Preface

Tampa Bay is recognized internationally for its remarkable progress towards recovery since it was pronounced “dead” in the late 1970s. Due to significant efforts by local governments, industries and private citizens throughout the watershed, water clarity in Tampa Bay is now equal to what it was in 1950, when population in the watershed was less than one-quarter of what it is today. Seagrass extent has increased by more than 8,000 acres since the mid-1980s, and fish and wildlife populations are increasing.

Central to this successful turn-around has been the Tampa Bay resource management community’s long-term commitment to development and implementation of strong science-based management strategies. Research institutions and agencies, including Eckerd College, the Florida Wildlife Commission Fish and Wildlife Research Institute, Mote Marine Laboratory, National Oceanic and Atmospheric Administration, the Southwest Florida Water Management District, University of South Florida, U.S. Environmental Protection Agency, U.S. Geological Survey, local and State governments, and private companies contribute significantly to the scientific basis of our understanding of Tampa Bay’s structure and ecological function. Resource management agencies, including the Tampa Bay Regional Planning Council’s Agency on Bay Management, the Southwest Florida Water Management District’s Surface Water Improvement and Management Program, and the Tampa Bay Estuary Program, depend upon this scientific basis to develop and implement regional adaptive management programs.

The importance of integrating science with management has become fully recognized by scientists and managers throughout the region, State and Nation. Scientific studies conducted in Tampa Bay over the past 10–15 years are increasingly diverse and complex, and resource management programs reflect our increased knowledge of geology, hydrology and hydrodynamics, ecology and restoration techniques. However, a synthesis of this research and its integration into resource management has not been prepared for Tampa Bay since the mid-1980s.

The need for an up-to-date synthesis of Tampa Bay science and management has resulted in the production of this document. The U.S. Geological Survey recently completed a 5-year Tampa Bay Integrated Science Study, and the Tampa Bay Estuary Program updated the Comprehensive Conservation and Management Plan for Tampa Bay in 2006. These efforts build upon results of the many research and management studies and programs summarized here.

Kimberly K. Yates
Senior Research Scientist
U.S. Geological Survey

Holly Greening
Executive Director
Tampa Bay Estuary Program
Acknowledgments

A dedicated group of scientists and resource managers from the Tampa Bay area provided documentation (published and unpublished), original graphics, and helpful reviews of earlier drafts of this document. We appreciate the comments provided by Mike Beach, Gregg Brooks, Tom Cronin, Tony D’Aquila, Dick Eckenrod, Ernie Estevez, Sid Flannery, Steve Grabe, Cliff Hearn, Al Hine, Mary Hoppe, Tony Janicki, Roger Johansson, Dave Karlen, Justin Krebs, Robin Lewis, Carole McIvor, Bob McConnell, Ed Proffitt, Tom Ries, Doug Robison, Marc Russell, Ed Sherwood, Thomas J. Smith III, Andy Squires, Beau C. Suthard, Peter Swarzenski, Dave Tomasko, and Hans Zarbock. Thanks to Betsy Boynton and Laurinda Travers for their help with graphics and figures.

The following U.S. Geological Survey employees contributed to the preparation of this report: Jane Eggleston, geologist, for technical editing; Ronald S. Spencer, scientific illustrator, for the final preparation of illustrations; and Twila Darden Wilson, writer-editor, for the report’s design, layout, and coverwork.
Contents

Chapter 1. An Introduction to Tampa Bay 1
 Tampa Bay Study – Integrating Science and Management 8
 References Cited 15

Chapter 2. Environmental Setting 17
 Land Use 18
 Climate and Weather 19
 Tributaries and Freshwater Inflow 25
 Tides 26
 Circulation 26
 Coming Challenges — Climate Change and Sea-Level Rise 31
 References Cited 33

Chapter 3. Origin and Evolution of Tampa Bay 37
 Geologic History 50
 Stratigraphy 52
 Paleoenvironments 52
 Anthropogenic Changes to the Bay and its Watershed 56
 References Cited 61

Chapter 4. Seagrass 63
 Seagrass Species Found in Tampa Bay 65
 Seagrass Habitat Requirements 65
 Types of Seagrass Beds in Tampa Bay 70
 Factors Affecting Seagrass Cover in Tampa Bay 77
 Water and Sediment Quality 77
 Dredge and Fill 79
 Currents and Wave Energy 81
 Propeller Scarring 86
 Planting and Transplanting 87
 Sea-Level Rise and Other Components of Global Climate Change 90
 Status and Trends in Seagrass Cover 91
 Seagrass Management Strategy 92
 Anticipated Challenges 94
 References Cited 96
Chapter 5. Water Quality 105

