statistical analyses that were conducted to assess the comparability of the data.

Analyte	Acid preserved	0.45-µm filtered
Chlorophyll a (it is unclear if results are corrected or uncorrected for phaeophytin)	No	No
Biochemical Oxygen Demand	No	No
Carbonaceous Biochemical Oxygen Demand	No	No
Total Kjeldahl Nitrogen	Yes	No
Ammonia	Yes	No
Total Nitrate + Nitrite	Yes	No
Total Phosphorous	Yes	No
Total Organic Carbon	Yes	No
Dissolved Nitrite	No	Yes
Orthophosphate	No	Yes

Table 1. Core analytes and preservation methods for this round robin.

A total of eleven laboratories, representing local, state, federal, academic, and private laboratories participated in this round robin. Samples were collected on 7 March 2011 from St. Louis Bay, MS by the Mississippi Department of Environmental Quality. Although only one site was sampled, it was treated as if it were two discrete samples and was prepared and analyzed as such.

The Florida Department of Environmental Protection's Central Laboratory in Tallahassee, FL hosted the round robin event.

For each participating laboratory, samples were split to provide:

- 1 L of unfiltered, unpreserved sample for chlorophyll a (ChlA)
- 1 L of unfiltered, unpreserved sample for biochemical oxygen demand (BOD)
- 1 L of unfiltered, unpreserved sample for carbonaceous biochemical oxygen demand (CBOD)
- 250 mL of unfiltered, acid-preserved sample for total nitrate + nitrite (NO_x), ammonia (NH_3), Total Kjeldahl Nitrogen (TKN), total phosphorous (TP), and total organic carbon (TOC)
- 125 mL of 0.45-μm filtered, unpreserved sample for orthophosphate (OP) and dissolved nitrite (DNO₂)

Samples for each bottle type were kept homogenized by constant stirring. Each laboratory received three replicates of each of the above sample types for "site." Samples were kept in a walk-in cooler at 4 °C until shipment, and were shipped on ice in coolers.

Laboratories were given approximately six weeks to complete their analyses and provide results.

Laboratories participating in Analytical Round Robin #6:

ADEM_Mob - Alabama Department of Environmental Management, Mobile Laboratory (AL)

ADEM_Mon - Alabama Department of Environmental Management, Montgomery, Field Operations Central Laboratory (AL)

EPA – U.S. Environmental Protection Agency, Region 4 Laboratory (GA)

EPCHC - Environmental Protection Commission of Hillsborough County (FL)

FDEP - Florida Department of Environmental Protection Central Laboratory, Tallahassee (FL)

MDEQ - Mississippi Department of Environmental Quality (MS)

Sanders – Sanders Laboratories, Inc. (FL)

SERC - Florida International University, Southeast Environmental Research Center (FL)

SWFWMD – Southwest Florida Water Management District, Data Collection Bureau, Chemistry Laboratory (FL)

TCEQ - Texas Commission on Environmental Quality, Houston Laboratory (TX)

USGS - USGS National Water Quality Laboratory (CO)

2. Determining comparability

In all analyses, the actual value reported by the laboratory was used regardless of significant figures, with the exception of those requiring conversion (e.g., $\mu g/L$ to mg/L). However, data in this report are typically displayed to two or three decimal places. Data values reported by the laboratories are displayed graphically.

Data were analyzed using statistical methods developed by Hoaglin et al (1983) which are used in the U.S. Geological Survey's Standard Reference Samples (SRS) round robins (e.g., Woodworth and Connor 2003). Variability among laboratories was measured by calculating Fpseudosigma, which approximates the standard deviation without the assumption of normal distribution. It is considered a robust statistic because outliers have little influence resulting from a higher breakdown point than that of the mean. The %F-pseudosigma, which is equivalent to % relative standard deviation (%RSD) under normal distributions, was also calculated. In order to evaluate inter-laboratory variability, Z-values were calculated; the average of these was used to rate the laboratories' performance. The absolute Z-values are rated as follows: 0.00 - 0.50 = excellent; 0.51 - 1.00 = good; 1.01 - 1.50 = satisfactory; 1.51 - 2.00 = goodmarginal; and >2.00 = unsatisfactory. Z-values greater than 6 typically are the result of mistakes due to unit conversions, calculation errors, dilution errors, transcription errors (and other typographical errors), etc. (e.g., QUASIMEME 2012). Although this system of rating will be used, it is important to note that, as the group's precision increases, the Z-values can become inflated, making comparable values appear to be non-comparable. These three methods are used when at least seven laboratories report at least three detectable values (i.e., N≥21; roughly a 60% chance of being able to detect a difference in values based on power analysis). In situations where less than 21 values are reported, summary statistics and robust estimators (based on Kaplan-Meier; e.g., Helsel 2012) are provided; no further analyses are performed. In addition, robust estimators are given for analytes with non-values (i.e., data reported or qualified as qualifier codes such as: <, <PQL, BDL, etc.). False negatives are evaluated using the U.S.G.S. SRS method. To be considered a false negative, a result must be reported as a nonvalue and the detection/quantitation limit must be more than 2 F-pseudosigma below the median.

Outliers are evaluated using a variety of statistical methods, including Mahalanobis D², Rosner's test and Dixon's test. For post hoc comparisons (between subjects tests for interlaboratory comparisons), if only one value was reported, it was combined with the laboratory reporting multiple results whose mean and median were closest to the individual value and whose range of data contained that individual value. Whether statistical assumptions (normality, homoscedasticity, independence, balanced design, etc.) are met or not will guide the selection of statistical tests employed.

Note: The breakdown point of a statistic is a measure of how many values one would have to change in order to have the statistic change. For the mean, it requires only one extreme outlier to do this. To change the median, at least one-half of all values must become extreme outliers. For example, in a set of five values: 1, 2, 1, 3, and 2, the mean is 1.8 and the median is 2. If the 3 in this set is increased to 300, the mean becomes 61.2; however, the median is still 2.

Note: Within-subjects tests are comparisons of three or more groups. They indicate only that there is a difference among groups, but do not identify which ones or distinguish how they differ. Examples are ANOVA and Kruskal-Wallis. Between-subjects tests are a follow-up to the within-subjects test (i.e., post hoc). They identify the group(s) that is different and how it

differs. These include Gabriel's test, Dunnett's T³, Tukey's Honestly Significant Difference (HSD), Tukey-Kramer test, t-tests, Mann-Whitney, and many other pair-wise comparisons. In a comparison of only two groups, the within-subjects test and the between-subjects tests render the same results.

Many of the methods utilized by participating laboratories involved are considered "equivalent." Table 2 lists the methods used. One of the goals of this, and future round robins, is to test the true equivalency of these methods. We measured "true equivalency" by statistically analyzing the variability in data reported between methods; our analyses required that each laboratory report only values above its detection limit.

TKN	NH ₃	Total	Dissolved	TP	OP	TOC	ChlA	BOD	CBOD
		NO_x	NO_2						
EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA 445.0	SM 5210 B	SM 5210 B
351.2	350.1	353.2	353.2	365.1	365.1	415.1			
Lachat 10-	Lachat 10-	Lachat	Lachat 10-	EPA	Lachat 31-	SM 5310	SM 10200		SM 5210 C
107-06-2-	107-06-1-	10-107-	107-04-1-	365.4	115-01-1-	В	Н		
D	C	04-1-C	C		I				
USGS I-	SM 4500	SM 4500	SM 4500	Lachat 10-	SM 4500	SM 5310			
4515-91	NH_3G	$NO_3 F$	NO_2B	115-01-1-	PΕ	C			
				C					
		USGS I-	USGS I-		SM 4500				
		2545-90	2540-90		PF				
					USGS I-				
					2601-90				

Table 2. Methods used by laboratories participating in the sixth analytical round robin.

Table 3 lists the analytes and the number of laboratories that carried out each.

	Sar	mple A	Sample B				
Analyte	N laboratories	N values >MDL	N laboratories	N values >MDL			
TKN	8	23*	8	23*			
NH_3	10	9*	10	9*			
NO_x	10	17*	10	20*			
DNO_2	10	7*	10	10*			
TP	10	30	10	30			
OP	10	23*	10	24*			
TOC	6	18	6	18			
ChlA	10	26	10	25			
BOD	7	6*	7	6*			
CBOD	7	6*	7	6*			

^{*} More results were reported as above the MDL, but no value was given (i.e., only a qualifier [<PQL, I, etc.] was listed). These were treated as non-detects.

Laboratory identities were concealed by assigning letter designations so that laboratories do not feel judged by their results. Furthermore, in order to maintain anonymity, laboratories are not listed with the analyses they conducted or the number of results they reported. The GOMA round robins are critical in helping achieve data comparability, and serve as a tool for groups to speak freely about what they are and are not comfortable with in their methodology, rather than as a way to grade programs on their results.

Table 3. Analytes of interest for this round robin; the number of laboratories that ran each; and the number of values above a given laboratory's detection limit.

3. Results and Discussion

A. Total Kjeldahl Nitrogen. Twenty of the 23 reported values for Sample A were within acceptable ranges. Lab C reported all three values outside acceptable ranges. There were no statistical outliers. Lab E was the only laboratory to report a non-value. This was not determined to be false negative. The %F-pseudosigma value was large (greater than 30%), indicating a lack of precision among laboratories. Of the 20 reported values, 74% were within 1 F-pseudosigma and 87% were within 2 F-pseudosigma. There was no statistical difference among the methods employed for TKN.

For Sample B, nineteen of the 23 values were within acceptable ranges. Lab C reported all three values outside acceptable ranges, and Lab K reported one value outside acceptable ranges. The result for Lab K was a statistical outlier (1.14 mg/L). As with Sample A, Lab E was the only laboratory to report a non-value. This was not determined to be false negative. The %F-pseudosigma value was large (greater than 30%), indicating a lack of precision among laboratories. Of the 23 reported values, 83% were within 1 F-pseudosigma; there were no other values within 2 F-pseudosigma. There was no statistical difference among the methods employed for TKN.

When looking at all of the results combined (since they all originated from a single sample), 39 of the 46 reported values were within acceptable ranges. All of Lab C's values were outside acceptable ranges, and Lab K reported one outside acceptable ranges. This value was a statistical outlier. The % F-pseudosigma remained large even after combining Samples A and B. Of the 46 reported values, 80% were within 1 F-pseudosigma and 85% were within 2 F-pseudosigma. There was no statistical difference between the two samples or the methods that were employed. See Figures 1 – 4 and Table 4 - 14 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, inter-laboratory comparisons, and method comparisons.

	Total Kjeld	lahl Nitrogen							
		Sample A							
	F-pseudosigma	% F-pseudosigma	Median	Range					
	0.148	43.61%	0.340	0.685					
Method	N	Mean	Median	Range					
EPA 351.2	18	0.396	0.335	0.685					
Lachat 10-107-06-2-D	3 (one non-value)	0.235	0.235	0.030					
USGS I-4515-91	3	0.377	0.380	0.030					
		Sample B							
	F-pseudosigma	% F-pseudosigma	Median	Range					
	0.156	47.17%	0.330	0.951					
Method	N	Mean	Median	Range					
EPA 351.2	18	0.414	0.325	0.951					
Lachat 10-107-06-2-D	3 (one non-value)	0.265	0.265	0.050					
USGS I-4515-91	3	0.380	0.370	0.070					
		All							
	F-pseudosigma	% F-pseudosigma	Median	Range					
	0.146	43.70%	0.335	0.965					
Method	N	Mean	Median	Range					
EPA 351.2	36	0.405	0.330	0.965					
Lachat 10-107-06-2-D	6 (two non-values)	0.250	0.245	0.070					
USGS I-4515-91	6	0.378	0.375	0.070					

Table 4. F-pseudosigma values for TKN.

TKN

	Sample A				Sample B					All		
Lab		Lab		Mean		Lab		Mean		Lab		Mean
ID	N	Median	Range	Z-value	N	Median	Range	Z-value	N	Median	Range	Z-value
A	3	0.330	0.050	0.14	3	0.330	0.210	0.45	6	0.330	0.210	0.31
C	3	0.840	0.170	3.09	3	0.700	0.060	2.29	6	0.705	0.210	2.79
D	3	0.191	0.044	0.98	3	0.199	0.029	0.82	6	0.195	0.044	0.93
Е	3*	0.235	0.030	0.71	3*	0.265	0.050	0.42	6*	0.245	0.070	0.58
Н	3	0.420	0.000	0.54	3	0.440	0.060	0.75	6	0.420	0.060	0.67
I	3	0.380	0.030	0.25	3	0.370	0.070	0.32	6	0.375	0.070	0.30
J	3	0.220	0.040	0.77	3	0.220	0.030	0.68	6	0.220	0.040	0.75
K	3	0.420	0.280	0.81	3	0.320	0.830	1.79	6	0.370	0.860	1.38

^{*} One or more non-value reported. NR = all non-values reported.

Table 5. Summary statistics and Z-values by laboratory for TKN.

TKN								
Method	MDL Range	PQL Range						
ALL	0.031 - 0.08	0.1 - 0.2						
EPA 351.2	0.031 - 0.08	0.1 - 0.2						
Lachat 10-107-06-2-D	Not Reported	0.1						
USGS I-4515-91	0.05	Not Reported						

Table 6. Methods and detection/quantitation limits for TKN.

Descriptives

Total Kieldahl Nitrogen mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	.32000	.026458	.015275	.25428	.38572	.290	.340
C	3	.79667	.092916	.053645	.56585	1.02748	.690	.860
D	3	.19500	.022271	.012858	.13968	.25032	.175	.219
E	2	.23500	.021213	.015000	.04441	.42559	.220	.250
Н	3	.42000	.000000	.000000	.42000	.42000	.420	.420
I	3	.37667	.015275	.008819	.33872	.41461	.360	.390
J	3	.22667	.020817	.012019	.17496	.27838	.210	.250
K	3	.42000	.140000	.080829	.07222	.76778	.280	.560
Total	23	.37978	.192728	.040186	.29644	.46312	.175	.860

Table 7. Descriptive statistics by laboratory for TKN for Sample A.

Descriptives

Total Kieldahl Nitrogen mg/L

Total Rjc	idaili Milioge	ııı mg/L						
_	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	.33333	.105040	.060645	.07240	.59427	.230	.440
C	3	.68667	.032146	.018559	.60681	.76652	.650	.710
D	3	.20200	.014731	.008505	.16541	.23859	.189	.218
E	2	.26500	.035355	.025000	05266	.58266	.240	.290
H	3	.44667	.030551	.017638	.37078	.52256	.420	.480
I	3	.38000	.036056	.020817	.29043	.46957	.350	.420
J	3	.22333	.015275	.008819	.18539	.26128	.210	.240
K	3	.59000	.476340	.275015	59329	1.77329	.310	1.140
Total	23	.39635	.224402	.046791	.29931	.49339	.189	1.140

Table 8. Descriptive statistics by laboratory for TKN for Sample B.

Descriptives

Total Kjeldahl Nitrogen mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
A	6	.32667	.068896	.028127	.25436	.39897	.230	.440
C	6	.74167	.086583	.035347	.65080	.83253	.650	.860
D	6	.19850	.017318	.007070	.18033	.21667	.175	.219
E	4	.25000	.029439	.014720	.20316	.29684	.220	.290
Н	6	.43333	.024221	.009888	.40791	.45875	.420	.480
I	6	.37833	.024833	.010138	.35227	.40439	.350	.420
J	6	.22500	.016432	.006708	.20776	.24224	.210	.250
K	6	.50500	.327521	.133710	.16129	.84871	.280	1.140
Total	46	.38807	.206998	.030520	.32659	.44954	.175	1.140

Table 9. Descriptive statistics by laboratory for TKN for all samples.

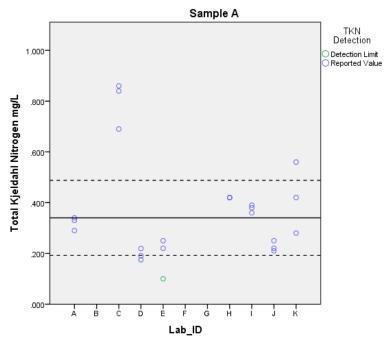


Figure 1. Scatter-plot of TKN values and detection/quantitation limits obtained by eight laboratories for Sample A. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

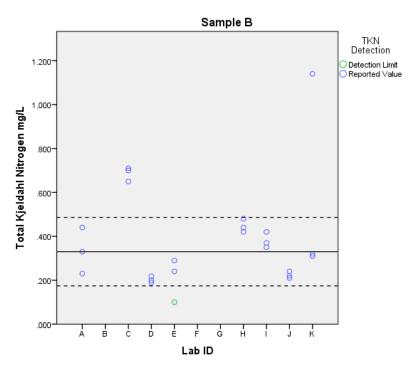


Figure 2. Scatter-plot of TKN values and detection/quantitation limits obtained by eight laboratories for Sample B. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

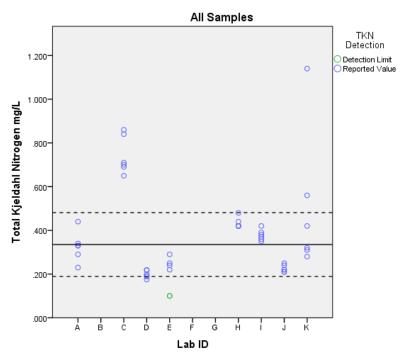


Figure 3. Scatter-plot of TKN values and detection/quantitation limits obtained by eight laboratories for all samples. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

Hypothesis Test Summary									
	Null Hypothesis	T	est	Sig.	Decision				
1	The distribution of Total Kjeldahl Nitrogen mg/L is the same across categories of Lal ID.		1 1		Reject the null hypothesis.				
Asymptotic significances are displayed. The significance level is .05.									
Homogeneous Subsets based on Total Kjeldahl Nitrogen mg/L									
			Su	ibset					
		1	2	3	4				
	D	2.333	3						
	J	5.333	5.333						
	Е	6.500	6.500	6.500					
Sample ¹	A		11.000	11.00	0				
Sample	I			14.00	0				
	K			15.50	0 15.500				
	Н			17.50	0 17.500				
	С				22.000				
Test Stat	istic	4.126	5.264	8.852	5.891				
Sig. (2-s	ided test)	.127	.072	.065	.053				
Adjusted	l Sig. (2-sided test)	.392	.239	.137	.180				
Homoge	neous subsets are based on as	ympto	otic significances. The	signi	ficance level is .05.				
Each ce	ll shows the sample average r	ank of	f Total Kjeldahl Nitro	gen m	g/L.				
TC 11 14	0 V11 W-11:1		1.1	<u> </u>	TEXAL C 1				

Table 10. Kruskal-Wallis and post hoc inter-laboratory comparisons for TKN for Sample A.

	Hypoth	esis	Tes	t Summary					
	Null Hypothesis	Test			Sig.	Decision			
1	The distribution of Total Kjeldahl Nitrogen mg/L is the same across categories of La ID.				.013	Reject the null hypothesis.			
Asymptotic significances are displayed. The significance level is .05.									
Homogeneous Subsets based on Total Kjeldahl Nitrogen mg/L									
				Subset					
		1		2	3				
	D	2.33	33						
	J	5.16	57	5.167					
	Е	8.25	50	8.250	8.250				
C 1 - 1	A	11.8	333	11.833	11.83	33			
Sample ¹	I			14.167	14.16	57			
	K			14.667	14.66	57			
	Н			17.333	17.33	33			
	С				21.00	00			
Test Stat	istic	7.26	54	10.340	9.251				
Sig. (2-si	ided test)	.064	1	.066	.099				
Adjusted	Sig. (2-sided test)	.166	.166 .118		.175				
Homogeneous subsets are based on asymptotic significances. The significance level is .05.									
¹ Each ce	ll shows the sample average	rank	of	Total Kjeldahl Nitro	gen r	ng/L.			

Table 11. Kruskal-Wallis and post hoc inter-laboratory comparisons for TKN for Sample B.