Connectivity between the Bay and its Watershed and Airshed 106
Eutrophication in Tampa Bay—Past Problems, Recent Successes, and Ongoing Challenges 107
Water-Quality Monitoring 114
Estimating Pollutant Loads and Bay Responses 120
Adaptive Management 121
Current and Anticipated Water-Quality Management Issues 121
Nutrient Inputs and Eutrophication 121
Factors Affecting Phytoplankton Productivity in Tampa Bay 125
External Nitrogen Sources and Estimated Annual Loadings 126
Internal Nutrient Cycling and its Implications for Bay Management 128
Setting Water-Quality Goals and Nitrogen Loading Goals Based on the Light Requirements of Seagrasses 129
Tampa Bay Nitrogen Management Consortium 138
Toxins and Harmful Algal Blooms 139
Mercury in Fish Tissue 139
Harmful Algal Blooms 141
Florida Red Tide 141
Other Harmful Algal Blooms 143
Pharmaceutical and Personal Care Products, and other Emerging Contaminants 144
Pathogen-Related Water-Quality Impairments 145
Anticipated Future Challenges from Ongoing Population Growth 146
References Cited 148

Chapter 6. Freshwater Inflows 157

Anthropogenic Hydrologic Modifications 161
Urban Development and Increased Imperviousness 163
Changes to Surface-Water Conveyance Systems 164
Coastal Old Tampa Bay Basin 164
Hillsborough River Basin 166
Coastal Hillsborough Bay Basin 168
Alafia River Basin 169
Coastal Middle Tampa Bay Basin 174
Little Manatee River Basin 174
Coastal Lower Tampa Bay and Terra Ceia Bay Basins 174
Manatee River Basin 175
Boca Ciega Bay Basin 175
Changes in Groundwater Systems 175
Northern Groundwater Basins 176
Southern Groundwater Basin 178
Rainfall and Streamflow Patterns 182
Long-Term Trends in Spring Discharge and Instream Flows 184
Management Responses to Anthropogenic Alterations 187
Stormwater Management 187
Water Withdrawals for Human Use 188
Discharges of Treated Effluent and Irrigation Water 190
Future Challenges 191
References Cited 194
Figures

Figure 1–1. Satellite image of Tampa Bay located on the west-central coast of Florida
Figure 1–2. Map showing interconnected lagoons and bays of Tampa Bay, grouped into seven named segments and the tidal reach of the Manatee River
Figure 1–3. Map showing watershed and drainage basins of Tampa Bay, showing the geographic extent of land from which the bay receives freshwater runoff
Figure 1–4. Photograph of the mouth of the Hillsborough River in downtown Tampa
Figure 1–5. Graph showing population growth in the three-county area (Hillsborough, Manatee, and Pinellas Counties) surrounding Tampa Bay, 1940–2008
Figure 1–6. Photograph showing Port of Tampa located on the northern shoreline of the Hillsborough Bay segment of Tampa Bay
Figure 1–7. Photographs showing an undeveloped area of shoreline located along the southeastern shoreline of Lower Tampa Bay, and the urbanized shoreline of Bayboro Harbor located along the western coastline of Middle Tampa Bay depicting increased urban structures and seawalls
Figure 1–8. Photograph showing scientists, managers, and congressional liaisons at the southeast shoreline of Tampa Bay
Figure 2–1. Map of Tampa Bay area, showing locations of dredged and filled areas
Figure 2–2. Aerial photograph of Boca Ciega Bay shoreline development and land use, 2002
Figure 2–3. Graphs showing mean daily rainfall for available periods of record at four sites in the Tampa Bay watershed
Figure 2–4. Satellite image of Hurricane Frances as it approached the east coast of Florida on July 24, 2004
Figure 2–5. Map showing locations of Tampa Bay tidal tributaries
Figure 2–6. Graph showing example of tide data for a semidiurnal tide in Tampa Bay near St. Petersburg
Figure 2–7. Photograph of a Physical Oceanographic Real-Time System station located in Tampa Bay
Figure 2–8. Maps showing potential changes in shoreline habitat in Tampa Bay by 2100, assuming a 15-inch increase in sea level
Figure 3–1. Map showing the Florida Peninsula and the Florida Platform
Figure 3–2. Diagrams showing seismic line, showing layers of sediment beneath the bay floor, and locations of the cores that penetrated and recovered sediment from these layers
Figure 3–3. Diagrams depicting the theoretical development of the inner shelf, Tampa Bay estuary, and ebb-tidal delta system from 11,000 to 3,000 years ago
Figure 3–4. Core logs showing Holocene stratigraphy and calibrated radiocarbon dates from cores VC-75, 77, and 78 in the Hillsborough Bay region of Tampa Bay
Figure 3–5. Cross-section of the Florida Platform
Figure 3–6. Map showing the Tampa Bay area in a regional context
Figure 3–7. Stratigraphic column for central and south Florida
Figure 3–8. Photomicrographs of pollen from two plant species commonly found in Tampa Bay sediments (*Amaranthus australis* and *Pinus taeda*)
Figure 3–9. Maps showing estimated impervious surface levels in the Tampa Bay watershed for 1991, 1995, 2000, and 2002
Figure 4–1. Aerial photo showing seagrass habitat at Pinellas Point in Middle Tampa Bay