	Hypot	hesis '	Test Summary							
	Null Hypothesis		'est	Sig.	Decision					
1			ndependent-Samples Truskal-Wallis Test	.000	Reject the null hypothesis.					
Asympto	otic significances are displayed.	The si	ignificance level is .05							
	Homogeneous Subsets ba	ased o	on Total Kjeldahl Nit	rogen n	ng/L					
Subset										
		1	2	3	4	5				
	D	4.16	<mark>7</mark>							
	J		10.000							
	E		14.375	14.375						
C1-1	A			22.667	22.667					
Sample ¹	I				27.917					
	K				29.250					
	Н				34.083					
	C					42.500				
Test Stat	tistic	.2	2.326	3.324	6.793	.2				
Sig. (2-s	ided test)		.127	.068	.079					
Adjusted	l Sig. (2-sided test)		.527	.322	.202					
Homoge	neous subsets are based on asyn	nptotio	c significances. The si	gnifican	ce level is .05.					
¹ Each ce	ll shows the sample average ran	k of T	Total Kjeldahl Nitroger	n mg/L.						
² Unable	to compute because the subset c	ontair	ns only one sample.							
T.1.1. 10	Wruskal Wallis and nost has i		.1	C. TIZ	NT C 11 1					

Table 12. Kruskal-Wallis and post hoc inter-laboratory comparisons for TKN for all samples.

Test of Homogeneity of Variances

Total Kjeldahl Nitrogen mg/L

Levene's Statistic	df1	df2	Sig.
2.948	2	20	.076

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.047	2	.023	.609	.554
Within Groups	.770	20			
Total	.817	22			

	Method ID	N	Subset for alpha = 0.05
			1
	Lachat 10-107-06-2-D	2	.23500
Gabriel ^{a,b}	USGS I-4515-91	3	.37667
Gabrier	EPA 351.2	18	.39639
	Sig.		.642

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 3.375.
- b. The group sizes are unequal. The harmonic mean of the group

sizes is used. Type I error levels are not guaranteed.

Table 13. ANOVA and post hoc comparisons for TKN values by method for all reported values for Sample A.

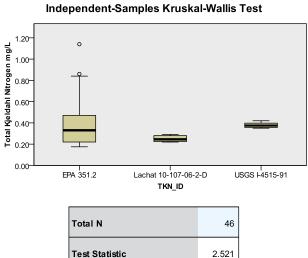
Test of Homogeneity of Variances

Total Kjeldahl Nitrogen mg/L

Levene's Statistic	df1	df2	Sig.
2.248	2	20	.132

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.041	2	.020	.381	.688
Within Groups	1.067	20	.053		
Total	1.108	22			


	Method ID	N	Subset for alpha = 0.05
			1
	Lachat 10-107-06-2-D	2	.26500
Gabriel ^{a,b}	USGS I-4515-91	3	.38000
Gabriel	EPA 351.2	18	.41367
	Sig.		.788

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 3.375.
- b. The group sizes are unequal. The harmonic mean of the group

sizes is used. Type I error levels are not guaranteed.

Table 14. ANOVA and post hoc comparisons for TKN values by method for all reported values for Sample B.

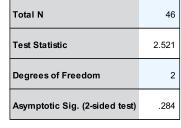


Figure 4. Results of Kruskal-Wallis method comparisons for TKN for all samples.

The test statistic is adjusted for ties.
 Multiple comparisons are not performed because the overall test does not show significant differences across samples.

B. Ammonia. Nine of the 30 results were reported values for Sample A; the other 70% were reported as qualifiers. The MDLs for all laboratories ranged from 0.003 to 0.02 mg/L; and the PQLs for Labs C, E, and J ranged from 0.02 to 0.05 mg/L. No reported values were determined to be statistical outliers. There were no values reported as less than detection/quantitation limits that were determined to be false negatives. The %F-pseudosigma value was high (greater than 30%), indicating a lack of precision among laboratories. The same patterns in the data were noted for Sample B, as well.

When looking at all of the results combined, eighteen of the 60 results were reported as values. No reported values were outside acceptable ranges, nor were any values determined to be statistical outliers. There were no values reported as less than detection/quantitation limits that were determined to be false negatives. The % F-pseudosigma was very large (>300%). Results reported for EPA 350.1 were significantly greater than those reported for SM 4500 NH3 G; no values were reported for Lachat 10-107-06-1-C. No other analyses were conducted for ammonia. There was no statistical difference between Sample A and Sample B. See Figures 5 - 7 and Tables 15 - 22 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, inter-laboratory comparisons, and method comparisons.

	Amn	onia		
		Sample A		
	F-pseudosigma	% F-pseudosigma	Median	Range
	0.104	347.17%	0.030	0.163
Method	N	Mean	Median	Range
EPA 350.1	24 (eighteen non-values)	0.101	0.106	0.144
Lachat 10-107-06-1-C	3	All Non-detect	N/A	N/A
SM 4500 NH3 G	3	0.012	0.012	0.010
		Sample B		
	F-pseudosigma	% F-pseudosigma	Median	Range
	0.113	375.59%	0.030	0.160
Method	N	Mean	Median	Range
EPA 350.1	24 (eighteen non-values)	0.096	0.096	0.146
Lachat 10-107-06-1-C	3	All Non-detect	N/A	N/A
SM 4500 NH3 G	3	0.012	0.011	0.005
		All		
	F-pseudosigma	% F-pseudosigma	Median	Range
	0.110	366.32%	0.030	0.163
Method	N	Mean	Median	Range
EPA 350.1	48 (36 non-values)	0.099	0.106	0.146
Lachat 10-107-06-1-C	6	All Non-detect	N/A	N/A
SM 4500 NH3 G	6	0.012	0.012	0.010

Table 15. F-pseudosigma values for ammonia.

NH_3

	Sample A			Sample B					All			
Lab		Lab		Mean		Lab		Mean		Lab		Mean
ID	N	Median	Range	Z-value	N	Median	Range	Z-value	N	Median	Range	Z-value
A	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR
C	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR
D	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR
Е	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR
F	3	0.030	0.045	N/A	3	0.030	0.007	N/A	6	0.030	0.047	N/A
G	3	0.012	0.010	N/A	3	0.011	0.005	N/A	6	0.012	0.010	N/A
Н	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR
I	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR
J	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR
K	3	0.170	0.030	N/A	3	0.170	0.010	N/A	6	0.170	0.030	N/A

^{*} One or more non-value reported. NR = all non-values reported.

Table 16. Summary statistics and Z-values by laboratory for ammonia.

Ammonia									
Method	MDL Range	PQL Range							
ALL	0.003 - 0.02	0.012 - 0.05							
EPA 350.1	0.003 - 0.02	0.012 - 0.05							
Lachat 10-107-06-1-C	Not Reported	0.04							
SM 4500 NH3 G	0.007	0.028							

Table 17. Methods and detection/quantitation limits for NH₃.

Descriptives

Ammonia mg/L

	U							
	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
F	3	.04233	.024906	.014380	01954	.10420	.026	.071
G	3	.01200	.005000	.002887	00042	.02442	.007	.017
K	3	.16000	.017321	.010000	.11697	.20303	.140	.170
Total	9	.07144	.069426	.023142	.01808	.12481	.007	.170

Table 18. Descriptive statistics by laboratory for ammonia for Sample A.

Descriptives

Ammonia mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
F	3	.02833	.003786	.002186	.01893	.03774	.024	.031
G	3	.01200	.002646	.001528	.00543	.01857	.010	.015
K	3	.16667	.005774	.003333	.15232	.18101	.160	.170
Total	9	.06900	.073683	.024561	.01236	.12564	.010	.170

Table 19. Descriptive statistics by laboratory for ammonia for Sample B.

Descriptives

Ammonia mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence l	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
F	6	.03533	.017682	.007219	.01678	.05389	.024	.071
G	6	.01200	.003578	.001461	.00825	.01575	.007	.017
K	6	.16333	.012111	.004944	.15062	.17604	.140	.170
Total	18	.07022	.069461	.016372	.03568	.10476	.007	.170

Table 20. Descriptive statistics by laboratory for ammonia for all samples.

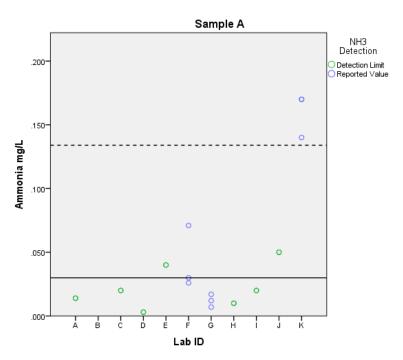


Figure 5. Scatter-plot of ammonia values and detection/quantitation limits obtained by ten laboratories for Sample A. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

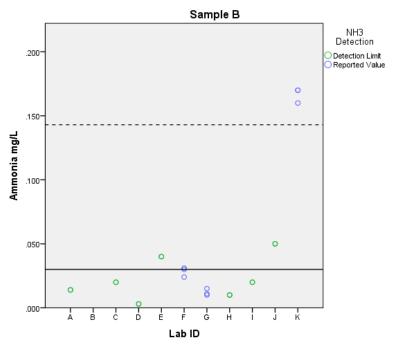


Figure 6. Scatter-plot of ammonia values and detection/quantitation limits obtained by ten laboratories for Sample B. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

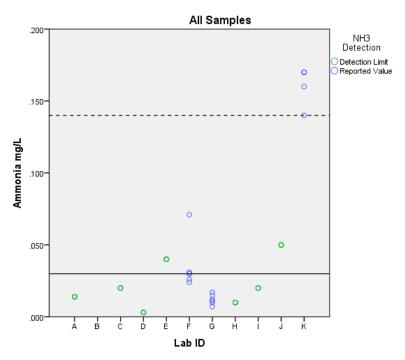


Figure 7. Scatter-plot of ammonia values and detection/quantitation limits obtained by ten laboratories for all samples. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

Test of Homogeneity of Variances

Ammonia mg/L

Levene's Statistic	df1	df2	Sig.
2.000	2	15	.170

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.080	2	.040	253.087	.000
Within Groups	.002	15	.000		
Total	.082	17			

Ammonia mg/L

1 mmomu mg/2										
	Lab ID	N	Subset for alpha = 0.05							
			1	2	3					
	G	6	.01200							
T1 HCD ^a	F	6		.03533						
Tukey HSD ^a	K	6			.16333					
	Sig.		1.000	1.000	1.000					

Means for groups in homogeneous subsets are displayed.

Table 21. ANOVA and post hoc inter-laboratory comparisons for ammonia for all samples.

Group Statistics

				Std.	Std. Error
	Method ID	N	Mean	Deviation	Mean
Ammonia mg/L	EPA 350.1	12	.09933	.068390	.019742
	SM 4500 NH3 G	6	.01200	.003578	.001461

Independent Samples Test

	Levene's Test for Equality of Variances			t-test for Equality of Means						
	F	Sia		df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confide of the Di	fference	
· /T	E 1 '	1.	Sig.	2.079					Lower	Upper
Ammonia mg/L	Equal variances assumed Equal variances not assumed	103.863	.000	3.078 4.412	16 11.120	.007 .001	.087333 .087333	.028371 .019796	.027191 .043819	.147476 .130848

Table 22. Results of t-test comparisons of ammonia by method for all samples.

C. Total Nitrite + Nitrate. Although there were only seventeen and 20 reported values for NO_x for each sample (vs. the 21 needed, respectively), analyses were run; however, caution should be exercised in interpreting the results due to the lack of statistical power. Sixteen of the seventeen reported values for Sample A were within acceptable ranges. Lab A reported the only value outside acceptable ranges. There were no statistical outliers, and no results reported as less than the MDL (or PQL) were determined to be false negatives. The %F-pseudosigma value was large (greater than 30%), indicating a lack of precision among laboratories. Results reported By Lab A were highly variable. Of the seventeen reported values, 75% were within 1 F-pseudosigma and 94% were within 2 F-pseudosigma. The only method to report values for this sample was EPA 353.2.

Sample B had nineteen of the 20 reported values within acceptable ranges. Lab A reported the only value outside acceptable ranges. There were no statistical outliers, and no results reported as less than the MDL (or PQL) were determined to be false negatives. The %F-pseudosigma value was large (greater than 30%), indicating a lack of precision among laboratories. Results reported By Lab A were highly variable. Of the 20 reported values, 75% were within 1 F-pseudosigma and 95% were within 2 F-pseudosigma. Results reported for EPA 353.2 were significantly greater than those reported for SM 4500 NO3 F; no values were reported for Lachat 10-107-04-1-C or USGS I-2545-90.

When looking at all of the results combined, 35 of the 37 reported values were within acceptable ranges. Lab A reported two values outside acceptable ranges. Results for Lab A were highly variable. There were no statistical outliers, and no results reported as less than the MDL (or PQL) were determined to be false negatives. The % F-pseudosigma was large (greater than 30%), indicating a lack of precision among laboratories. Of the 37 reported values, 76% were within 1 F-pseudosigma and 95% were within 2 F-pseudosigma. Results reported for EPA 353.2 were significantly greater than those reported for SM 4500 NO3 F; no values were reported for Lachat 10-107-04-1-C or USGS I-2545-90. The MDLs for all laboratories ranged from 0.002 to 0.02 mg/L; and the PQLs for Labs E and J ranged from 0.02 to 0.04 mg/L. There was no statistical difference between Sample A and Sample B. See Figures 8 - 12 and Tables 23 - 31 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, inter-laboratory comparisons, and method comparisons.

	N	VO _x							
		Sample A							
	F-pseudosigma	% F-pseudosigma	Median	Range					
	0.008	101.93%	0.008	0.022					
Method	N	Mean	Median	Range					
EPA 353.2	21 (four non-values)	0.013	0.008	0.022					
Lachat 10-107-04-1-C	3	All Non-detect	N/A	N/A					
SM 4500 N03 F	3	All Non-detect	N/A	N/A					
USGS I-2545-90	3	All Non-detect	N/A	N/A					
		Sample B							
	F-pseudosigma	% F-pseudosigma	Median	Range					
	0.008	81.54%	0.010	0.027					
Method	N	Mean	Median	Range					
EPA 353.2	21 (three non-values)	0.014	0.011	0.022					
Lachat 10-107-04-1-C	3	All Non-detect	N/A	N/A					
SM 4500 N03 F	3 (one non-value)	0.003	0.003	0.000					
USGS I-2545-90	3	All Non-detect	N/A	N/A					
		All Samples							
	F-pseudosigma	% F-pseudosigma	Median	Range					
	0.008	77.84%	0.010	0.027					
Method	N	Mean	Median	Range					
EPA 353.2	42 (seven non-values)	0.013	0.010	0.023					
Lachat 10-107-04-1-C	6	All Non-detect	N/A	N/A					
SM 4500 N03 F	6 (four non-values)	0.003	0.003	0.000					
USGS I-2545-90	6	All Non-detect	N/A	N/A					

Table 23. F-pseudosigma values for NO_x.

NO_x

			Sample A	1			Sample B				All	
Lab		Lab		Mean		Lab		Mean		Lab		Mean
ID	N	Median	Range	Z-value	N	Median	Range	Z-value	N	Median	Range	Z-value
A	3*	0.023	0.012	1.88	3	0.022	0.014	1.58	6	0.022	0.014	1.60
C	3	0.008	0.001	0.04	3	0.008	0.001	0.21	6	0.008	0.002	0.25
D	3*	NR	NR	NR	3*	0.003	0.000	0.88	6*	0.003	0.000	0.88
Е	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR
F	3	0.022	0.002	1.75	3	0.021	0.001	1.33	6	0.021	0.003	1.42
G	3	0.008	0.000	0.00	3	0.010	0.001	0.04	6	0.009	0.002	0.15
Н	3	0.008	0.000	0.00	3	0.008	0.001	0.21	6	0.008	0.001	0.23
I	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR
J	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR
K	3	0.011	0.001	0.42	3	0.011	0.001	0.17	6	0.011	0.001	0.17

^{*} One or more non-value reported. NR = all non-values reported.

Table 24. Summary statistics and Z-values by Laboratory for NO_x.

NO _x									
Method	MDL Range	PQL Range							
All	0.002 - 0.02	0.01 - 0.04							
EPA 353.2	0.002 - 0.02	0.01 - 0.04							
Lachat 10-107-04-1-C	Not Reported	0.02							
SM 4500 N03 F	0.003	0.012							
USGS I-2545-90	0.02	Not Reported							

Table 25. Methods and detection/quantitation limits for NO_x.

Descriptives

Total $NO_3 + NO_2 mg/L$

	N	Mean	Std. Deviation	Std. Error	95% Confidence l	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
A	2	.02300	.008485	.006000	05324	.09924	.017	.029
C	3	.00767	.000577	.000333	.00623	.00910	.007	.008
F	3	.02200	.001000	.000577	.01952	.02448	.021	.023
G	3	.00800	.000000	.000000	.00800	.00800	.008	.008
H	3	.00800	.000000	.000000	.00800	.00800	.008	.008
K	3	.01133	.000577	.000333	.00990	.01277	.011	.012
Total	17	.01276	.006897	.001673	.00922	.01631	.007	.029

Table 26. Descriptive statistics by laboratory for NO_x for Sample A.

Descriptives

Total $NO_3 + NO_2 mg/L$

	N	Mean	Std. Deviation	Std. Error	r 95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	.02267	.007024	.004055	.00522	.04011	.016	.030
C	3	.00833	.000577	.000333	.00690	.00977	.008	.009
D	2	.00300	.000000	.000000	.00300	.00300	.003	.003
F	3	.02067	.000577	.000333	.01923	.02210	.020	.021
G	3	.00967	.000577	.000333	.00823	.01110	.009	.010
Н	3	.00833	.000577	.000333	.00690	.00977	.008	.009
K	3	.01133	.000577	.000333	.00990	.01277	.011	.012
Total	20	.01245	.006977	.001560	.00918	.01572	.003	.030

Table 27. Descriptive statistics by laboratory for NO_x for Sample B.

Descriptives

Total $NO_3 + NO_2 mg/L$

	N	Mean	Std. Deviation	Std. Error	95% Confidence l	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
A	5	.02280	.006535	.002922	.01469	.03091	.016	.030
C	6	.00800	.000632	.000258	.00734	.00866	.007	.009
D	2	.00300	.000000	.000000	.00300	.00300	.003	.003
F	6	.02133	.001033	.000422	.02025	.02242	.020	.023
G	6	.00883	.000983	.000401	.00780	.00987	.008	.010
H	6	.00817	.000408	.000167	.00774	.00860	.008	.009
K	6	.01133	.000516	.000211	.01079	.01188	.011	.012
Total	37	.01259	.006845	.001125	.01031	.01488	.003	.030

Table 28. Descriptive statistics by laboratory for NO_x for all samples.

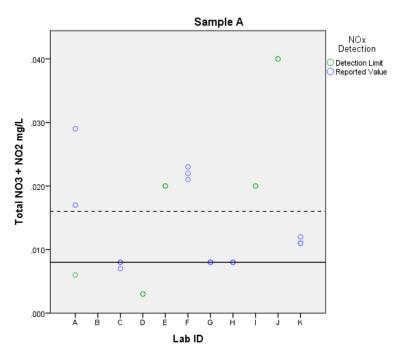


Figure 8. Scatter-plot of NO_x values and detection/quantitation limits obtained by ten laboratories for Sample A. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

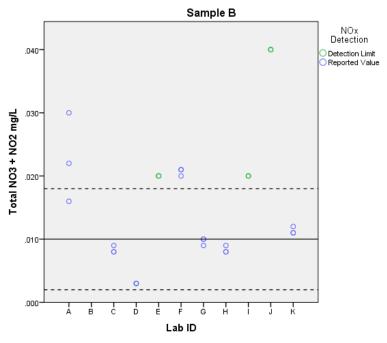


Figure 9. Scatter-plot of NO_x values and detection/quantitation limits obtained by ten laboratories for Sample B. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

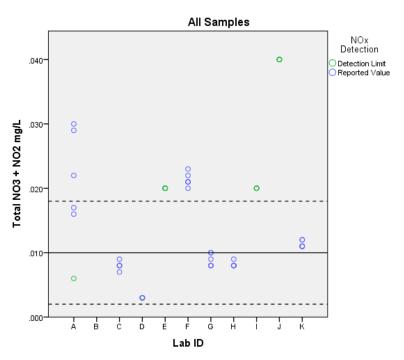


Figure 10. Scatter-plot of NO_x values and detection/quantitation limits obtained by ten laboratories for all samples. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

Hypothesis Test Summary							
	Null Hypothesis	Test	Sig.	Decision			
1	The distribution of Total NO ₃ + NO ₂ mg/L is the same across categories of Lab ID.	Independent-Samples Kruskal-Wallis Test	.011	Reject the null hypothesis.			
Asympto	Asymptotic significances are displayed. The significance level is .05.						
	Homogeneous Subsets bas	ed on Total NO ₃ + NO	₂ mg	/L			
		Sub	set				
		1		2			
	С	4.000					
	G	5.500					
Sample ¹	Н	5.500					
Sample	K			11.000			
	F			15.000			
	A			15.000			
Test Stat	istic	2.000		5.060			
Sig. (2-si	ided test)	.368		.080			
Adjusted Sig. (2-sided test)		.814		.262			
Homogeneous subsets are based on asymptotic significances. The significance level is .05.							
1 Each cell shows the sample average rank of Total NO $_{3}$ + NO $_{2}$ mg/L.							

Table 29. Kruskal-Wallis and post hoc inter-laboratory comparisons for NO_x for Sample A.

Hypothesis Test Summary						
	Null Hypothesis	Test Sig. Deci			Decision	
1	The distribution of Total NO ₃ + NO ₂ mg/L is the same across categories of Lab ID.	Independent-Samples Kruskal-Wallis Test			Reject the null hypothesis.	
Asympto	tic significances are displayed. T	he significa	nce level is	.05.		
	Homogeneous Subsets bas	ed on Tota	$1 NO_3 + NO$	₂ mg	/L	
			Sub	set		
		1	2		3	
	D	1.500				
	C	5.667	5.667			
	Н	5.667	5.667			
Sample ¹	G		9.667			
	K				13.000	
	F				17.000	
	A				18.000	
Test Stat	istic	4.667	4.876		5.695	
Sig. (2-sided test)		.097	.087		.058	
Adjusted Sig. (2-sided test)		.312	.285		.197	
Homogeneous subsets are based on asymptotic significances. The significance level is .05.						
¹ Each cell shows the sample average rank of Total NO ₃ + NO ₂ mg/L.						

Table 30. Kruskal-Wallis and post hoc inter-laboratory comparisons for NO_x for Sample B.

Hypothesis Test Summary								
	Null Hypothesis		Te	st	Sig. Decision		n	
1	The distribution of Total NO + NO ₂ mg/L is the same acro categories of Lab ID.	ree .		lependent-Samples uskal-Wallis Test	.000	Reject the null hypothesis.		
Asymptotic significances are displayed. The significance level is .05.								
	Homogeneous Subsets	s ba	sed	l on Total NO ₃ + NO) ₂ mg/	'L		
				Subse	et			
		1		2		3	4	
	D	1.500						
	С			9.667				
	Н			10.750				
Sample ¹	G			14.083				
	K				23	.500		
	F						31.750	
	A						32.300	
Test Stat	istic	.2	2	3.189		. 2	.077	
Sig. (2-si	ided test)						.782	
Adjusted Sig. (2-sided test)				.565			1.000	
Homogeneous subsets are based on asymptotic significances. The significance level is .05.								
¹ Each cell shows the sample average rank of Total $NO_3 + NO_2$ mg/L.								
² Unable	to compute because the subse	et co	nta	ains only one sample.	•			

Table 31. Kruskal-Wallis and post hoc inter-laboratory comparisons for NO_x for all samples.

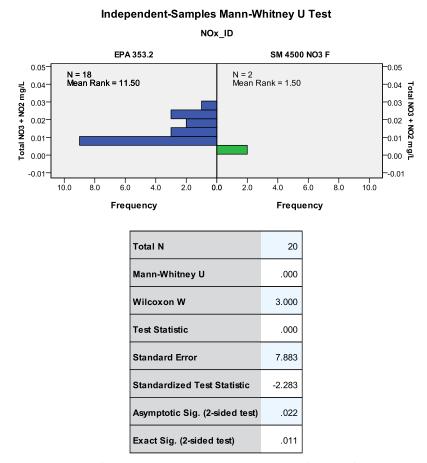


Figure 11. Results of Mann-Whitney method comparisons for NO_x for Sample B.

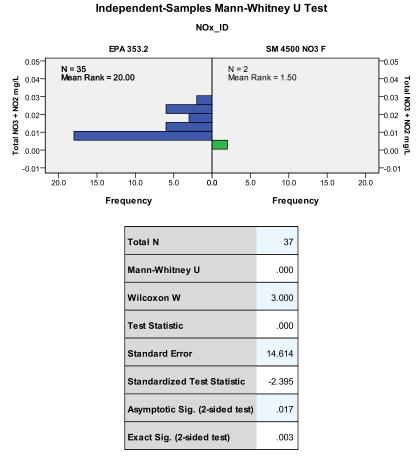


Figure 12. Results of Mann-Whitney method comparisons for NO_x for all samples.

D. Dissolved Nitrite. Seven of the 30 results were reported values for Sample A; the other 77% were reported as qualifiers. The MDLs for all laboratories ranged from 0.0003 to 0.004 mg/L; and the PQLs for Labs E and J ranged from 0.005 to 0.02 mg/L. No reported values were determined to be statistical outliers. There were no values reported as less than detection/quantitation limits that were determined to be false negatives. The %F-pseudosigma value was high (greater than 30%), indicating a lack of precision among laboratories. The same general patterns in the data were noted for Sample B, as well; however, three more values were reported as results for Sample B and Lab K reported one value (0.015 mg/L) that was outside acceptable ranges and was a statistical outlier. In addition, method comparisons for Sample A showed no difference in results reported for EPA 353.2 and USGS I-2540-90; whereas, for Sample B, results reported for EPA 353.2 were significantly greater than results reported for USGS I-2540-90. No values were reported for Lachat 10-107-04-1-C or SM 4500 NO2 B for either sample.

When looking at all of the results combined, seventeen of the 60 results were reported as values. Lab K reported one value outside acceptable ranges; this value was determined to be a statistical outlier, as well. There were no values reported as less than detection/quantitation limits that were determined to be false negatives. The %F-pseudosigma value was high (greater than 30%), indicating a lack of precision among laboratories. Results reported for EPA 353.2 were significantly greater than results reported for USGS I-2540-90. No values were reported for Lachat 10-107-04-1-C or SM 4500 NO2 B. There was no statistical difference between Sample A and Sample B. No other analyses were conducted for dissolved nitrite. See Figures 13 - 18 and Tables 32 - 37 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, inter-laboratory comparisons, and method comparisons.

DNO_2								
	Sample A							
	F-pseudosigma	% F-pseudosigma	Median	Range				
	0.001	37.06	0.002	0.001				
Method	N	Mean	Median	Range				
EPA 353.2	21 (seventeen non-values)	0.002	0.002	0.000				
Lachat 10-107-04-1-C	3	All Non-detect	N/A	N/A				
SM 4500 N02 B	3	All Non-detect	N/A	N/A				
USGS I-2540-90	3	0.001	0.001	0.000				
		Sample B						
	F-pseudosigma	% F-pseudosigma	Median	Range				
	0.001	37.06	0.002	0.014				
Method	N	Mean	Median	Range				
EPA 353.2	21 (fourteen non-values)	0.004	0.002	0.013				
Lachat 10-107-04-1-C	3	All Non-detect	N/A	N/A				
SM 4500 N02 B	3	All Non-detect	N/A	N/A				
USGS I-2540-90	3	0.001	0.001	0.000				
		All Samples						
	F-pseudosigma	% F-pseudosigma	Median	Range				
	0.001	37.06	0.002	0.014				
Method	N	Mean	Median	Range				
EPA 353.2	42 (31 non-values)	0.003	0.002	0.013				
Lachat 10-107-04-1-C	6	All Non-detect	N/A	N/A				
SM 4500 N02 B	6	All Non-detect	N/A	N/A				
USGS I-2540-90	6	0.001	0.001	0.000				

Table 32. F-pseudosigma values for DNO₂.

		_
n	M	ገ.
-		"

	Sample A						Sample 1	В
Lab ID	N	Lab Median	Range	Mean Z-value	N	Lab Median	Range	Mean Z-value
A	3*	NR	NR	NR	3*	NR	NR	NR
C	3*	0.002	N/A	N/A	3*	0.002	0.000	N/A
D	3*	NR	NR	NR	3*	NR	NR	NR
Е	3*	NR	NR	NR	3*	NR	NR	NR
F	3	0.002	0.000	N/A	3	0.002	0.000	N/A
G	3*	NR	NR	NR	3*	NR	NR	NR
Н	3*	NR	NR	NR	3*	0.002	N/A	N/A
I	3	0.001	0.000	N/A	3	0.001	0.000	N/A
J	3*	NR	NR	NR	3*	NR	NR	NR
K	3*	NR	NR	NR	3*	0.015	N/A	N/A

^{*} One or more non-values reported. NR = all non-values reported.

Table 33. Summary statistics and Z-values by Laboratory for DNO₂.

DNO_2					
Method	MDL Range	PQL Range			
All	0.0003 - 0.004	0.005 - 0.022			
EPA 353.2	0.0003 - 0.004	0.01 - 0.022			
Lachat 10-107-04-1-C	Not Reported	0.005			
SM 4500 N02 B	0.002	0.008			
USGS I-2540-90	0.001	Not Reported			

Table 34. Methods and detection/quantitation limits for DNO₂.

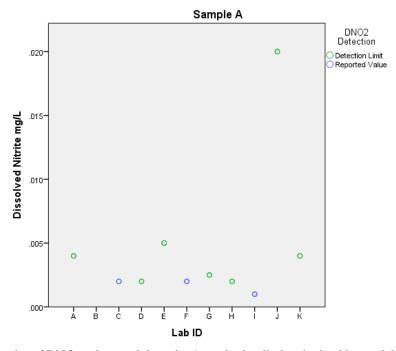


Figure 13. Scatter-plot of DNO₂ values and detection/quantitation limits obtained by ten laboratories for Sample A.

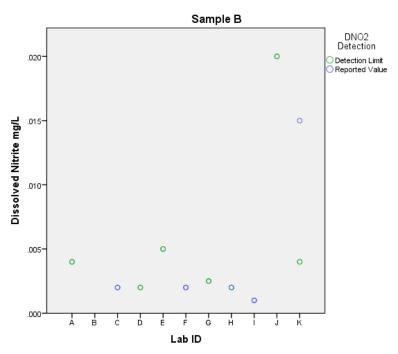


Figure 14. Scatter-plot of DNO₂ values and detection/quantitation limits obtained by ten laboratories for Sample B.

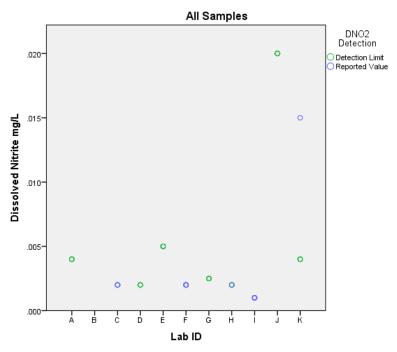


Figure 15. Scatter-plot of DNO_2 values and detection/quantitation limits obtained by ten laboratories for all samples.

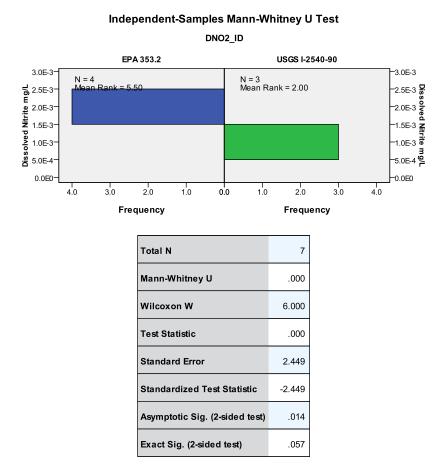


Figure 16. Results of Mann-Whitney method comparisons for DNO₂ for Sample A.

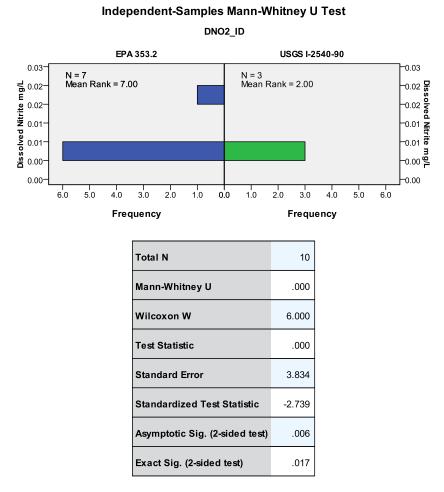


Figure 17. Results of Mann-Whitney method comparisons for DNO₂ for Sample B.

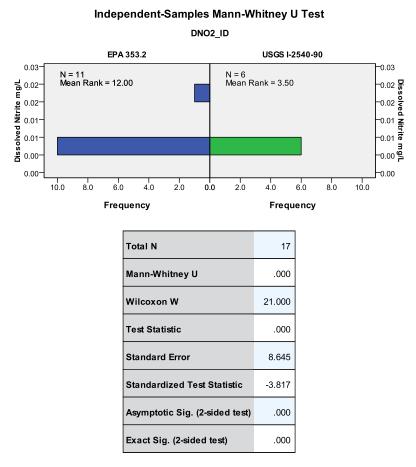


Figure 18. Results of Mann-Whitney method comparisons for DNO₂ for all samples.

E. Total Phosphorus. Twenty-four of the 30 reported values for Sample A were within acceptable ranges. Lab D reported all three values outside acceptable ranges; Lab E reported two and Lab K reported one. Lab K reported one statistical outlier (0.085 mg/L). The %F-pseudosigma value was large (greater than 30%), indicating a lack of precision among laboratories. Of the 30 reported values, 77% were within 1 F-pseudosigma and 80% were within 2 F-pseudosigma. Results reported for method EPA 365.1 were significantly less than results for both EPA 365.4 and Lachat 10-115-01-1-C; there was no statistical difference between results for EPA 365.4 and Lachat 10-115-01-1-C.

For Sample B, 26 of the 30 values were within acceptable ranges. Lab D reported all three values outside acceptable ranges, and Lab K reported one value outside acceptable ranges. There were no statistical outliers reported. The %F-pseudosigma value was large (greater than 30%), indicating a lack of precision among laboratories. Of the 30 reported values, 77% were within 1 F-pseudosigma and 87% were within 2 F-pseudosigma. Results reported for method EPA 365.1 were significantly less than results for both EPA 365.4 and Lachat 10-115-01-1-C; there was no statistical difference between results for EPA 365.4 and Lachat 10-115-01-1-C.

When looking at all of the results combined, 50 of the 60 reported values were within acceptable ranges. All of Lab D's values were outside acceptable ranges, and Labs E and K each reported two values outside acceptable ranges. Lab K reported one statistical outlier (0.085 mg/L). The % F-pseudosigma remained large even after combining Samples A and B. Of the 60 reported values, 77% were within 1 F-pseudosigma and 83% were within 2 F-pseudosigma. Lab K's results were highly variable. Results reported for method EPA 365.1 were significantly less than results for both EPA 365.4 and Lachat 10-115-01-1-C; there was no statistical difference between results for EPA 365.4 and Lachat 10-115-01-1-C. There was no statistical difference between Sample A and Sample B. See Figures 19 - 21 and Tables 35 - 45 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, interlaboratory comparisons, and method comparisons.

TP							
		Sample A					
	F-pseudosigma	% F-pseudosigma	Median	Range			
	0.013	45.72%	0.028	0.067			
Method	N	Mean	Median	Range			
EPA 365.1	18	0.024	0.024	0.012			
EPA 365.4	9	0.050	0.042	0.049			
Lachat 10-115-01-1-C	3	0.053	0.060	0.020			
		Sample B					
	F-pseudosigma	F-pseudosigma % F-pseudosigma		Range			
	0.012	43.71%	0.028	0.042			
Method	N	Mean	Median	Range			
EPA 365.1	18	0.026	0.027	0.012			
EPA 365.4	9	0.044	0.046	0.042			
Lachat 10-115-01-1-C	3	0.043	0.050	0.020			
		Sample B					
	F-pseudosigma	% F-pseudosigma	Median	Range			
	0.012	42.13%	0.028	0.069			
Method	N	Mean	Median	Range			
EPA 365.1	36	0.025	0.025	0.013			
EPA 365.4	18	0.047	0.044	0.069			
Lachat 10-115-01-1-C	6	0.048	0.050	0.030			

Table 35. F-pseudosigma values for TP.

TP

			Sample A	1	Sample B					All		
Lab		Lab		Mean		Lab		Mean		Lab		Mean
ID	N	Median	Range	Z-value	N	Median	Range	Z-value	N	Median	Range	Z-value
A	3	0.018	0.003	0.69	3	0.020	0.001	0.69	6	0.020	0.003	0.72
C	3	0.023	0.002	0.38	3	0.023	0.001	0.39	6	0.023	0.002	0.40
D	3	0.057	0.001	2.21	3	0.058	0.001	2.47	6	0.057	0.002	2.43
E	3	0.060	0.020	1.95	3	0.050	0.020	1.28	6	0.050	0.030	1.69
F	3	0.025	0.002	0.23	3	0.028	0.002	0.06	6	0.026	0.004	0.15
G	3	0.026	0.001	0.18	3	0.027	0.000	0.08	6	0.027	0.002	0.14
Н	3	0.030	0.000	0.15	3	0.031	0.000	0.25	6	0.031	0.001	0.21
I	3	0.023	0.001	0.40	3	0.026	0.003	0.13	6	0.024	0.006	0.28
J	3	0.040	0.000	0.92	3	0.040	0.010	0.72	6	0.040	0.010	0.86
K	3	0.042	0.049	2.03	3	0.046	0.039	1.58	6	0.044	0.069	1.89

Table 36. Summary statistics and Z-values by Laboratory for TP.

Descriptives

Total Phosphorus mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence l	nterval for Mean	Minimum	Maximum
	1,	1vicum	Sta. Be viation	Std. Ellor	Lower Bound Upper Bound		141111111111111111111111111111111111111	114441114111
A	3	.01900	.001732	.001000	.01470	.02330	.018	.021
С	3	.02300	.001000	.000577	.02052	.02548	.022	.024
D	3	.05667	.000577	.000333	.05523	.05810	.056	.057
E	3	.05333	.011547	.006667	.02465	.08202	.040	.060
F	3	.02500	.001000	.000577	.02252	.02748	.024	.026
G	3	.02567	.000577	.000333	.02423	.02710	.025	.026
H	3	.03000	.000000	.000000	.03000	.03000	.030	
I	3	.02283	.000569	.000328	.02142	.02425	.022	.023
J	3	.04000	.000000	.000000	.04000	.04000	.040	.040
K	3	.05433	.026727	.015431	01206	.12073	.036	
Total	30	.03498	.016189	.002956	.02894	.04103	.018	.085

Table 37. Descriptive statistics by laboratory for TP for Sample A.

Descriptives

Total Phosphorus mg/L

	N N	Mean	Std. Deviation	Std. Error	95% Confidence I	nterval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	.01967	.000577	.000333	.01823	.02110	.019	.020
C	3	.02333	.000577	.000333	.02190	.02477	.023	.024
D	3	.05767	.000577	.000333	.05623	.05910	.057	.058
E	3	.04333	.011547	.006667	.01465	.07202	.030	.050
F	3	.02733	.001155	.000667	.02446	.03020	.026	.028
G	3	.02700	.000000	.000000	.02700	.02700	.027	.027
Н	3	.03100	.000000	.000000	.03100	.03100	.031	.031
I	3	.02660	.001572	.000907	.02270	.03050	.025	.028
J	3	.03667	.005774	.003333	.02232	.05101	.030	.040
K	3	.03900	.020421	.011790	01173	.08973	.016	.055
Total	30	.03316	.012626	.002305	.02845	.03787	.016	.058

Table 38. Descriptive statistics by laboratory for TP for Sample B.

Descriptives

Total Phosphorus mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
A	6	.01933	.001211	.000494	.01806	.02060	.018	.021
C	6	.02317	.000753	.000307	.02238	.02396	.022	.024
D	6	.05717	.000753	.000307	.05638	.05796	.056	.058
E	6	.04833	.011690	.004773	.03606	.06060	.030	.060
F	6	.02617	.001602	.000654	.02449	.02785	.024	.028
G	6	.02633	.000816	.000333	.02548	.02719	.025	.027
Н	6	.03050	.000548	.000224	.02993	.03107	.030	.031
I	6	.02472	.002318	.000946	.02228	.02715	.022	.028
J	6	.03833	.004082	.001667	.03405	.04262	.030	.040
K	6	.04667	.022871	.009337	.02267	.07067	.016	.085
Total	60	.03407	.014423	.001862	.03035	.03780	.016	.085

Table 39. Descriptive statistics by laboratory for TP for all samples.