Figure 4–2. Map showing estimated changes in seagrass cover in Tampa Bay between 1950 and 2006

Figure 4–3. Sketches and photographs of common seagrass species found in Tampa Bay

Figure 4–4. Photograph showing Ruppia maritima

Figure 4–5. Cross section showing typical depth zonation patterns of Gulf Coast seagrass species

Figure 4–6. Diagram showing why sunlight is important to seagrass

Figure 4–7. Photograph showing the measuring of photosynthetically active radiation using quantum sensors

Figure 4–8. Photograph showing water clarity measurement using a Secchi disk

Figure 4–9. Diagrams showing the classification system for the seagrass beds of Tampa Bay

Figure 4–10. Locations of 62 fixed seagrass transects in Tampa Bay

Figure 4–11. Photograph showing how randomly placed quadrants are used to monitor seagrass transects

Figure 4–12. Maps showing urban development and seagrass distribution from 1879 to 1999

Figure 4–13. Graph showing comparison of urban growth and seagrass coverage in Tampa Bay

Figure 4–14. Aerial photo showing residential development and finger canals along Boca Ciega Bay

Figure 4–15. Photograph showing dredge operation in Tampa Bay port area

Figure 4–16. Map showing location of longshore bars in 2004 in Tampa Bay

Figure 4–17. Aerial photographs showing longshore-bar degradation on the eastern shore of Tampa Bay near Apollo Beach on March 23, 1957, January 21, 1968, and December 10, 1990

Figure 4–18. Images showing relative exposure index value and bar locations at four Tampa Bay sites

Figure 4–19. Photograph showing rogue wave observed offshore of MacDill Peninsula, 2003

Figure 4–20. Aerial photo showing propeller scarring in seagrass beds from recreational boating

Figure 4–21. Photograph showing mechanical seagrass planting boat

Figure 4–22. Photograph showing Syringodium transplant plug, MacDill Peninsula, 2007

Figure 4–23. Photograph showing seagrass sod being excavated prior to transplanting

Figure 4–24. Graph showing estimated long-term changes in Tampa Bay seagrass cover and target cover established in living-resource strategy

Figure 4–25. Graph showing seagrass-cover trend from 1982 through 2008

Figure 5–1. Photograph of Terra Ceia Bay and Skyway Bridge from Emerson Point in Lower Tampa Bay

Figure 5–2. Photograph of bay scallop in seagrass meadow

Figure 5–3. Map showing principal oxidized nitrogen airshed for Tampa Bay

Figure 5–4. Photograph showing fish kill associated with a bloom of microalgae and very low dissolved oxygen readings in Old Tampa Bay, 2008

Figure 5–5. Photograph showing residential lawn fertilization

Figure 5–6. Photograph showing macroalgae mat in Hillsborough Bay

Figure 5–7. Aerial photo of H.F. Curren wastewater-treatment plant
Figure 5–8. Graphs showing water clarity as measured by average annual Secchi disk depth, 1974–2008, for Hillsborough Bay, Old Tampa Bay, Middle Tampa Bay and Lower Tampa Bay

Figure 5–9. Graphs showing chlorophyll a annual average concentrations, 1974–2008, for Hillsborough Bay, Old Tampa Bay, Middle Tampa Bay, and Lower Tampa Bay