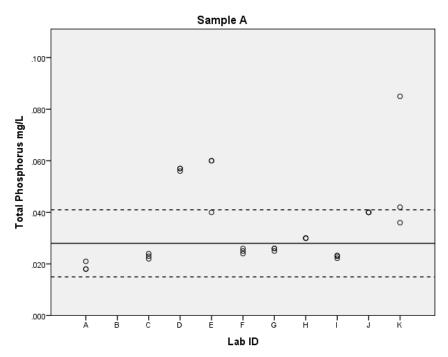


Figure 19. Scatter-plot of TP values obtained by ten laboratories for Sample A. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

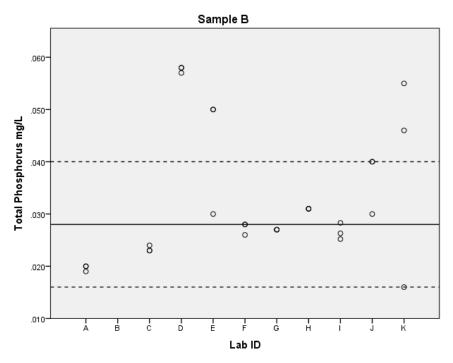


Figure 20. Scatter-plot of TP values obtained by ten laboratories for Sample B. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

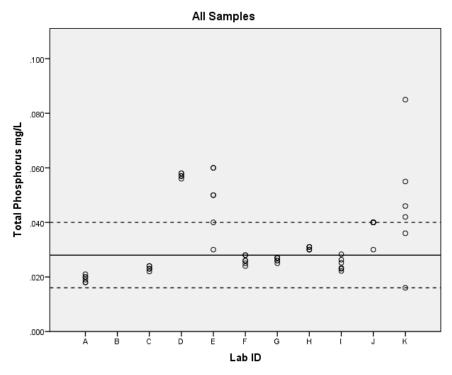


Figure 21. Scatter-plot of TP values obtained by ten laboratories for all samples. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

	Hypothesis Test Summary											
	Null Hypothesis	7	Test	Sig.	Decision	n						
1	The distribution of Total Phosphorus mg/L is the same across categories of Lab ID.		Independent-Samples Kruskal-Wallis Test		Reject the hypothe							
Asympto	tic significances are displaye	ed. Tl	he significance level is .	.05.								
Homogeneous Subsets based on Total Phosphorus mg/L												
Subset												
		1	2		3	4						
	A	2.00	00									
	I	6.50	6.500									
	С	6.66	6.667	6.	667							
	F		11.667	11	.667							
Sample ¹	G			13	.167							
Sample	Н					17.000						
	J					21.500						
	K					24.333						
	D					26.000						
	Е					26.167						
Test Stat	Test Statistic		4.904	5.544		9.119						
Sig. (2-s	ided test)	.06	.086	.063		.058						
Adjusted Sig. (2-sided test) .216 .281 .211 .124												
Homoge	neous subsets are based on as	symp	ototic significances. The	signit	ficance le	evel is .05						
¹ Each ce	ll shows the sample average i	rank	of Total Phosphorus mg	g/L.								

Table 40. Kruskal-Wallis and nonparametric post hoc inter-laboratory comparisons for TP for Sample A.

Hypothesis Test Summary											
	Null Hypothesis		Tes	t	Sig.	Decisio	n				
1	The distribution of Total Phosphorus mg/L is the sam across categories of Lab ID.			ependent-Samples skal-Wallis Test	.008	Reject the					
Asymptotic significances are displayed. The significance level is .05.											
Homogeneous Subsets based on Total Phosphorus mg/L											
Subset											
		1		2		3	4				
	A	3.0	00								
	С	6.0	00	6.000							
	I	11.3	333	11.333	11.333						
	G	12.0	000	12.000	12	.000					
Sample ¹	F	12.6	2.667 12.667		12.667		12.667				
Sample	K	17.3	7.333 17.333		17.333		17.333				
	Н	20.0	000	20.000	20	.000	20.000				
	J			20.833	20	.833	20.833				
	E				22	.833	22.833				
	D						29.000				
Test Statistic		11.8	842	11.528	10.921		10.944				
Sig. (2-sided test)				.073	.091		.053				
Adjusted Sig. (2-sided test) .101 .113 .139 .094											
Homoge	neous subsets are based on a	sym	ptot	ic significances. The	signit	ficance l	evel is .05.				
¹ Each ce	ll shows the sample average	rank	of '	Total Phosphorus ma	g/L.						

Table 41. Kruskal-Wallis test and results of nonparametric inter-laboratory comparisons of TP for Sample B.

	Hypot	hesis	Test Summary							
	Null Hypothesis	Г	Test	Sig.	Decision					
1	The distribution of Total Phosphorus mg/L is the same across categories of Lab ID.		ndependent-Samples Kruskal-Wallis Test	.000	Reject the null hypothesis.					
Asympto	otic significances are displayed. T	he sig	gnificance level is .05.							
	Homogeneous Subsets based on Total Phosphorus mg/L									
				Subs	et					
	1 2 3 4 5									
	A	4.50	0							
	С		12.417							
	I		18.417	18.417						
	F			23.083						
Sample ¹	G			24.083						
Sample	Н				36.000					
	K				41.167	41.167				
	J					41.917				
	Е					48.917	48.917			
	D						54.500			
Test Sta	tistic	. 2	1.500	1.822	3.799	2.885	.946			
Sig. (2-s	ided test)		.221	.402	.051	.236	.331			
Adjusted	d Sig. (2-sided test)		.746	.848	.251	.628	.890			
Homoge	Homogeneous subsets are based on asymptotic significances. The significance level is .05.									
¹ Each ce	ell shows the sample average rank	of To	otal Phosphorus mg/L.							
² Unable	to compute because the subset co	ntain	s only one sample.							
Table 42	2. Kruskal-Wallis test and results	of no	nnarametric inter-labora	atory co	mparisons of TP	for all s	amples			

Table 42. Kruskal-Wallis test and results of nonparametric inter-laboratory comparisons of TP for all samples.

	Hypothesis Test Summary									
	Null Hypothesis		Test	Sig.	Decision					
1	The distribution of mg/L is the same a of TP_ID.	f Total Phosphorus across categories	Independent-Samples Kruskal-Wallis Test	.000	Reject the null hypothesis.					
A	symptotic significa	nces are displayed.	The significance level is	.05.						
Homogeneous Subsets based on Total Phosphorus mg/L										
Subset										
			1	2						
	EPA 365.1	9.500								
S	ample ¹	EPA 365.4			23.944					
	amp.c	Lachat 10-115-01- 1-C			26.167					
T	est Statistic		.2		.892					
S	ig. (2-sided test)				.345					
A	djusted Sig. (2-side	ed test)			.345					
Homogeneous subsets are based on asymptotic significances. The significance level is .05.										
¹ F	Each cell shows the sample average rank of Total Phosphorus mg/L.									
2 Į	Jnable to compute	because the subset c	ontains only one sample							
_	11 42 17 1 1 1 1	17 11' 1 1.	a of manmanamatui a aame		C TED 1 1					

Table 43. Kruskal-Wallis test and results of nonparametric comparisons for TP values by method for Sample A.

Hypothesis Test Summary									
Null Hyp	oothesis		Test	Sig.	Decision				
	the same a	f Total Phosphorus across categories	Independent-Samples Kruskal-Wallis Test	.002	Reject the null hypothesis.				
Asymptotic	e significa	nces are displayed.	The significance level is	.05.					
Homogeneous Subsets based on Total Phosphorus mg/L									
			Sub	set					
			1		2				
		EPA 365.1	10.833						
Sample ¹		EPA 365.4			22.389				
~ unit pro		Lachat 10-115-01- 1-C			22.833				
Test Statist	ic		.2	.139					
Sig. (2-side	ed test)			.710					
Adjusted S	ig. (2-side	ed test)			.710				
Homogeneous subsets are based on asymptotic significances. The significance level is .05.									
¹ Each cell s	shows the	sample average ran	k of Total Phosphorus m	ng/L.					
² Unable to	compute	because the subset c	ontains only one sample).					
T.1.1. 44	77 1 1 3	57 11: 4 4 1 14	C	-	C TED 1 1				

Table 44. Kruskal-Wallis test and results of nonparametric comparisons for TP values by method for Sample B.

	Hypothesis Test Summary										
Test	Sig.	Decision									
Independent-Samples Kruskal-Wallis Test	.000	Reject the null hypothesis.									
The significance level is	.05.										
Homogeneous Subsets based on Total Phosphorus mg/L											
Sub	set										
1		2									
19.750											
		45.861									
		48.917									
.2		.222									
	.638										
		.638									
Homogeneous subsets are based on asymptotic significances. The significance level is .05.											
¹ Each cell shows the sample average rank of Total Phosphorus mg/L.											
contains only one sample) .										
	Independent-Samples Kruskal-Wallis Test The significance level is cased on Total Phosphore Sub 1 19.750 - - - - - - - - - - - - -	Independent-Samples Kruskal-Wallis Test The significance level is .05. Sased on Total Phosphorus management of the significance of the significance of the significance of the significances. The significances of the significance of the si									

Table 45. Kruskal-Wallis test and results of nonparametric comparisons for TP values by method for all samples.

F. Orthophosphate. Twenty-three percent of the results for OP from Sample A were reported as non-values. Twenty-two of the 23 reported values for Sample A were within acceptable ranges. Lab D reported the only value outside acceptable ranges; this value was a statistical outlier (0.042 mg/L). The MDLs for all laboratories ranged from 0.0019 to 0.009 mg/L; and the PQLs for Labs E and J ranged from 0.002 to 0.04 mg/L. There were no values reported as less than detection/quantitation limits that were determined to be false negatives. The %F-pseudosigma value was large (greater than 30%), indicating a lack of precision among laboratories. Of the 23 reported values, 52% were within 1 F-pseudosigma and 96% were within 2 F-pseudosigma. There was no statistical difference among results reported for the five methods employed; however, SM 4500 P F was typically greater than the other methods.

For Sample B, 20% of the results were reported as non-values; of the 24 values reported, all were within acceptable ranges. There were no statistical outliers reported. The %F-pseudosigma value was large (greater than 30%), indicating a lack of precision among laboratories. Of the 24 reported values, 63% were within 1 F-pseudosigma and 100% were within 2 F-pseudosigma. There was no statistical difference among results reported for the five methods employed, although the mean for SM 4500 P F was typically higher than the other methods.

When looking at all of the results combined (since they all originated from a single sample), 46 of the 47 reported values were within acceptable ranges. Lab D reported the only value outside acceptable ranges; this was determined to be a statistical outlier (0.042 mg/L). The % F-pseudosigma remained large even after combining Samples A and B. Of the 60 reported values, 68% were within 1 F-pseudosigma and 98% were within 2 F-pseudosigma. Results reported for method SM 4500 P F were significantly greater than results from all other methods; there was no statistical difference between results for EPA 365.1, Lachat 10-115-01-1-I, SM 4500 P E, or USGS I-2601-90. There was no statistical difference between Sample A and Sample B. See Figures 20 - 23 and Tables 46 - 56 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, inter-laboratory comparisons, and method comparisons.

		OP		
		Sample A		
	F-pseudosigma	% F-pseudosigma	Median	Range
	0.004	40.43%	0.011	0.038
Method	N	Mean	Median	Range
EPA 365.1	15 (three non-values)	0.011	0.012	0.014
Lachat 10-115-01-1-I	3	0.011	0.011	0.000
SM 4500 P E	3	0.010	0.009	0.002
SM 4500 P F	6 (two non-values)	0.023	0.018	0.026
USGS I-2601-90	3 (two non-values)	0.010	0.010	0.000
		Sample B		
	F-pseudosigma	% F-pseudosigma	Median	Range
	0.004	31.36%	0.013	0.014
Method	N	Mean	Median	Range
EPA 365.1	15 (three non-values)	0.013	0.013	0.014
Lachat 10-115-01-1-I	3	0.013	0.013	0.001
SM 4500 P E	3	0.012	0.011	0.007
SM 4500 P F	6 (three non-values)	0.018	0.018	0.000
USGS I-2601-90	3	0.012	0.012	0.001
		All Samples		
	F-pseudosigma	% F-pseudosigma	Median	Range
	0.004	37.06%	0.012	0.038
Method	N	Mean	Median	Range
EPA 365.1	30 (six non-values)	0.012	0.012	0.016
Lachat 10-115-01-1-I	6	0.012	0.012	0.003
SM 4500 P E	6	0.011	0.010	0.007
SM 4500 P F	12 (five non-values)	0.021	0.018	0.026
USGS I-2601-90	6 (two non-values)	0.012	0.012	0.003

Table 46. F-pseudosigma values for OP.

OP

			Sample A	1			Sample B				All	
Lab		Lab		Mean		Lab		Mean		Lab		Mean
ID	N	Median	Range	Z-value	N	Median	Range	Z-value	N	Median	Range	Z-value
A	3	0.017	0.001	1.58	3	0.019	0.002	1.50	6	0.018	0.003	1.54
C	3	0.010	0.001	0.17	3	0.012	0.000	0.25	6	0.012	0.002	0.21
D	3*	0.042	N/A	7.75	3*	NR	NR	NR	6*	0.042	N/A	7.50
Е	3	0.011	0.000	0.00	3	0.013	0.001	0.08	6	0.012	0.003	0.29
F	3	0.004	0.001	1.67	3	0.008	0.002	1.42	6	0.006	0.004	1.54
G	3	0.016	0.003	1.50	3	0.018	0.000	1.25	6	0.018	0.003	1.38
Н	3	0.012	0.000	0.25	3	0.013	0.001	0.08	6	0.013	0.002	0.17
I	3*	0.010	N/A	0.25	3	0.012	0.001	0.17	6	0.012	0.003	0.19
J	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR
K	3	0.009	0.002	0.33	3	0.011	0.007	0.75	6	0.010	0.007	0.63

^{*} One or more non-values reported. NR = all non-values reported.

Table 47. Summary statistics and Z-values by Laboratory for OP.

OP		
Method	MDL Range	PQL Range
All	0.0019 - 0.009	0.002 - 0.04
EPA 365.1	0.0019 - 0.008	0.01 - 0.04
Lachat 10-115-01-1-I	Not Reported	0.002
SM 4500 P E	0.008	0.032
SM 4500 P F	0.004 - 0.009	0.016 - 0.036
USGS I-2601-90	0.004	Not Reported

Table 48. Methods and detection/quantitation limits for OP.

Descriptives

Orthophosphate mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	.01733	.000577	.000333	.01590	.01877	.017	.018
C	3	.01033	.000577	.000333	.00890	.01177	.010	.011
D	1	.04200	N/A	N/A	N/A	N/A	.042	.042
E	3	.01100	.000000	.000000	.01100	.01100	.011	.011
F	3	.00433	.000577	.000333	.00290	.00577	.004	.005
G	3	.01700	.001732	.001000	.01270	.02130	.016	.019
H	3	.01200	.000000	.000000	.01200	.01200	.012	.012
I	1	.01000	N/A	N/A	N/A	N/A	.010	.010
K	3	.00967	.001155	.000667	.00680	.01254	.009	.011
Total	23	.01291	.007567	.001578	.00964	.01619	.004	.042

Table 49. Descriptive statistics by laboratory for OP for Sample A.

Descriptives

Orthophosphate mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	.01900	.001000	.000577	.01652	.02148	.018	.020
C	3	.01200	.000000	.000000	.01200	.01200	.012	.012
E	3	.01333	.000577	.000333	.01190	.01477	.013	.014
F	3	.00733	.001155	.000667	.00446	.01020	.006	.008
G	3	.01800	.000000	.000000	.01800	.01800	.018	.018
Н	3	.01333	.000577	.000333	.01190	.01477	.013	.014
I	3	.01233	.000577	.000333	.01090	.01377	.012	.013
K	3	.01200	.003606	.002082	.00304	.02096	.009	.016
Total	24	.01342	.003706	.000756	.01185	.01498	.006	.020

Table 50. Descriptive statistics by laboratory for OP for Sample B.

Descriptives

Orthophosphate mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
A	6	.01817	.001169	.000477	.01694	.01939	.017	.020
C	6	.01117	.000983	.000401	.01013	.01220	.010	.012
D	1	.04200	N/A	N/A	N/A	N/A	.042	.042
E	6	.01217	.001329	.000543	.01077	.01356	.011	.014
F	6	.00583	.001835	.000749	.00391	.00776	.004	.008
G	6	.01750	.001225	.000500	.01621	.01879	.016	.019
Н	6	.01267	.000816	.000333	.01181	.01352	.012	.014
I	4	.01175	.001258	.000629	.00975	.01375	.010	.013
K	6	.01083	.002714	.001108	.00798	.01368	.009	.016
Total	47	.01317	.005858	.000855	.01145	.01489	.004	.042

Table 51. Descriptive statistics by laboratory for OP for all samples.

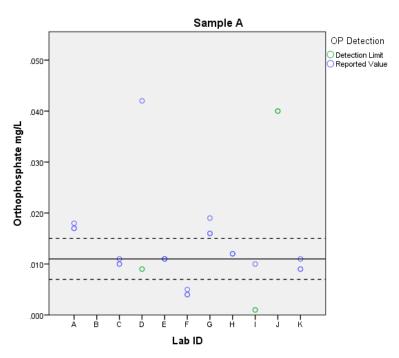


Figure 20. Scatter-plot of OP values and detection/quantitation limits obtained by ten laboratories for Sample A. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

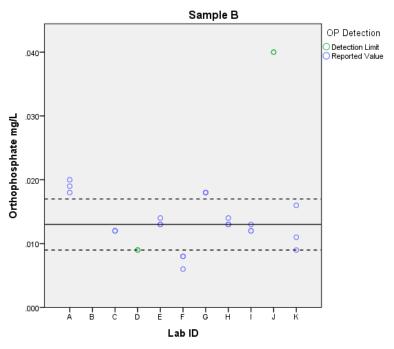


Figure 21. Scatter-plot of OP values and detection/quantitation limits obtained by ten laboratories for Sample B. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

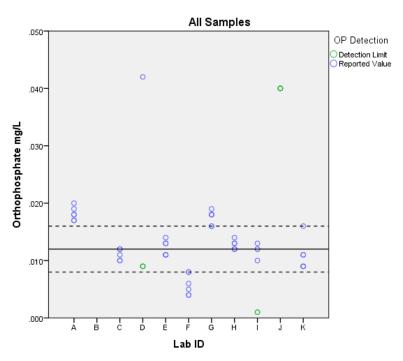


Figure 22. Scatter-plot of OP values and detection/quantitation limits obtained by ten laboratories for all samples. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

	Hypothe	sis T	est S	Summary		
	Null Hypothesis	Test			Sig.	Decision
1	The distribution of Orthophosphate mg/L is the same across categories of Lab ID.	Independent-Samples			.008	Reject the null hypothesis.
Asympto	tic significances are displayed	l. Th	e sig	nificance level is .0)5.	
	Homogeneous Subsets	base	d or	n Orthophosphate	mg/L	ı
				Subset		
		1		2		3
	F	2.0	00			
	K	6.6	67	6.667		
	I	7.0	00	7.000		
	С	8.3	33	8.333		
Sample ¹	E	11.0	000	11.000		
	Н			15.000		15.000
	G					19.000
	A					20.000
	D					23.000
Test Stat	istic	9.1	36	9.218		7.302
Sig. (2-si	ided test)	.05	8	.056		.063
Adjusted Sig. (2-sided test) .123 .119						.164
Homoger	neous subsets are based on asy	ympt	otic	significances. The s	signif	icance level is
Each ce	ll shows the sample average ra	ınk o	f Or	thophosphate mg/L		

Table 52. Kruskal-Wallis test and results of nonparametric pair-wise comparisons of OP for Sample A.

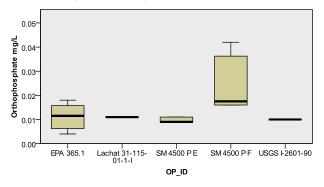

Hypothes	sis Test Summary						
	Null Hypothesis		Test		Sig.	Decision	
1	The distribution of Orthophosphate mg/L is the same across categories of Lal ID.	mg/L is the		Independent-Samples		Reject the n hypothesis.	ull
Asympto	tic significances are displayed	d. Th	ie si	ignificance level is.	.05.		
Homoge	neous Subsets based on Ortho	phos	spha	ate mg/L			
		Sub	set				
		1		2	3	4	
	F	2.00	00				
	С	8.00	00	8.000			
	K	9.00	00	9.000	9.000		
Sample ¹	I	9.66	57	9.667	9.667		
Sample	E	14.1	67	14.167	14.16	7	
	Н			14.167	14.16	7	
	G				20.50	0 20.5	00
	A					22.5	00
Test Stat	istic	9.35	51	5.638	8.835	2.40	00
Sig. (2-si	ded test)	.053	3	.228	.065	.121	
Adjusted Sig. (2-sided test) .113 .434 .138 .509							
Homogeneous subsets are based on asymptotic significances. The significance level is .05.							
¹ Each ce	ll shows the sample average r	ank o	of C	Orthophosphate mg/	L.		

Table 53. Kruskal-Wallis test and results of nonparametric pair-wise comparisons of OP for Sample B.

Hypothe	sis Test Summary					
	Null Hypothesis		Tes	st	Sig.	Decision
1	The distribution of Orthophosphate mg/L is the same across categories of Lab ID.	Independent-Samples Kruskal-Wallis Test			.000	Reject the null hypothesis.
Asympto	otic significances are displayed.	. Th	e si	gnificance level is .	05.	
Homoge	neous Subsets based on Orthop	hos	pha	te mg/L		
		Sub	set			
		1		2	3	
	F	3.5	00			
	K			15.000		
	С			17.500		
	I		21.250			
Sample ¹	Е		22.833			
	Н			26.333		
	G				39.583	
	A				41.25	50
	D				47.00	00
Test Stat	istic	.2		7.482	3.220)
Sig. (2-si	ided test)			.113	.200	
Adjusted	Sig. (2-sided test)			.231	.559	
Homoge .05.	neous subsets are based on asy	mpt	otic	significances. The	signif	icance level is
¹ Each ce	ll shows the sample average rai	nk o	f O	rthophosphate mg/I	٠.	
² Unable	to compute because the subset	cont	tain	s only one sample.		

Table 54. Kruskal-Wallis test and results of nonparametric pair-wise comparisons of OP for all samples.

Independent-Samples Kruskal-Wallis Test

Total N	23
Test Statistic	8.276
Degrees of Freedom	4
Asymptotic Sig. (2-sided test)	.082

- The test statistic is adjusted for ties.
 Multiple comparisons are not performed because the overall test does not show significant differences across samples.

Figure 23. Results of Kruskal-Wallis method comparisons for OP for Sample A.

Test of Homogeneity of Variances

Orthophosphate mg/L

Levene's Statistic	df1	df2	Sig.
2.427	4	19	.084

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.000	4	.000	1.494	.243
Within Groups	.000	19	.000		
Total	.000	23			

	Method ID	N	Subset for alpha = 0.05
			1
	SM 4500 P E	3	.01200
	USGS I-2601-90	3	.01233
Gabriel ^{a,b}	EPA 365.1	12	.01292
Gabrier	Lachat 31-115-01-1-I	3	.01333
	SM 4500 P F	3	.01800
	Sig.		.284

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 3.529.
- b. The group sizes are unequal. The harmonic mean of the group

sizes is used. Type I error levels are not guaranteed.

Table 55. ANOVA and post hoc comparisons for OP values by method for all reported values for Sample B.

	Hypothesi	s Test Summary		
Null Hypothes	is	Test	Sig.	Decision
I may 1 is the same across categories of		Independent-Samples Kruskal-Wallis Test	.008	Reject the null hypothesis.
Asymptotic signi	ificances are displayed.	The significance level is	.05.	
H	omogeneous Subsets b	ased on Orthophospha	te mg	/L
		Sul	set	
		1		2
	SM 4500 P E	15.000		
	USGS I-2601-90	21.250		
Sample ¹	EPA 365.1	22.146		
Sumple	Lachat 31-115- 01-1-I	22.833		
	SM 4500 P F			40.643
Test Statistic		1.779		.2
Sig. (2-sided test	·)	.620		
Adjusted Sig. (2-	-sided test)	.620		
Homogeneous su .05.	ibsets are based on asyn	nptotic significances. Th	e sign	ificance level is
¹ Each cell shows	the sample average ran	k of Orthophosphate mg	;/L.	
² Unable to comp	ute because the subset c	ontains only one sample	÷.	
	1 337 11' 1 1.			

Table 56. Kruskal-Wallis test and results of nonparametric pair-wise comparisons of OP by method for all samples.

G. Total Organic Carbon. Twelve of the eighteen reported values for Sample A were within acceptable ranges. Labs E and J both reported all three values outside acceptable ranges. There were no statistical outliers reported, nor were any results reported as non-values. The %F-pseudosigma value was small (less than 20%), indicating a high degree of precision among laboratories. Of the 18 reported values, 61% were within 1 F-pseudosigma and 67% were within 2 F-pseudosigma. There was no statistical difference among reported results for the three methods employed; however, those reported from SM 5310 C were highly variable. Results for Sample B follow the same pattern as Sample A (i.e., they mirror each other).

When looking at all of the results combined, 24 of the 36 reported values were within acceptable ranges. Labs E and J both reported all six values outside acceptable ranges, one of which was determined to be a statistical outlier (8 mg/L). The % F-pseudosigma was small (less than 20%). Of the 36 reported values, 61% were within 1 F-pseudosigma and 67% were within 2 F-pseudosigma. There was no statistical difference among reported results for the three methods employed; however, SM 5310 C was highly variable. There was no statistical difference between Sample A and Sample B. See Figures 23 - 28 and Tables 57 - 64 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, interlaboratory comparisons, and method comparisons.

	T	OC		
	1	Sample A		
	F-pseudosigma	% F-pseudosigma	Median	Range
	0.50	12.13%	4.11	3.00
Method	N	Mean	Median	Range
EPA 415.1	3	3.63	3.63	0.05
SM 5310 B	9	4.17	4.18	0.39
SM 5310 C	6	4.50	4.50	3.00
		Sample B		
	F-pseudosigma	% F-pseudosigma	Median	Range
	0.43	10.76%	4.00	6.00
Method	N	Mean	Median	Range
EPA 415.1	3	3.57	3.69	0.38
SM 5310 B	9	4.03	4.02	0.36
SM 5310 C	6	4.67	4.50	6.00
		All Samples		
	F-pseudosigma	% F-pseudosigma	Median	Range
	0.42	10.37%	4.04	6.00
Method	N	Mean	Median	Range
EPA 415.1	6	3.60	3.64	0.38
SM 5310 B	18	4.10	4.09	0.56
SM 5310 C	12	4.58	4.50	6.00

Table 57. F-pseudosigma values for TOC.

TOC

		Sample A				Sample B				All			
Lab		Lab		Mean		Lab		Mean		Lab		Mean	
ID	N	Median	Range	Z-value	N	Median	Range	Z-value	N	Median	Range	Z-value	
D	3	4.18	0.11	0.17	3	4.08	0.15	0.21	6	4.16	0.24	0.26	
Е	3	6.00	0.00	3.78	3	7.00	2.00	6.98	6	6.00	2.00	5.87	
F	3	3.63	0.05	0.97	3	3.69	0.38	1.00	6	3.64	0.38	1.05	
G	3	4.06	0.06	0.13	3	3.88	0.15	0.22	6	4.00	0.23	0.19	
Н	3	4.20	0.20	0.31	3	4.10	0.20	0.23	6	4.20	0.40	0.37	
J	3	3.00	0.00	2.22	3	2.00	1.00	3.88	6	3.00	1.00	3.28	

Table 58. Summary statistics and Z-values by Laboratory for TOC.

Descriptives

Total Organic Carbon mg/L

101111 012	N	Mean	Std. Deviation	Std. Error	05% Confidence	Interval for Moon	Minimum	Maximum
	14	Mean	Sid. Deviation	Stu. Elloi	95% Confidence Interval for Mean		Willillialli	Maxilliulli
					Lower Bound	Upper Bound		
D	3	4.1967	.05686	.03283	4.0554	4.3379	4.15	4.26
E	3	6.0000	.00000	.00000	6.0000	6.0000	6.00	6.00
F	3	3.6267	.02517	.01453	3.5642	3.6892	3.60	3.65
G	3	4.0467	.03215	.01856	3.9668	4.1265	4.01	4.07
Н	3	4.2667	.11547	.06667	3.9798	4.5535	4.20	4.40
J	3	3.0000	.00000	.00000	3.0000	3.0000	3.00	3.00
Total	18	4.1894	.94385	.22247	3.7201	4.6588	3.00	6.00

Table 59. Descriptive statistics by laboratory for TOC for Sample A.

Descriptives

Total Organic Carbon mg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
D	3	4.0900	.07550	.04359	3.9025	4.2775	4.02	4.17
E	3	7.0000	1.00000	.57735	4.5159	9.4841	6.00	8.00
F	3	3.5700	.21656	.12503	3.0320	4.1080	3.32	3.70
G	3	3.9033	.07767	.04485	3.7104	4.0963	3.84	3.99
Н	3	4.1000	.10000	.05774	3.8516	4.3484	4.00	4.20
J	3	2.3333	.57735	.33333	.8991	3.7676	2.00	3.00
Total	18	4.1661	1.50054	.35368	3.4199	4.9123	2.00	8.00

Table 60. Descriptive statistics by laboratory for TOC for Sample B.

Descriptives

Total Organic Carbon mg/L

-	N	Mean	Std. Deviation	Std. Error	95% Confidence	95% Confidence Interval for Mean		Maximum
					Lower Bound	Upper Bound		
D	6	4.1433	.08359	.03412	4.0556	4.2311	4.02	4.26
E	6	6.5000	.83666	.34157	5.6220	7.3780	6.00	8.00
F	6	3.5983	.14134	.05770	3.4500	3.7467	3.32	3.70
G	6	3.9750	.09482	.03871	3.8755	4.0745	3.84	4.07
Н	6	4.1833	.13292	.05426	4.0438	4.3228	4.00	4.40
ſ	6	2.6667	.51640	.21082	2.1247	3.2086	2.00	3.00
Total	36	4.1778	1.23551	.20592	3.7597	4.5958	2.00	8.00

Table 61. Descriptive statistics by laboratory for TOC for all samples.

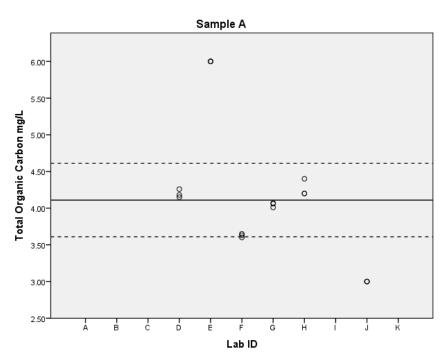


Figure 23. Scatter-plot of TOC values obtained by six laboratories for Sample A. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

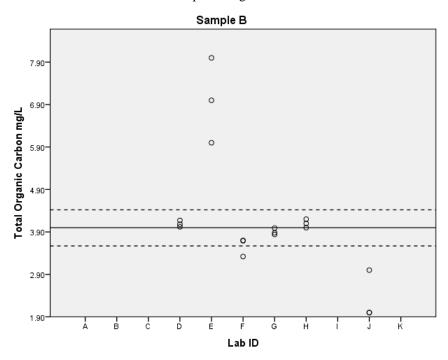


Figure 24. Scatter-plot of TOC values obtained by six laboratories for Sample B. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

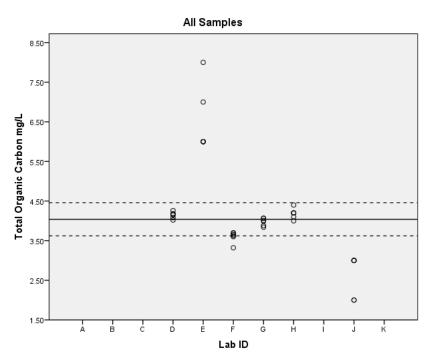


Figure 25. Scatter-plot of TOC values obtained by six laboratories for all samples. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

	Hypothe	esis '	Tes	st Summary					
	Null Hypothesis The distribution of Total Organi			st	Sig.	Decisio	n		
1	It arnon mo/1 is the same across			lependent-Samples uskal-Wallis Test	.006	Reject the			
Asympto	otic significances are displayed.	The	si	gnificance level is .05	5.				
	Homogeneous Subsets ba	sed	on	Total Organic Carl	on m	g/L			
				S	ubset				
1 2 3 4 5									
	J	2.00	00						
	F			5.000					
Sample ¹	G G				8.	000			
Sample	D						11.667		
	Н						13.333		
	Е							17.000	
Test Stat	istic	.2		2		.2	1.225	2	
Sig. (2-s	ided test)						.268		
Adjusted Sig. (2-sided test)									
Homogeneous subsets are based on asymptotic significances. The significance level is .05.									
¹ Each cell shows the sample average rank of Total Organic Carbon mg/L.									
² Unable to compute because the subset contains only one sample.									
	77 1 1 777 11' 1 1	-					CEO CI		

Table 62. Kruskal-Wallis test and results of nonparametric pair-wise comparisons of TOC by laboratory for Sample A.

Total Organic Carbon mg/L

		-		0	
	Lab ID	N	Subse	et for alpha =	0.05
			1	2	3
	J	3	2.3333		
	F	3	3.5700	3.5700	
T. 1	G	3		3.9033	
Tukey- Kramer	D	3		4.0900	
Krainer	Н	3		4.1000	
	E	3			7.0000
	Sig.		.100	.917	1.000

Means for groups in homogeneous subsets are displayed.

Table 63. Post hoc inter-laboratory comparisons for TOC for Sample B.

	Hypothe	esis '	Test	Summary				
	Null Hypothesis The distribution of Total Orga			İ	Sig.	Decisio	n	
1	The distribution of Total Organic Carbon mg/L is the same across categories of Lab ID.			ependent-Samples skal-Wallis Test	.000	Reject the		
Asympto	otic significances are displayed.	The	sig	nificance level is .05	5.			
	Homogeneous Subsets ba	sed	on 7	Total Organic Carl	on m	g/L		
				S	ubset			
		1		2		3	4	5
	J	3.50	00					
	F			9.500				
Commis ¹	G1-1 G				16	.333		
Sample ¹	D						23.333	
	Н						24.833	
	E							33.500
Test Sta	tistic	. 2	2	.2		.2	.650	. 2
Sig. (2-s	ided test)						.420	
Adjusted Sig. (2-sided test)								
Homogeneous subsets are based on asymptotic significances. The significance level is .05.								
¹ Each ce	ell shows the sample average rar	ık of	f To	tal Organic Carbon 1	mg/L.			
² Unable	to compute because the subset of	conta	ains	only one sample.				
Toblo 6/	Kruckal Wallic tact and recult	to of	non	moromotrio noir mis	0.000	noricono	of TOC 1	av lobor

Table 64. Kruskal-Wallis test and results of nonparametric pair-wise comparisons of TOC by laboratory for all samples.



Figure 26. Results of Kruskal-Wallis test of TOC by method for Sample A.

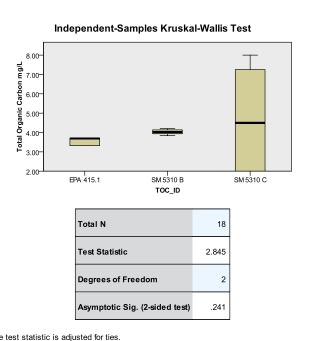
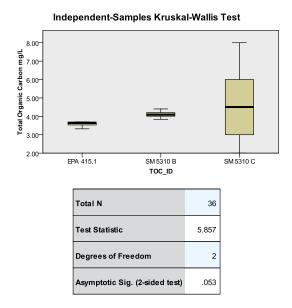



Figure 27. Results of Kruskal-Wallis test of TOC by method for Sample B.

The test statistic is adjusted for ties.
 Multiple comparisons are not performed because the overall test does not show significant differences across samples.

The test statistic is adjusted for ties.
 Multiple comparisons are not performed because the overall test does not show significant differences across samples.

The test statistic is adjusted for ties.
 Multiple comparisons are not performed because the overall test does not show significant differences across samples.

Figure 28. Results of Kruskal-Wallis test of TOC by method for all samples.

H. Chlorophyll a. Thirteen percent of the results for ChlA from Sample A were reported as non-values. Twenty-two of the 26 reported values for Sample A were within acceptable ranges. Labs A and C each reported two values outside acceptable ranges. There were no statistical outliers reported. The MDLs for all laboratories ranged from 0.033 to 3 μ g/L; and the PQLs for Labs E and J ranged from 0.02 to 1 μ g/L. Lab A reported one result as less than detection/quantitation limits; that result was determined to be a false negative. The %F-pseudosigma value was moderate (between 20 and 30%), indicating a lack of precision among laboratories. Of the 26 reported values, 81% were within 1 F-pseudosigma and 85% were within 2 F-pseudosigma. There was no statistical difference between results reported for EPA 445.0 and SM 10200 H.

For Sample B, 17% of the results were reported as non-values; of the 25 values reported, eighteen were within acceptable ranges. Lab C reported all three results outside acceptable ranges, Lab K reported two, and Labs A, C, F, and G all reported one value outside acceptable ranges. There were no statistical outliers reported. Lab A reported two results as less than detection/quantitation limits; these were determined to be false negatives. The %F-pseudosigma value was small (less than 20%), indicating a high degree of precision among laboratories. Of the 25 reported values, 28% were within 1 F-pseudosigma and 72% were within 2 F-pseudosigma. There was no statistical difference between results reported for EPA 445.0 and SM 10200 H.

When looking at all of the results combined, 46 of the 51 reported values were within acceptable ranges. Lab C reported three values outside acceptable ranges, and Lab A reported two. There were no statistical outliers reported. Lab A reported three results as less than detection/quantitation limits; these were determined to be false negatives. The % F-pseudosigma was moderate. Of the 51 reported values, 78% were within 1 F-pseudosigma and 90% were within 2 F-pseudosigma. There was no statistical difference between results reported for EPA 445.0 and those for SM 10200 H. There was no statistical difference between Sample A and Sample B. See Figures 28 - 30 and Tables 65 - 76 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, inter-laboratory comparisons, and method comparisons.

	Chlor	ophyll a		
		Sample A		
	F-pseudosigma	% F-pseudosigma	Median	Range
	1.01	24.05%	4.20	3.77
Method	N	Mean	Median	Range
EPA 445.0	9	3.69	3.53	0.99
SM 10200 H	21 (four non-values)	3.86	4.60	3.77
		Sample B		
	F-pseudosigma	% F-pseudosigma	Median	Range
	0.43	11.81%	3.64	3.88
Method	N	Mean	Median	Range
EPA 445.0	9	3.61	3.55	1.37
SM 10200 H	21 (five non-values)	3.69	4.40	3.88
		All Samples		
	F-pseudosigma	% F-pseudosigma	Median	Range
	1.03	25.76%	4.00	4.05
Method	N	Mean	Median	Range
EPA 445.0	18	3.65	3.54	1.37
SM 10200 H	42 (nine non-values)	3.78	4.41	4.05

Table 65. F-pseudosigma values for ChlA.

ChlA

			Sample A	1			Sample B				All	
Lab		Lab		Mean		Lab		Mean		Lab		Mean
ID	N	Median	Range	Z-value	N	Median	Range	Z-value	N	Median	Range	Z-value
A	3*	1.40	0.00	2.77	3*	2.40	N/A	2.88	6*	1.40	1.00	2.20
В	3	3.35	0.32	0.83	3	3.12	0.46	1.15	6	3.28	0.60	0.72
C	3	2.14	1.12	1.97	3	1.69	1.13	4.54	6	1.92	1.69	1.99
D	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR
E	3	4.20	0.00	0.00	3	4.10	0.40	1.07	6	4.20	0.40	0.18
F	3	4.87	0.71	0.63	3	3.51	1.39	1.18	6	4.55	1.92	0.71
G	3	4.60	0.31	0.34	3	4.50	0.53	2.27	6	4.55	0.58	0.56
Н	3	4.70	0.10	0.46	3	4.40	0.10	1.85	6	4.55	0.30	0.53
J	3	3.45	0.15	0.70	3	3.55	0.11	0.16	6	3.54	0.20	0.45
K	3	5.00	1.00	0.59	3	5.00	2.00	2.60	6	5.00	2.00	0.81

^{*} One or more non-values reported. NR = all non-values reported.

Table 66. Summary statistics by Laboratory for ChlA.

ChlA									
Method	MDL Range	PQL Range							
All	0.033 - 3	0.02 - 12							
EPA 445.0	0.033	0.02 - 0.1							
SM 10200 H	0.1 - 3	1 - 12							

Table 67. Methods and detection/quantitation limits for ChlA.