Figure 5–10. Graphs showing average annual mid-depth dissolved oxygen concentrations, 1974–2008, for Hillsborough Bay, Old Tampa Bay, Middle Tampa Bay and Lower Tampa Bay

Figure 5–11. Map showing impaired waterbodies within the Tampa Bay watershed, 2009

Figure 5–12. Map of Environmental Protection Commission of Hillsborough County water-quality stations in Tampa Bay

Figure 5–13. Flow chart showing key decision points for developing and implementing an adaptive, site-specific nutrient management strategy

Figure 5–14. Graph showing estimated annual nitrogen loads to Tampa Bay during various time periods (1938–2003)

Figure 5–15. Schematic showing fish consumption advisories due to mercury contamination for Tampa Bay

Figure 5–16. Map showing mercury wet deposition in the United States, 2007

Figure 5–17. Photograph showing red tide bloom along Florida’s west coast

Figure 5–18. Photograph showing red tide organism

Figure 5–19. Pie chart showing sources of total nitrogen to Tampa Bay, 2003–2007

Figure 6–1. Photograph showing summer thunderstorm forming over the Tampa Bay watershed

Figure 6–2. Schematic showing conceptual overview of effects of freshwater inflow on estuaries

Figure 6–3. Schematic showing suggested relationship of freshwater inflow to fisheries production through effects on areas of overlap of dynamic and stationary habitats in tidal tributaries

Figure 6–4. Photograph of oligohaline habitat in Cockroach Bay Aquatic Preserve

Figure 6–5. Map showing gaged and ungaged areas of the Tampa Bay watershed

Figure 6–6. Photograph showing example of a hardened streambank which increases the delivery rate of stormwater to the bay

Figure 6–7. Photograph showing Lake Manatee and Manatee River Dam, 2003

Figure 6–8. Aerial photograph of northern Old Tampa Bay, 2002, showing various means by which water enters the tidal area

Figure 6–9. Photograph showing Crystal Springs, a second magnitude spring, which eventually discharges into the upper Hillsborough River

Figure 6–10. Graph showing number of “zero flow” days per year recorded at the Hillsborough River dam, October 1938 through July 2009

Figure 6–11. Photograph showing Sulphur Springs which eventually discharges into the lower Hillsborough River

Figure 6–12. Map showing groundwater basins in west-central Florida

Figure 6–13. Graph showing estimated groundwater use in the Southern Water Use Caution Area, 1950–2008

Figure 6–14. Map showing Upper Floridan aquifer potentiometric surface, May 2009
Figure 6–15. Map showing location of Water Use Caution Areas and groundwater basins within the Southwest Florida Water Management District

Figure 6–16. Graph showing average monthly rainfall measured at seven rainfall recording stations over specified periods of record

Figure 6–17. Map showing areas of Floridan aquifer discharge and recharge

Figure 6–18. Graph showing average monthly streamflow of several Tampa Bay tributaries

Figure 7–1. Photograph showing industrial facility located at the Port of Tampa in Hillsborough Bay, in the northeastern segment of Tampa Bay

Figure 7–2. Photographs showing two common species of ghost shrimp from Tampa Bay

Figure 7–3. Maps showing estimated distribution of sediments in Tampa Bay over three time periods, based on information from benthic monitoring program

Figure 7–4. Map showing sampling sites designated as “hot spots” when chemical concentrations exceeded at least one threshold effects level or probable effects level guideline value

Figure 7–5. Map showing concentrations of most organic toxins were highest among resident oysters collected in northern Hillsborough Bay and lowest in oysters from Old Tampa Bay and Lower Tampa Bay

Figure 7–6. Map showing threshold effects level and probable effects level exceedances in Tampa Bay sediments

Figure 7–7. Graph showing estimated sources of metal loadings to Tampa Bay

Figure 7–8. Graphs showing distribution of “healthy” and “degraded” benthic habitats across salinity and sediment grain size in Tampa Bay

Figure 7–9. Graph showing cumulative distribution frequency plot showing the relation between percentage of sites identified correctly as degraded, false negatives and false positives, and the relation between the Tampa Bay Benthic Index score

Figure 7–11. Map showing late-summer distribution of Branchiostoma floridae in Tampa Bay, 1993–2004

Figure 7–12. Map showing late-summer distribution of Monticellina cf. dorsobranchialis in Tampa Bay, 1993–2004

Figure 7–13. Map showing late-summer distribution of Glottidia pyramidata in Tampa Bay, 1993–2004