Descriptives

Chlorophyll a µg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence l	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
A	2	1.4000	.00000	.00000	1.4000	1.4000	1.40	1.40
В	3	3.3633	.16042	.09262	2.9648	3.7618	3.21	3.53
C	3	2.2133	.56359	.32539	.8133	3.6134	1.69	2.81
E	3	4.2000	.00000	.00000	4.2000	4.2000	4.20	4.20
F	3	4.8333	.35642	.20578	3.9479	5.7187	4.46	5.17
G	3	4.5433	.16258	.09387	4.1395	4.9472	4.36	4.67
Н	3	4.6667	.05774	.03333	4.5232	4.8101	4.60	4.70
J	3	3.4933	.08386	.04842	3.2850	3.7017	3.44	3.59
K	3	4.6667	.57735	.33333	3.2324	6.1009	4.00	5.00
Total	26	3.7977	1.12170	.21998	3.3446	4.2508	1.40	5.17

Table 68. Descriptive statistics by laboratory for ChlA for Sample A.

Descriptives

Chlorophyll a µg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence l	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
A	1	2.4000	N/A	N/A	N/A	N/A	2.40	2.40
В	3	3.1467	.23116	.13346	2.5724	3.7209	2.93	3.39
C	3	1.6867	.56501	.32621	.2831	3.0902	1.12	2.25
E	3	4.1000	.20000	.11547	3.6032	4.5968	3.90	4.30
F	3	3.8000	.73899	.42665	1.9643	5.6357	3.25	4.64
G	3	4.6167	.28361	.16374	3.9121	5.3212	4.41	4.94
Н	3	4.4333	.05774	.03333	4.2899	4.5768	4.40	4.50
J	3	3.5733	.05859	.03383	3.4278	3.7189	3.53	3.64
K	3	4.3333	1.15470	.66667	1.4649	7.2018	3.00	5.00
Total	25	3.6588	1.02837	.20567	3.2343	4.0833	1.12	5.00

Table 69. Descriptive statistics by laboratory for ChlA for Sample B.

Descriptives

Chlorophyll a µg/L

	N	Mean	Std. Deviation	Std. Error	95% Confidence	Interval for Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
A	3	1.7333	.57735	.33333	.2991	3.1676	1.40	2.40
В	6	3.2550	.21389	.08732	3.0305	3.4795	2.93	3.53
C	6	1.9500	.58134	.23733	1.3399	2.5601	1.12	2.81
E	6	4.1500	.13784	.05627	4.0053	4.2947	3.90	4.30
F	6	4.3167	.76785	.31347	3.5109	5.1225	3.25	5.17
G	6	4.5800	.21062	.08598	4.3590	4.8010	4.36	4.94
Н	6	4.5500	.13784	.05627	4.4053	4.6947	4.40	4.70
J	6	3.5333	.07815	.03190	3.4513	3.6153	3.44	3.64
K	6	4.5000	.83666	.34157	3.6220	5.3780	3.00	5.00
Total	51	3.7296	1.06848	.14962	3.4291	4.0301	1.12	5.17

Table 70. Descriptive statistics by laboratory for ChlA for all samples.



Figure 28. Scatter-plot of ChlA values and detection/quantitation limits obtained by ten laboratories for Sample A. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

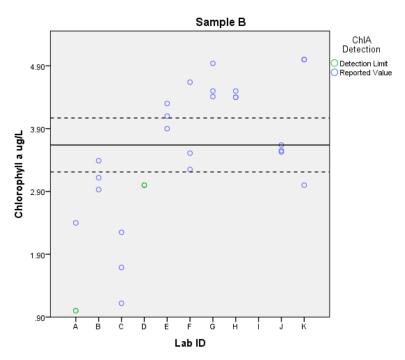


Figure 29. Scatter-plot of ChlA values and detection/quantitation limits obtained by ten laboratories for Sample B. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

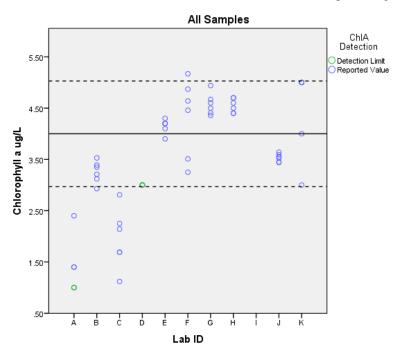


Figure 30. Scatter-plot of ChlA values and detection/quantitation limits obtained by ten laboratories for all samples. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

Sig. Decision

Hypothesis Test Summary

Test

Null Hypothesis

The distribution of

1	The distribution of Chlorophyll a µg/L is the sa across categories of Lab ID.		dependent-Samples ruskal-Wallis Test		Reject thypothe		
Asympt	otic significances are disp	layed. The	e significance level is	.05.			
	Homogeneous S	ubsets bas	sed on Chlorophyll a	a μg/L			
			Subs	et			
		4					
	A	1.500					
	C	4.000	4.000				
	В		7.667				
	J		9.333	9.3	333		
Sample ¹	Е			14.	000	14.000	
	G			18.	167	18.167	
	K			20.	333	20.333	
	Н					20.500	
	F					22.000	
Test Sta	tistic	3.158	5.956	7.7	751	5.882	
Sig. (2-s	sided test)	.076	.051	.0	51	.208	
Adjuste	d Sig. (2-sided test)	.351	.174	.1	35	.402	
Homoge .05.	eneous subsets are based of	on asympto	otic significances. The	e signif	ficance	level is	
¹ Each ce	ell shows the sample avera	age rank o	f Chlorophyll a μg/L.				
Table 7	1. Kruskal-Wallis test and	d results of	f nonparametric inter-	-labora	tory cor	nparisons	of ChlA from Sample A

Hypothesis Test Summary										
	Null Hypothesis	Test		Sig.	Decision					
1	The distribution of Chlorophyll a µg/L is the same across categories of Lab ID.	Independer Kruskal-W	Reject the null hypothesis.							
Asympto	otic significances are displayed. T	he significa	nce level is	.05.						
	Homogeneous Subsets b	ased on Ch	lorophyll a	μg/L	,					
Subset										
1 2										
	C	2.000								
	A	4.000		4.000						
	В	7.000		7.0	000					
	J			12.	000					
Sample ¹	F	13.333			333					
	Е			15.	000					
	K			18.	333					
	Н			18.	500					
	G			20.	833					
Test Stat	istic	5.143		12.	234					
Sig. (2-s	ided test)	.076		.0	93					
Adjusted	Sig. (2-sided test)	.253		.1	26					
Homogeneous subsets are based on asymptotic significances. The significance level is .05.										
¹ Each ce	ll shows the sample average rank	of Chloropl	hyll a μg/L.							

Table 72. Kruskal-Wallis test and results of nonparametric inter-laboratory comparisons of ChlA for Sample B.

Hypothesis Test Summary										
	Null Hypothesis		Te	st	Sig.	Decisio	n			
1	The distribution of Chlorophyll a µg/L is the sar across categories of Lab ID.	me		lependent-Samples uskal-Wallis Test	.000	Reject the null hypothesis.				
Asympto	tic significances are displaye	ed. I	Γhe	significance level is	.05.					
Homogeneous Subsets based on Chlorophyll a μg/L										
Subset										
1 2 3 4										
	A	4.3	33							
	C	5.33								
[.	В			14.417						
	J				20	.750				
Sample ¹	E				28	.333	28.333			
	F				34	.333	34.333			
	Н						38.500			
	K						38.500			
	G						38.667			
Test Stat	istic	.27	71	2	5.	966	7.004			
Sig. (2-si	ided test)	.60)3).)51	.136			
Adjusted	Sig. (2-sided test)	.99	94			173	.274			
Homogeneous subsets are based on asymptotic significances. The significance level is .05.										
¹ Each ce	ll shows the sample average	rank	cof	Chlorophyll a μg/L.						
² Unable	to compute because the subse	et co	onta	ains only one sample.						

Table 73. Kruskal-Wallis test and results of nonparametric inter-laboratory comparisons of ChlA for all samples.

Group Statistics

				Std.	Std. Error
Method ID		N	Mean	Deviation	Mean
Chlorophyll a µg/L	EPA 445.0	9	3.6856	.40028	.13343
	SM 10200 H	17	3.8571	1.36931	.33211

Independent Samples Test

				Independer	nt Samples To	est				
		Equ	e's Test for ality of riances			t_tas	t for Equality o	of Means		
	Hances		Sig. (2- Mean Std. Error of the Difference In							
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
	Equal variances assumed Equal variances not assumed	5.756	.002	364 479	24 20.513	.719 .637	17150 17150	.47063 .35791	-1.14285 91689	.79984 .57389

Table 74. Results of t-test comparisons of ChlA by method for Sample A.

Group Statistics

Method ID		N	Mean	Std. Deviation	Std. Error Mean
Chlorophyll a µg/L	EPA 445.0	9	3.6067	.44187	.14729
	SM 10200 H	16	3.6881	1.25912	.31478

Independent Samples Test

Levene's Test for Equality of Variances				-		t-tes	t for Equality o	of Means		
		F	Sig.	Sig. (2- Mean Std. Error of the Difference Difference Lower						
Chlorophyll a μg/L	Equal variances assumed Equal variances not assumed	12.348	.002	186 234	23 20.449	.854 .817	08146 08146	.43737 .34753	98623 80538	.82331 .64247

Table 75. Results of t-test comparisons of ChlA by method for Sample B.

Group Statistics

Method ID		N	Mean	Std. Deviation	Std. Error Mean
Chlorophyll a µg/L	EPA 445.0	18	3.6461	.41101	.09688
	SM 10200 H	33	3.7752	1.29923	.22617

Independent Samples Test

		Equ	e's Test for ality of riances			t-tes	t for Equality o	of Means		
						Sig. (2-	Mean	Std. Error	95% Confide of the Di	
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
Chlorophyll a µg/L	Equal variances assumed	28.247	.000	409	49	.685	12904	.31572	76351	.50543
	Equal variances not assumed			524	42.149	.603	12904	.24604	62552	.36744

Table 76. Results of t-test comparisons of ChlA by method for all samples.

I. Biochemical Oxygen Demand. Six of the 21 results for Sample A were reported as values; the other 71% were reported as qualifiers. The MDLs for all participating laboratories ranged from 0.1 to 2 mg/L; the PQLs for Labs C, E, J and K ranged from 2 to 3 mg/L. No other analyses were conducted for BOD for Sample A.

At Sample B, six of the 21 results were reported values; the other 71% were reported as qualifiers. Values reported as less than detection/quantitation limits were not determined to be false negatives for either sample. No other analyses were conducted for BOD for Sample B. There was no statistical difference between Sample A and Sample B. See Figures 31 - 33 and Tables 77 - 79 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, inter-laboratory comparisons, and method comparisons.

Biochemical Oxygen Demand											
F-pseudosigma % F-pseudosigma Mean Median Range											
Sample A	0.28	21.38%	1.25	1.30	0.60						
Sample B	0.28	19.86%	1.38	1.40	0.60						
All Samples	0.26	18.53%	1.32	1.40	0.80						

Table 77. F-pseudosigma values for BOD.

BOD

	Sample A				Sample B				All			
Lab		Lab		Mean		Lab		Mean		Lab		Mean
ID	N	Median	Range	Z-value	N	Median	Range	Z-value	N	Median	Range	Z-value
A	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR
C	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR
D	3	1.40	0.60	N/A	3	1.40	0.30	N/A	6	1.40	0.80	N/A
Е	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR
Н	3	1.20	0.30	N/A	3	1.20	0.40	N/A	6	1.20	0.40	N/A
J	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR
K	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR

^{*} One non-value reported. NR = All non-values reported.

Table 78. Summary statistics and Z-values by Laboratory for BOD.

BOD								
Method	MDL Range	PQL Range						
SM 5210 B	0.1 - 2	0.4 - 3						

Table 79. Method and detection/quantitation limits for BOD.

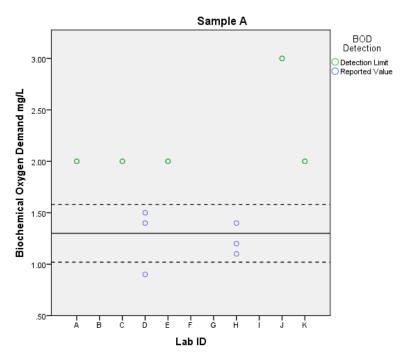


Figure 31. Scatter-plot of BOD values and detection/quantitation limits obtained by seven laboratories for Sample A. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

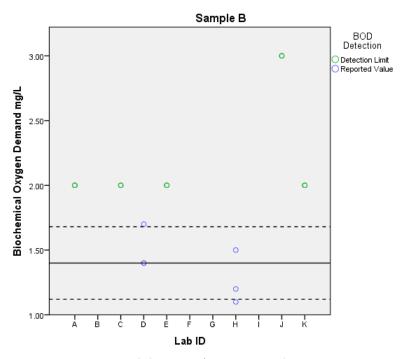


Figure 32. Scatter-plot of BOD values and detection/quantitation limits obtained by seven laboratories for Sample B. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

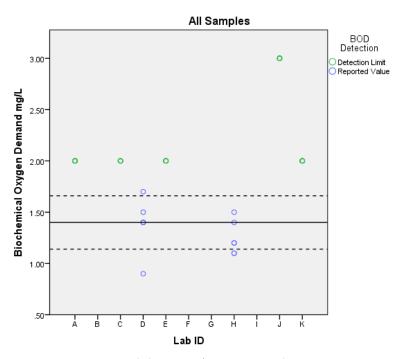


Figure 33. Scatter-plot of BOD values and detection/quantitation limits obtained by seven laboratories for all samples. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

J. Carbonaceous Biochemical Oxygen Demand. Six of the 21 results for Sample A were reported as values; the other 71% were reported as qualifiers. The MDLs for all participating laboratories ranged from 0.1 to 2 mg/L; the PQLs for Labs C, E, J and K ranged from 2 to 3 mg/L. No other analyses were conducted for CBOD for Sample A.

At Sample B, six of the 21 results were reported values; the other 71% were reported as qualifiers. Values reported as less than detection/quantitation limits were not determined to be false negatives for either sample. No other analyses were conducted for CBOD for Sample B. There was no statistical difference between Sample A and Sample B. See Figures 34 - 36 and Tables 80 - 82 for scatter-plots of values obtained by individual laboratories, F-pseudosigma values, summary statistics, inter-laboratory comparisons, and method comparisons.

	Carbonaceous Biocher	nical Oxygen Demand		
		Sample A		
	F-pseudosigma	% F-pseudosigma	Median	Range
	0.32	26.25%	1.20	0.50
Method	N	Mean	Median	Range
SM 5210 B	15 (nine non-values)	1.25	1.20	0.50
SM 5210 C	6	All Non-detect	N/A	N/A
		Sample B		
	F-pseudosigma	% F-pseudosigma	Median	Range
	0.17	13.90%	1.20	0.30
Method	N	Mean	Median	Range
SM 5210 B	15 (nine non-values)	1.25	1.20	0.30
SM 5210 C	6	All Non-detect	N/A	N/A
		All Samples		
	F-pseudosigma	% F-pseudosigma	Median	Range
	0.22	18.53%	1.20	0.50
Method	N	Mean	Median	Range
SM 5210 B	30 (eighteen non-values)	1.25	1.20	0.50
SM 5210 C	12	All Non-detect	N/A	N/A

Table 80. F-pseudosigma values for CBOD.

CBOD

			Sample A	Λ			Sample B		All						
Lab		Lab		Mean		Lab		Mean		Lab		Mean			
ID	N	Median	Range	Z-value	N	Median	Range	Z-value	N	Median	Range	Z-value			
A	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR			
C	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR			
D	3	1.50	0.20	N/A	3	1.20	0.20	N/A	6	1.35	0.30	N/A			
E	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR			
Н	3	1.10	0.10	N/A	3	1.20	0.30	N/A	6	1.10	0.40	N/A			
J	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR			
K	3*	NR	NR	NR	3*	NR	NR	NR	6*	NR	NR	NR			

^{*} One non-value reported. NR = All non-values reported.

Table 81. Summary statistics and Z-values by Laboratory for CBOD.

CBOD		
Method	MDL Range	PQL Range
SM 5210 B	0.2 - 1	0.8 - 3
SM 5210 C	1 - 2	2

Table 82. Methods and detection/quantitation limits for CBOD.

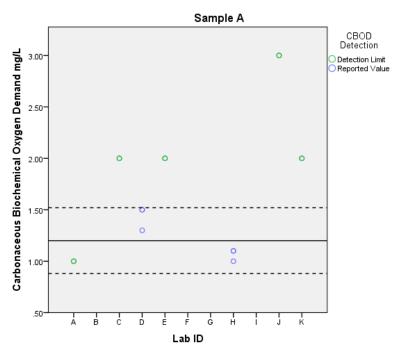


Figure 34. Scatter-plot of CBOD values and detection/quantitation limits obtained by seven laboratories for Sample A. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

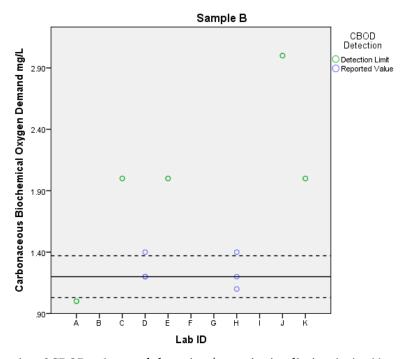


Figure 35. Scatter-plot of CBOD values and detection/quantitation limits obtained by seven laboratories for Sample B. The solid line indicates the overall median, and the dashed lines indicate \pm 1 F-pseudosigma.

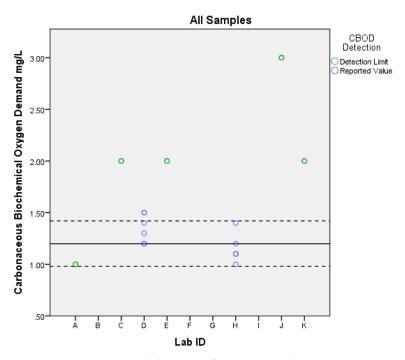


Figure 36. Scatter-plot of CBOD values and detection/quantitation limits obtained by seven laboratories for all samples. The solid line indicates the overall median, and the dashed lines indicate +/- 1 F-pseudosigma.

4. Conclusions and Recommendations

Total Kjeldahl Nitrogen: Results for total Kjeldahl nitrogen for both samples were highly variable. Lab C's reported values were all outside acceptable ranges for both samples and for all data combined (this was done because both aliquots came from a single sample and were not altered in any way), and Lab K reported one value outside acceptable ranges for Sample B and for all samples combined. This value was a statistical outlier. Lab E was the only laboratory to report non-values; it did so once for Sample A and once for Sample B. However, these were not determined to be false negatives. With the exception of Lab E, detection and quantitation limits were not an issue for this analyte. There was no statistical difference between the two sample aliquots, nor was there a difference among results reported for the three methods that were employed.

Ammonia: Ammonia values, when reported, were extremely variable for both individual samples, and for all samples combined. Results reported from Lab K were very high for both locations and may be due to the method of digestion. Detection and quantitation limits need to be addressed, as nearly three-quarters of the results were non-values. Analyses of methods were not run for Samples A or B due to the large number of non-values reported; however, when combining the results, values reported for EPA 350.1 were significantly greater than those for SM 4500 NH3 G. No values were reported for Lachat 10-107-06-1-C. There was no statistical difference in results reported for the two sample aliquots.

Total Nitrite + Nitrate: There was great variability among most results for NO_x from Samples A, B, and A & B combined. Lab A's results were highly variable; in addition, Lab A was the only laboratory to report values outside acceptable ranges for NO_x . Detection and quantitation limits continue to be issues for this analyte, as approximately one-third of the results were non-values. Results reported for EPA 353.2 were significantly greater than those reported for SM 4500 NO3 F; no values were reported for Lachat 10-107-04-1-C or USGS I-2545-90. Results from the two sample aliquots were statistically the same.

Dissolved Nitrite: There was little intra-laboratory variability in results for DNO₂, whereas inter-laboratory results were quite variable. Lab K reported one statistical outlier for Sample B; this result remained an outlier when combining results from A & B. Results reported for EPA 353.2 were significantly greater than results reported for USGS I-2540-90; no values were reported for Lachat 10-107-04-1-C or SM 4500 NO2 B. There was no statistical difference between Sample A and Sample B. Detection and quantitation limits continue to plague results for this analyte, as nearly 70% of the results were non-values.

Total Phosphorus: The majority of results reported for TP from Sample A and Sample B were within acceptable ranges. Lab K reported one statistical outlier for Sample A; this result was determined to be a statistical outlier for all results combined as well. Results reported from Sample A, B and A & B for method EPA 365.1 were significantly less than results for both EPA 365.4 and Lachat 10-115-01-1-C; there was no statistical difference between results for EPA 365.4 and those of Lachat 10-115-01-1-C. Detection and quantitation limits were not an issue for this analyte during this round robin. Samples A and B were statistically the same.

Orthophosphate: With the exception of one outlier reported by Lab D, all results for OP varied little. Results for SM 4500 P F were typically greater than the other methods employed for OP; however, these were not statistically significant for individual samples, whereas for all results combined results for SM 4500 P F were significantly greater than the other four methods' results. There was no statistical difference between results for EPA 365.1, Lachat 10-115-01-1-I,

SM 4500 P E, or USGS I-2601-90. Detection and quantitation limits need to be addressed for OP. There was no statistical difference between results reported for Sample A and those reported for Sample B.

Total Organic Carbon: There was little variability among laboratories, or within laboratories, for TOC; however, Labs E and J reported all values outside of acceptable ranges; Lab J's results were on the low end, whereas Lab E's results were high. This was true for both samples individually, as well as for all results combined. Lab E's results may be due to an improperly functioning SO₃ scrubber. No values were reported as below detection or quantitation limits for either sample. There was no statistical difference among reported results for the three methods employed; however, SM 5310 C was highly variable. There was no statistical difference between Sample A and Sample B.

Chlorophyll a: Variability among laboratories was small to moderate for chlorophyll a from both samples. Lab A reported one result for Sample A and two for Sample B as less than detection/quantitation limits; these were determined to be false negatives. Labs A and C's results were highly variable, lower than all the other results, and were typically outside acceptable ranges. There was no statistical difference between results reported for EPA 445.0 and SM 10200 H. There was no statistical difference between Sample A and Sample B.

Biochemical Oxygen Demand and Carbonaceous Biochemical Oxygen Demand: Very few values were reported for BOD and CBOD. In addition, few laboratories participated in analyzing the particular analyte. Therefore, detection and quantitation limits need to be addressed, as well as laboratory participation.

Overall: The splitting of samples had little effect upon the reported results from this round robin: however, the results reported for this round robin tended to be more variable than those in the past. Participating laboratories need to continue efforts to improve data comparability, including modifying or standardizing practices. For example, variability in results could be reduced by laboratories adopting the following practices:

- improve the accuracy in calculating and reporting their detection and quantitation limits;
- revise methods to better quantify their techniques to reduce the amount of variability within the methods employed;
- minimize gross errors due to unit conversions, calculation errors, dilution errors, transcription errors (and other typographical errors), etc. through automation, improved quality control and quality assurance plans;
- report the results for a round robin as the output of the analyses, not as a reporting limit for a database (e.g., report the values out to 2 to 3 decimal places rather than rounding to whole numbers).

The greatest challenge to the round robin project and to achieving data comparability in the Gulf is addressing the high number of results reported as below detection and quantitation limits. In order to adequately monitor water quality in and around the Gulf of Mexico, the detection problem must be resolved. As technology advances, allowing equipment to gain greater accuracy and precision, the detection limits should come down; in addition, calculations for quantitation limits need to better quantify noise.

We recommend that laboratories that have the capabilities to detect and quantify nutrients within these waters coordinate with laboratories that do not have this ability in order to help them achieve detectable and quantifiable results. It is recommended that future round robins include a greater number of laboratories that conduct analyses around the Gulf and increase the number of analytes of interest in order to better assess comparability around the Gulf and increase the power of statistical analyses. Finally, we recommend that GOMA and its partners obtain funding to facilitate laboratory education and information exchange to address the challenges listed above.

5. References

- Helsel, D.R. 2012. Statistics for Censored Environmental Data Using Minitab® and R. 2nd Edition. John Wiley, Inc. New York, NY.
- Hoaglin, D.C, F. Mosteller, and J.W. Tukey Eds. 1983. Understanding Robust and Exploratory Data Analysis. John Wiley, Inc. New York, NY.
- Quality Assurance of Information in Marine Environmental Monitoring (QUASIMEME). 2012. QUASIMEME Laboratory Performance Studies. WEPAL. Netherlands.
- Woodworth, M.T and B.F. Connor. 2003. Results of the U.S. Geological Survey's Analytical Evaluation Program for Standard Reference Samples Distributed in March 2003. U.S. Geological Survey, U.S. Department of Interior. OFR 03-261. Lakewood, CO.

GOMA Analytical Round Robin # 6 Results - March 9, 2011, Sample A

Samples collected from St. Louis Bay, Mississippi

Where an actual number was given for results listed below the MDL or PQL, the reported number is given. However, when the result was simply listed as less than the MDL or PQL, a U qualifier is listed for below MDL and an I qualifier is listed for below PQL.

Only the laboratories that ran analyses for a particular analyte are listed with that analyte.

Calculations include all reported values.

* = Less than PQL

" = Less tha	all F QL											
								al Kjeldahl I	Nitrogen mg	/L		
Average: Std. Dev.	A 0.340 0.330 0.290 0.320 0.026	В	C 0.690 0.860 0.840 0.797 0.093	D 0.219 0.175 0.191 0.195 0.022	E 0.220 0.250 I 0.235 0.021	F	G	H 0.420 0.420 0.420 0.420 0.000	0.390 0.380 0.360 0.377 0.015	J 0.250 0.210 0.220 0.227 0.021	K 0.280 0.560 0.420 0.420 0.140	
								Ammon	ia mg/L			
Average: Std. Dev.	A U U U	В	c U U	D U U U	E 	F 0.071 0.030 0.026 0.042 0.025	G* 0.017 0.012 0.007 0.012 0.005	H U U U	I U U U	J 	K 0.170 0.170 0.140 0.160 0.017	
otal Bott						0.020		otal Nitrite +	Nitrate mg/l	_	01011	
Average: Std. Dev.	A U 0.029 0.017 0.023 0.008	В	C* 0.007 0.008 0.008 0.008 0.001	D U U	E 	F 0.023 0.022 0.021 0.022 0.001	G* 0.008 0.008 0.008 0.008 0.008	H* 0.008 0.008 0.008 0.008 0.008 0.000	 	J 	K* 0.011 0.012 0.011 0.011 0.001	
olu. Dev.	0.000		0.001			0.001		Dissolved N	litrita ma/l		0.001	
Average: Std. Dev.	A U U U	В	C* U 0.002 U 0.002	D U U U	E 	F* 0.002 0.002 0.002 0.002 0.000	G U U U	H U U U	0.001 0.001 0.001 0.001 0.001	J 	K U U U	
									horus mg/L			
Average: Std. Dev.	A 0.021 0.018 0.018 0.019 0.002	В	C 0.023 0.022 0.024 0.023 0.001	D* 0.057 0.056 0.057 0.057 0.001	E 0.040 0.060 0.060 0.053 0.012	F 0.025 0.026 0.024 0.025 0.001	G 0.026 0.025 0.026 0.026 0.001	H 0.030 0.030 0.030 0.030 0.000	0.022 0.023 0.023 0.023 0.001	0.040 0.040 0.040 0.040 0.040 0.000	K* 0.042 0.085 0.036 0.054 0.027	

Orthophosphate mg/L													
	Α	В	С	D	Е	F*	G	Н		J	K*		
	0.018		0.011	U	0.011	0.004	0.016	0.012	U	1	0.011		
	0.017		0.010	U	0.011	0.004	0.016	0.012	0.010	1	0.009		
	0.017		0.010	0.042	0.011	0.005	0.019	0.012	U	1	0.009		
Average:	0.017		0.010	0.042	0.011	0.004	0.017	0.012	0.010		0.010		
Std. Dev.	0.001		0.001		0.000	0.001	0.002	0.000			0.001		
								Γotal Organi	ic Carbon m	ng/L			
	Α	В	С	D	E	F	G	H*	I	J	K		
				4.180	6.000	3.630	4.060	4.200		3.000			
				4.260	6.000	3.600	4.010	4.200		3.000			
				4.150	6.000	3.650	4.070	4.200		3.000			
Average:				4.197	6.000	3.627	4.047	4.200		3.000			
Std. Dev.				0.057	0.000	0.025	0.032	0.000		0.000			
Notes	Lab E's h	nigh values	may be du	ie to positiv	e interfere	nce due to	SO₃ detecti			eservation	. May requi	re an SO₃ scrubber.	
		D.				_			hyll a µg/L	14	.,		
	A	B*	C	D	E	F	G	H	ı	J*	K		
	U 4 400	3.210	2.140	U	4.200	4.870	4.600	4.700		3.590	5.000		
	1.400	3.530	1.690	U	4.200	5.170	4.670	4.700		3.440	5.000		
	1.400	3.350	2.810	U	4.200	4.460	4.360	4.600		3.450	4.000		
Average:	1.400	3.363	2.213		4.200	4.833	4.543 0.163	4.667 0.058		3.493 0.084	4.667		
Std. Dev.	0.000	0.160	0.564		0.000	0.356		0.058	raan Damai		0.577		
	Α	В	С	D	E	F	G	H	ygen Demai	.J	K		
	Û		Ü	0.900	Ū	•	·	1.100	•	i	Ü		
	Ŭ		Ŭ	1.400	Ŭ			1.400		i	Ŭ		
	Ü		Ü	1.500	Ü			1.200		i	Ü		
Average:	J		J	1.267	J			1.233			J		
Std. Dev.			0.000	0.321				0.153					
			0.000			С	arbonaceo	us Biochem	ical Oxyge	n Demand ı	ng/L		
	Α	В	С	D	Е	F	G	Н	ı	J*	K		
	U		U	1.500	U			1.000		I	U		
	U		U	1.500	U			1.100		1	U		
	U		U	1.300	U			1.100		I	U		
Average:				1.433				1.067					
Std. Dev.				0.115				0.058					

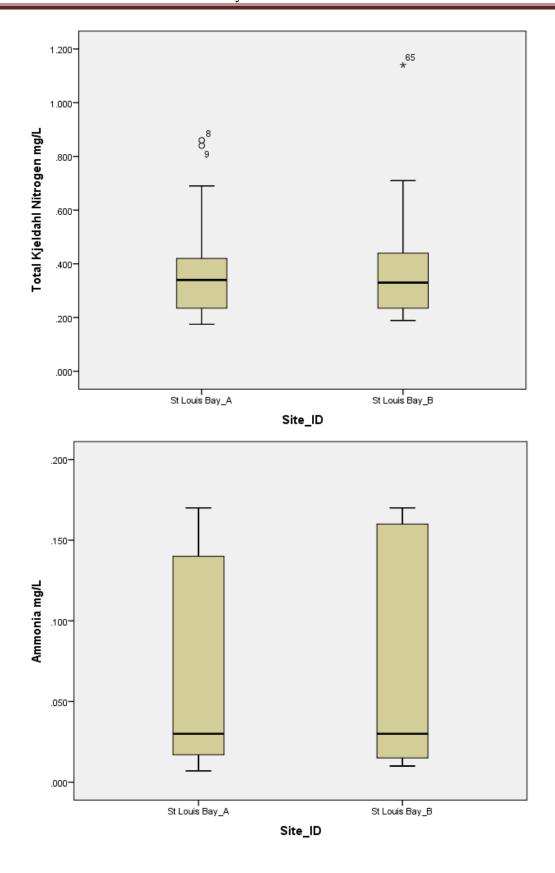
GOMA Analytical Round Robin # 6 Results - March 9, 2011, Sample B

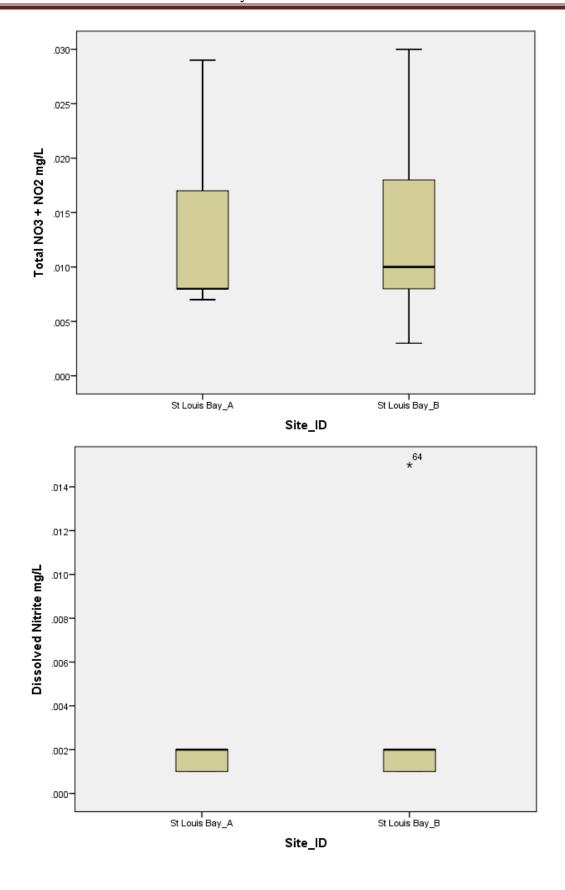
0 1		f O1	I	BATE - In a local
Sambles	collected	from St.	Louis Bav.	Mississippi

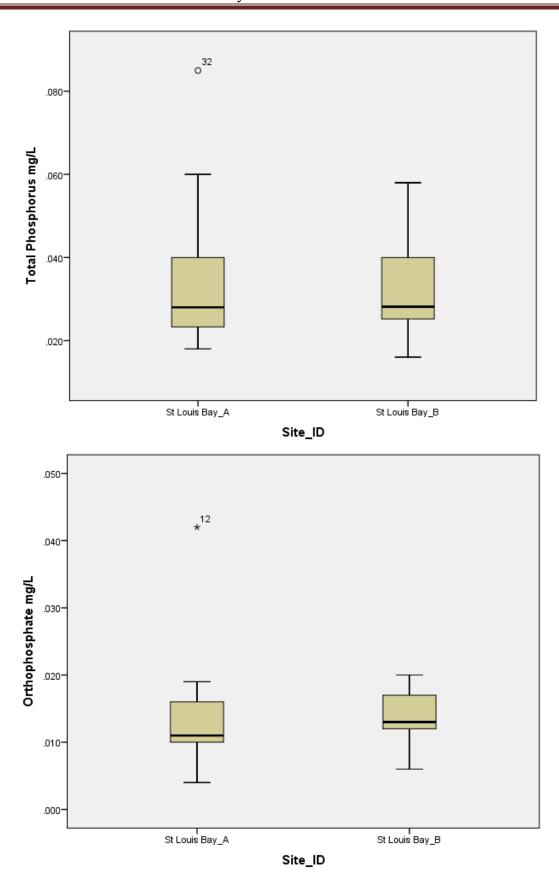
Samples c	ollected fro	m St. Lou	is Bay, Mis	sissippi							
								otal Kjeldal	•	•	
	Α	В	С	D	E	F	G	Н	I	J	K
	0.440		0.710	0.199	0.290			0.480	0.420	0.220	0.310
	0.330		0.650	0.189	0.240			0.420	0.370	0.210	1.140
	0.230		0.700	0.218	I			0.440	0.350	0.240	0.320
Average:	0.333		0.687	0.202	0.265			0.447	0.380	0.223	0.590
Std. Dev.	0.105		0.032	0.015	0.035			0.031	0.036	0.015	0.476
								Ammo	nia mg/L		
	Α	В	С	D	E	F	G*	Н	I	J	K
	U		U	U	1	0.031	0.015	U	U	1	0.170
	U		U	U	I	0.024	0.011	U	U	I	0.170
	U		U	U	1	0.030	0.010	U	U	1	0.160
Average:						0.028	0.012				0.167
Std. Dev.						0.004	0.003				0.006
								Total Nitrite	+ Nitrate m	ıg/L	
	Α	В	C*	D*	Е	F	G*	H*	ı	J	K*
	0.016		0.008	0.003	I	0.021	0.010	0.008	U	I	0.012
	0.022		0.009	0.003	I	0.020	0.009	0.008	Ü	I	0.011
	0.030		0.008	U	ı	0.021	0.010	0.009	Ü	ı	0.011
Average:	0.023		0.008	0.003		0.021	0.010	0.008	Ū		0.011
Std. Dev.	0.007		0.001	0.000		0.001	0.001	0.001			0.001
								Dissolved	Nitrite mg/	L	
	Α	В	C*	D	Е	F*	G	H*	ı	J	K *
	U		U	U	ı	0.002	U	0.002	0.001	ı	0.015
	U		0.002	U	ı	0.002	U	U	0.001	ı	U
	U		0.002	U	ı	0.002	U	U	0.001	ı	U
Average:			0.002			0.002		0.002	0.001		0.015
Std. Dev.			0.000			0.000			0.000		
								Total Phos	phorus mg	/L	
	Α	В	С	D*	Е	F	G	Н		J	K*
	0.020		0.023	0.057	0.030	0.028	0.027	0.031	0.025	0.030	0.046
	0.020		0.023	0.058	0.050	0.028	0.027	0.031	0.026	0.040	0.055
	0.019		0.024	0.058	0.050	0.026	0.027	0.031	0.028	0.040	0.016
Average:	0.020		0.023	0.058	0.043	0.027	0.027	0.031	0.026	0.037	0.039
Std. Dev.	0.001		0.001	0.001	0.012	0.001	0.000	0.000	0.002	0.006	0.020

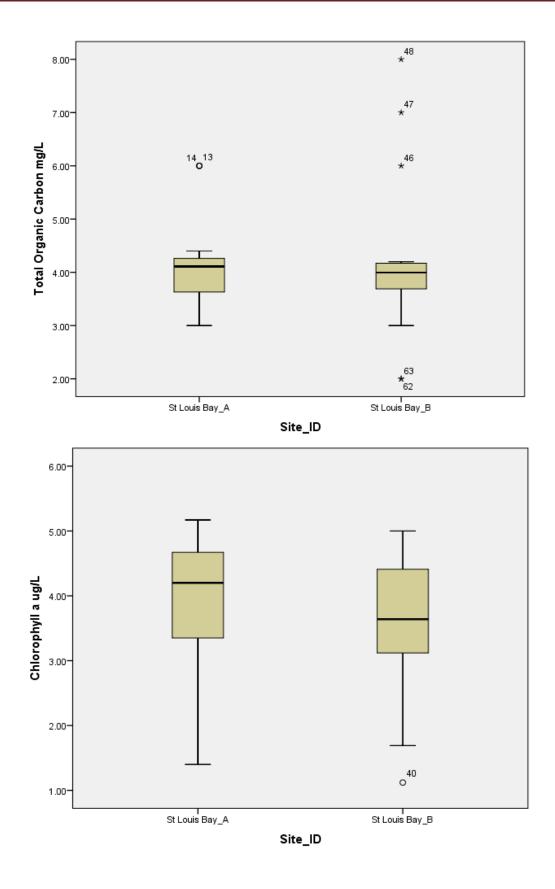
Orthophosphate mg/L												
	Α	В	С	D	E	F*	G	Н	l	J	K*	
	0.018	_	0.012	U	0.013	0.008	0.018	0.014	0.013	ı	0.009	
	0.020		0.012	U	0.013	0.006	0.018	0.013	0.012	ı	0.016	
	0.019		0.012	U	0.014	0.008	0.018	0.013	0.012	1	0.011	
Average:	0.019		0.012		0.013	0.007	0.018	0.013	0.012		0.012	
Std. Dev.	0.001		0.000		0.001	0.001	0.000	0.001	0.001		0.004	
							-	Total Organi	ic Carbon n	ng/L		
	Α	В	С	D	E	F	G	H*	I	J	K	
				4.080	6.000	3.690	3.990	4.200		3.000		
				4.170	7.000	3.700	3.880	4.100		2.000		
				4.020	8.000	3.320	3.840	4.000		2.000		
Average:				4.090	7.000	3.570	3.903	4.100		2.333		
Std. Dev.				0.075	1.000	0.217	0.078	0.100		0.577		
Notes	Lab E's h	nigh values	may be du	ue to positiv	ve interfere	nce due to	SO₃ detect				. May requi	re an SO₃ scrul
									hyll a µg/L			
	Α	В	С	D	E	F	G	Н	I	J	K	
	U	3.120	1.120	U	3.900	3.250	4.410	4.400		3.550	3.000	
	2.400	2.930	1.690	U	4.100	3.510	4.500	4.500		3.530	5.000	
	U	3.390	2.250	U	4.300	4.640	4.940	4.400		3.640	5.000	
Average:	2.400	3.147	1.687		4.100	3.800	4.617	4.433		3.573	4.333	
Std. Dev.		0.231	0.565		0.200	0.739	0.284	0.058		0.059	1.155	
	Α	_	С	D.	E	F		hemical Oxy H	ygen Dema I	-		
	A U	В	U	D 1.400	U	г	G	н 1.100	1	J	K U	
	U		U	1.400	U			1.500		1	U	
	U		U	1.700	U			1.200		1	U	
Average:	U		U	1.700 1.500	U			1.200 1.267		ı	U	
Std. Dev.			0.000	0.173				0.208				
Jiu. Dev.			0.000	0.173		C	arhonaceo	us Biochem	nical Oxyge	n Demand i	ma/l	
	Α	В	С	D	E	F	G	Н		J	ιι _g ,∟ Κ	
	U	-	U	1.400	U	•	_	1.200	•	I	U	
	U		U	1.200	U			1.400		·	U	
	U		U	1.200	U			1.100		·	U	
Average:				1.267				1.233				
Std. Dev.				0.115				0.153				

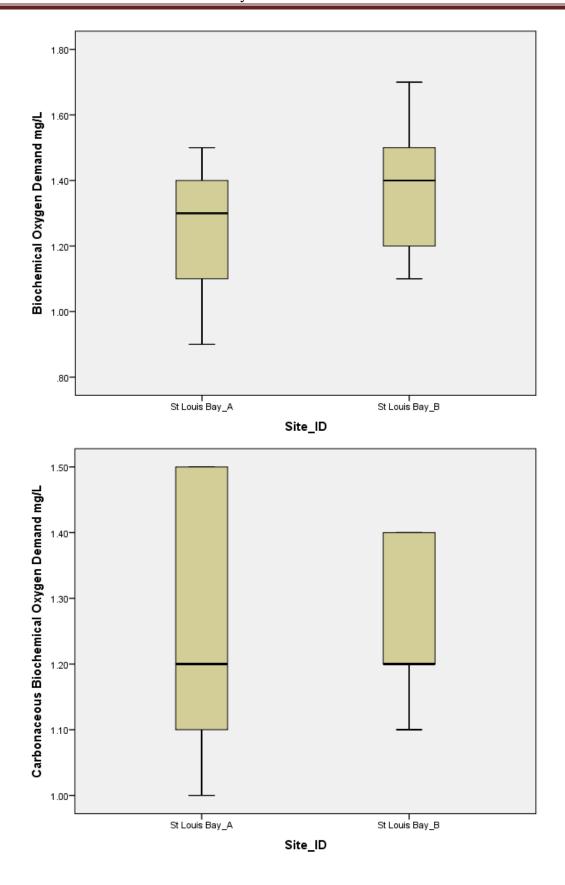
	Sample A																			
		KN	NI		N	Ox	D_	NO2	T	ΓP		OP	-	OC	_	hIA		OD		BOD
	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat. Descriptiv	Std. Err. res	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.
N (Total)	24		30		30		30		30		30		18		30		21		21	
N (Greater than PQL)	23		6		5		3		26		17		15		26		3		3	
N Analyzed	23		9		17		7		30		23		18		26		6		6	
Mean	0.380	0.040	0.071	0.023	0.013	0.002	0.002	0.000	0.035	0.003	0.013	0.002	4.189	0.222	3.798	0.220	1.250	0.092	1.250	0.089
95% CI (LB)	0.296		0.018		0.009		0.001		0.029		0.010		3.720		3.345		1.013		1.023	
95% CI (UB)	0.463		0.125		0.016		0.002		0.041		0.016		4.659		4.251		1.487		1.478	
5% Trimmed	0.365		0.070		0.012		0.002		0.034		0.012		4.155		3.857		1.256		1.250	
Median	0.340		0.030		0.008		0.002		0.028		0.011		4.110		4.200		1.300		1.200	
Variance	0.037		0.005		0.000		0.000		0.000		0.000		0.891		1.258		0.051		0.047	
Std. Dev.	0.193		0.069		0.007		0.001		0.016		0.008		0.944		1.122		0.226		0.217	
Min	0.175		0.007		0.007		0.001		0.018		0.004		3.000		1.400		0.900		1.000	
Max	0.860		0.170		0.029		0.002		0.085		0.042		6.000		5.170		1.500		1.500	
Range	0.685		0.163		0.022		0.001		0.067		0.038		3.000		3.770		0.600		0.500	
IQR	0.200	0.404	0.141	0.747	0.011	0.550	0.001	0.704	0.017	0.407	0.006	0.404	0.670	0.536	1.360	0.456	0.370	0.045	0.420	0.045
Skew	1.428	0.481	0.688	0.717	1.232	0.550	-0.374	0.794	1.383	0.427	2.644	0.481	0.962	0.536	-0.974	0.456	-0.625	0.845	0.265	0.845
Kurtosis	1.520 0.333	0.935	-1.614 0.044	1.400	0.283	1.063	-2.800 N/A	1.587	1.666 0.030	0.833	9.949 0.012	0.935	0.459 4.036	1.038	0.032 4.020	0.887	-0.750 1.277	1.741	-2.214 1.231	1.741
Huber's ψ	0.333		0.044		0.009		N/A	Kapla	n-Meier (KN	/I) Method	0.012		4.030		4.020		1.277		1.231	
Minimum Non-Detect	0.1		0.003		0.003		0.002		N/A	[0.001		N/A		1		2		1	
Maximum Non-Detect	0.1		0.05		0.04		0.02		N/A		0.04		N/A		3		3		3	
Mean	0.371	0.039	0.027	0.009	0.011	0.001	0.001	0.000	N/A	N/A	0.012	0.001	N/A	N/A	3.519	0.237	1.250	0.092	1.167	0.073
SD	0.189		0.046		0.006		0.000		N/A		0.007		N/A		1.259		0.206		0.200	
95% KM UCL	0.435		0.043		0.013		0.001		0.040		0.014		4.576		4.554		1.409		1.293	
									Normalit	у										
Test of Skew	0.006		0.328		0.030		N/A		0.003		0.000		0.074		0.037		N/A		N/A	
Test of Kurtosis	0.131		0.159		0.616		0.016		0.086		0.000		0.506		0.786		0.727		0.158	
Jarque & Bera	0.021		0.530		0.168		N/A		0.005		0.000		0.313		0.158		N/A		N/A	1
				1		1		1	Outliers	i		T		1				T		7
F Crit. (Mahalanobis D2)	7.730		4.91		6.86		4.08		8.460		7.730		7.030		8.070		3.56		3.56	
Mahalanobis D2 Max	6.210		2.02		5.54		1.14		9.540		14.770		3.680		4.570		2.40		1.33	4
+ 2 Std. Dev.	0.765		0.210		0.027		0.003		0.067		0.028		6.077		6.041		1.702		1.684	+
- 2 Std. Dev.	-0.006		-0.067		-0.001		0.001		0.003		-0.002		2.302		1.554		0.798		0.816	
# Outside 2 Std. Dev.	0.637		0 0.238		1 0.004		0 003		0.054		0.000		0		2 6.220		0		1 020	
+ 2 F-Pseudosigma - 2 F-Pseudosigma	0.037	-	-0.178		0.024 -0.008		0.003		0.004		0.020		5.110 3.110		2.180		1.860 0.740		1.830 0.570	+
# Outside 2 F-Pseudosigma	3		-0.176		1		0.001		6		1		6		4		0.740		0.570	+
# from Boxplots	2		0		0		0		1		1		3		0		0		0	+
# ITOTII BOXPIOLS			U		U			l Homoscedas	ticity (botw	oon lahorato	rioe)		J		U		U		U	.1
Levene's	0.032		0.052		0.000		N/A	lomosceuas	0.000	een laborato	0.001		0.001		0.006		0.165		0.148	
	I			I		ı			Detection Li	mits	1	I		1			ı	I		
< MDL	0		15		7		17		0		4		0		4		12		12	
% < MDL	0%		50%		23%		57%		0%		13%		0%		13%		57%		57%	
< PQL	1		9		18		10		4		9		3		0		6		6	
% < PQL	4%		80%		83%		90%		13%		43%		17%		13%		86%		86%	
									Precision	n										
%F-Pseudosigma	43.61%		347.17%		101.93%		37.06%		45.72%		40.43%		12.13%		24.05%		21.38%		26.25%	
%RSD	50.75%		97.18%		54.03%		34.08%		46.34%		58.60%		22.53%		29.54%		18.07%		17.34%	
Poldy	aluge are cie	nificant n_va	luge of the C	05 loval																


Bold values are significant p-values at the 0.05 level.


	Sample B																			
		ΓKN	N	H3		Ох	D_1	NO2	Ť	ГР	()P		OC	-	hIA		DD	CBO	
	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.
NI /T-4-I)	0.4	1	20	1	20		20	!	Descriptives	S	20		40	ı	1 20		04		04	
N (Total)	24	<u> </u>	30		30		30		30		30		18		30		21		21	
N (Greater than PQL)	23 23	<u> </u>	6 9		6 20		3 10		26 30		18 24		15 18		25 25		3 6		<u>3</u>	
N Analyzed	0.396	0.047	0.069	0.005	0.012	0.002	0.003	0.001	0.033	0.002	0.013	0.004	4.166	0.354	3.659	0.006	1.383	0.007	1.250	0.050
Mean 95% CI (LB)	0.390	0.047	0.009	0.025	0.012	0.002	0.000	0.001	0.033	0.002	0.013	0.001	3.420	0.334	3.234	0.206	1.159	0.087	1.122	0.050
95% CI (UB)	0.493		0.012		0.009		0.006		0.028		0.012		4.912		4.083		1.608		1.379	
5% Trimmed	0.493		0.126		0.016		0.000		0.033		0.013		4.912		3.719		1.382		1.250	
Median	0.370		0.030	1	0.012		0.002		0.033		0.013		3.995		3.640		1.400		1.200	
Variance	0.050		0.005	1	0.000		0.002		0.020		0.013		2.252		1.058		0.046		0.015	
Std. Dev.	0.030		0.003		0.007		0.004		0.000		0.004		1.501		1.028		0.040		0.122	
Min	0.189	1	0.010		0.007		0.004		0.016		0.004		2.000		1.120		1.100		1.100	
Max	1.140		0.170		0.030		0.015		0.058		0.020		8.000		5.000		1.700		1.400	
Range	0.951		0.170	<u> </u>	0.037		0.013		0.042		0.020		6.000		3.880		0.600		0.300	
IQR	0.210		0.152		0.027		0.001		0.042		0.005		0.580		1.400		0.380		0.220	
Skew	1.930	0.481	0.824	0.717	0.999	0.512	3.088	0.687	0.904	0.427	0.020	0.472	1.224	0.536	-0.793	0.464	0.137	0.845	0.490	0.845
Kurtosis	4.481	0.935	-1.690	1.400	0.585	0.992	9.665	1.334	-0.441	0.833	-0.488	0.918	1.982	1.038	0.214	0.902	-0.270	1.741	-1.467	1.741
Huber's ψ	0.343	0.000	0.033		0.010	0.002	N/A		0.029	0.000	0.013	0.010	3.940		3.779	0.002	1.377		1.220	
1100010 \$	0.0.0		0.000	1	0.0.0		1471	Kaplan-	Meier (KM)	Method	0.0.0		0.0.0	I	00			ı		
Minimum Non-Detect	0.1		0.003		0.003		0.002		N/A		0.009		N/A		1		2		1	
Maximum Non-Detect	0.1		0.05		0.04		0.02		N/A		0.04		N/A		3		3		3	
Mean	0.388	0.046	0.028	0.009	0.011	0.001	0.002	0.001	N/A	N/A	0.013	0.001	N/A	N/A	3.304	0.236	1.383	0.087	1.200	0.042
SD	0.219		0.047		0.006		0.003		N/A		0.004		N/A		1.241		0.195		0.115	
95% KM UCL	0.468		0.051		0.014		0.003		0.037		0.014		4.781		3.705		1.534		1.273	
T + (0)	0.004	1	0.040	1	0.054		0.000		Normality		0.004		0.007	1	0.000		A1/A	1	A1/A	
Test of Skew	0.001		0.243		0.054		0.000		0.039		0.964		0.027		0.086		N/A		N/A	
Test of Kurtosis	0.006		0.131	ļ	0.427		0.000		0.665		0.663		0.095		0.632		0.961		0.401	
Jarque & Bera	0.000		0.467	l	0.240		0.000		0.130 Outliers		0.818		0.092		0.314		N/A		N/A	
F Crit. (Mahalanobis D2)	7.730		4.910		7.330		5.240		8.460		7.850		7.030		7.960		3.560		3.560	
Mahalanobis D2 Max	10.980		1.880		6.330		8.000		3.870		4.010		6.530		6.090		2.200		1.500	
+ 2 Std. Dev.	0.845		0.216		0.026		0.011		0.058		0.021		7.167		5.716		1.811		1.495	
- 2 Std. Dev.	-0.052		-0.078		-0.002		-0.005		0.008		0.006		1.165		1.602		0.956		1.005	
# Outside 2 Std. Dev.	1		0		0		1		0		0		1		1		0		0	
+ 2 F-Pseudosigma	0.641		0.255		0.026		0.003		0.053		0.021		4.850		4.500		1.960		1.530	
- 2 F-Pseudosigma	0.019		-0.195		-0.006		0.001		0.004		0.005		3.140		2.780		0.840		0.870	
# Outside 2 F-Pseudosigma	4		0		0		1		4		0		6		8		0		0	
# from Boxplots	1		0		0		1		0		0		5		1		0		0	
		1		1				moscedasti		en laboratori				ı				ı		
Levene's	0.000		0.202		0.016		N/A	De	0.000	ito	0.002		0.051		0.002		0.725		0.653	
< MDL	0		15		4		14	De	tection Lim	IIIS	3		0	1	5		12		12	
% < MDL	0%		50%		13%		47%		0%		10%		0%		17%		57%		57%	
< PQL	2		9		20		13		4		9		3		0		6		6	
% < PQL	8%		80%	 	80%		90%		13%		40%		17%		17%		86%		86%	
/0 > 1 QL	0 /0	1	00 /0	<u> </u>	00 /0		30 /0		Precision		4070		17 /0	<u> </u>	17/0		00 /0	<u> </u>	00 /0	
%F-Pseudosigma	47.17%		375.59%		81.54%		37.06%		43.71%		31.36%		10.76%		11.81%		19.86%		13.90%	
%RSD	56.62%		106.79%		56.04%		141.43%		38.15%		27.62%		36.02%		28.14%		15.45%		9.80%	
				<u> </u>					, , , , , , ,				, ,							


Bold values are significant p-values at the 0.05 level.


Samples A + B TKN NH3 NOx D NO2 TP OP TOC ChIA BOD CBOD																				
	T	TKN	N	H3	N	Ox	D_1	NO2	. 1	P	(OP	TO	C	С	hlA	BO	DD	CB	DD
	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.	Stat.	Std. Err.
				1					Descriptive	S		ı				1				
N (Total)	48		60		60		60		60		60		36		60		42		42	
N (Greater than PQL)	46		12		11		6		52		35		30		51		6		6	
N Analyzed	46		18		37		17		60		47		36		51		12		12	
Mean	0.388	0.031	0.069	0.025	0.013	0.001	0.002	0.001	0.034	0.002	0.013	0.001	4.178	0.206	3.730	0.150	1.317	0.064	1.250	0.048
95% CI (LB)	0.327		0.012		0.010		0.001		0.030		0.011		3.760		3.429		1.176		1.143	
95% CI (UB)	0.450		0.126		0.015		0.004		0.038		0.015		4.596		4.030		1.457		1.357	
5% Trimmed	0.367		0.067		0.012		0.002		0.033		0.013		4.111		3.791		1.319		1.250	
Median	0.335		0.030		0.010		0.002		0.028		0.012		4.040		4.000		1.400		1.200	
Variance	0.043		0.005		0.000		0.000		0.000		0.000		1.526		1.142		0.049		0.028	
Std. Dev.	0.207		0.074		0.007		0.003		0.014		0.006		1.236		1.068		0.221		0.168	
Min	0.175		0.010 0.170		0.003		0.001		0.016		0.004 0.042		2.000		1.120		0.900		1.000	
Max	1.140			-	0.030		0.015		0.085				8.000		5.170		1.700		1.500	
Range	0.965 0.197		0.160 0.152	 	0.027 0.011		0.014 0.001		0.069 0.016		0.038		6.000 0.570		4.050 1.390		0.800 0.350		0.500 0.300	
Skew	1.704	0.250	0.152	0.717	1.052	0.388	3.969	0.550	1.264	0.309		0.347	1.185	0.202		0.222	-0.252	0.637	0.300	0.627
	3.157	0.350	-1.690	1.400	0.230	0.366			1.306	0.309	2.519 11.993	0.347		0.393	-0.849	0.333	-0.252		-1.201	0.637
Kurtosis	0.337	0.688	0.033	1.400	0.230	0.759	16.124 N/A	1.063	0.030	0.000	0.012	0.001	2.178 3.985	0.768	-0.058 3.915	0.656	1.326	1.232	1.226	1.232
Huber's ψ	0.337		0.033		0.010		N/A	Kaplan-	Meier (KM)	Method	0.012		3.900		3.915		1.320		1.220	
Minimum Non-Detect	0.1		0.003		0.003		0.002		N/A		0.001		N/A		1		2		1	
Maximum Non-Detect	0.1		0.05		0.04		0.02		N/A		0.04		N/A		3		3		3	
Mean	0.379	0.030	0.027	0.006	0.011	0.001	0.002	0.000	N/A	N/A	0.012	0.001	N/A	N/A	3.405	0.168	1.317	0.064	1.167	0.043
SD	0.205		0.047		0.007		0.002		N/A		0.006		N/A		1.267		0.211		0.176	
95% KM UCL	0.510		0.040		0.013		0.002		0.037		0.014		4.526		4.137		1.424		1.240	
									Normality							•				
Test of Skew	0.000		0.190		0.011		0.000		0.000		0.000		0.005		0.015		0.679		0.650	
Test of Kurtosis	0.006		0.013		0.593		0.000		0.072		0.000		0.035		0.905		0.922		0.252	
Jarque & Bera	0.000		0.247		0.043		0.000		0.000		0.000		0.002		0.054		0.885		0.651	
									Outliers											
F Crit. (Mahalanobis D2)	9.580		7.030		9.020		6.860		10.240		9.630		8.940		9.840		5.820		5.820	
Mahalanobis D2 Max	13.200		2.060		6.470		14.730		12.470		24.220		9.570		5.970		3.560		2.220	
+ 2 Std. Dev.	0.802		0.216		0.026		0.009		0.063		0.025		6.649		5.867		1.758		1.586	
- 2 Std. Dev.	-0.026		-0.078		-0.001		-0.004		0.005		0.001		1.707		1.593		0.875		0.914	
# Outside 2 Std. Dev.	3		0		2		1		1		1		2		3		0		0	
+ 2 F-Pseudosigma	0.628		0.250	ļ	0.026		0.003		0.052		0.021		4.878		6.061		1.920		1.640	
- 2 F-Pseudosigma	0.042		-0.190		-0.006		0.001		0.004		0.003		3.202		1.939		0.880		0.760	
# Outside 2 F-Pseudosigma	7		0		2		1		10		1		12		5		0		0	
# from Boxplots	4		0		0		1 1		1		1		8		1		0		0	
Levene's	0.000		0.170		0.000		N/A	moscedastic	0.000	n iaporatori	es) 0.299		0.000		0.000		0.753		0.687	
LOVOIIO 3	0.000		0.170	1	0.000		14// (De	tection Lim	its	0.233	l	0.000		0.000		0.700		0.007	
< MDL	0		30		11		31		0		7		0		9		24		24	
% < MDL	0%		50%		18%		52%		0%		12%		0%		15%		57%		57%	
< PQL	1	1	18		38		23		8		18		6		0		12		12	
% < PQL	2%		80%		82%		90%		13%		42%		17%		15%		86%		86%	
	•			•	•				Precision			•								
%F-Pseudosigma	43.70%		366.32%		77.84%		37.06%		42.13%		37.06%		10.37%		25.76%		18.53%		18.53%	
%RSD	53.35%		107.25%		53.85%		136.10%		41.18%		46.15%		29.58%		28.63%		16.78%		13.44%	


Bold values are significant p-values at the 0.05 level.