Figure 7–14. Map showing late-summer distribution of Caecum strigosum in Tampa Bay, 1993–2004

Figure 7–15. Map showing nine priority areas in Tampa Bay that have been identified for restoration plan development

Figure 8–1. Photograph showing coastal mangrove forest typical of the southeastern shoreline of Tampa Bay

Figure 8–2. Photograph showing emergent tidal wetlands in Tampa Bay, characterized by mangrove forests, salt marshes, and salt barrens

Figure 8–3. Photograph showing mangrove forest located along the southwest shoreline of Lower Tampa Bay

Figure 8–4. Photographs showing four tree species that dominate the mangrove forests of Tampa Bay: red mangrove, black mangrove, buttonwood, and white mangrove
Figure 8–5. Photograph showing red mangrove propagules 248
Figure 8–6. Photograph showing salt marsh located along the eastern shoreline of Tampa Bay 249
Figure 8–7. Photograph showing oligohaline marsh with sawgrass and blackrush 250
Figure 8–8. Photograph showing typical salt barren in Tampa Bay fringed by mangrove forest 250
Figure 8–9. Photograph showing exposed oyster bar at low tide 251
Figure 8–10. Photograph showing natural hard bottom occurs in the Terra Ceia Aquatic Preserve in Lower Tampa Bay 252
Figure 8–11. Photograph showing oligohaline stretch of Frog Creek, a tidal tributary of Tampa Bay 253
Figure 8–12. Photographs showing inhabitants of the Egmont Key and Fort Dade artificial reefs located in Lower Tampa Bay 258
Figure 8–13. Map showing location of artificial reefs in Tampa Bay 259
Figure 8–14. Photograph showing coastal uplands can include slash pines and palmetto 260
Figure 8–15. Photograph showing shallow pond within a flatwoods marsh 261
Figure 8–16. Map showing areas within the estimated foraging ranges of four major coastal nesting colonies of white ibis and other wading birds in Tampa Bay 262
Figure 8–17. Photograph showing dredging activity using a clamshell dredge 263
Figure 8–18. Graph showing mean sea-level trend for St. Petersburg, Florida, 1948–2009 269
Figure 8–19. Map showing manatee protection zones in Tampa Bay 277

Tables

Table 2–1. Summary of 1995 land use in the Tampa Bay watershed, by bay segment 19
Table 2–2. Tampa Bay circulation models and representative applications 29
Table 3–1. Seismic sequences in strata at the mouth of Tampa Bay 54
Table 5–1. Total nitrogen load reductions, 1995–2009 138
Table 7–1. Chronology of Tampa Bay sediment assessment and management activities 212
Table 7–2. Potential biological and human health effects of Tampa Bay contamination of concerns 216
Table 7–3. Benthic community summary statistics by year 226
Table 7–4. Benthic community summary statistics by segment 227
Table 7–5. Summary of Tampa Bay Benthic Index benthic habitat quality classifications of sites monitored during 1993–2004 232
Table 8–1. General salinity classification scheme for Tampa Bay 240
Table 8–2. Faunal guilds for habitat restoration and land acquisition master plan for Tampa Bay 271
Table 8–3. Summary of recommended protection and restoration targets for Tampa Bay habitats 274
Highlight Boxes

Box 1–1. Integrated Science 10

Box 1–1, Figure 1. Integrated science logo for the U.S. Geological Survey Tampa Bay study 10

Box 1–2. The U.S. Geological Survey Tampa Bay Study 12–14

Box 1–2, Figure 1. Image showing U.S. Geological Survey Tampa Bay Study tasks listed under the four critical science gaps, corresponding to ecosystem components in the integrated science logo 13

Box 2–1. Digital Elevation Model of Tampa Bay 22–23

Box 2–1, Figure 1. Image showing digital elevation model of Tampa Bay developed from topographic and bathymetric data 23

Box 3–1. Coring to Reconstruct the Past in Tampa Bay 44–49

Box 3–1, Figure 1. Photograph showing vibracore apparatus used to take sediment cores in Tampa Bay 44

Box 3–1, Figure 2. Map showing locations of sediment cores and seismic track-lines throughout Tampa Bay 45

Box 3–1, Figure 3. Photograph showing research vessel *Marion Dufresne* from which sediment cores were taken in Middle Tampa Bay 46

Box 3–1, Figure 4. Photograph showing core apparatus located on the *Marion Dufresne*, used to take cores from Middle Tampa Bay 46

Box 3–1, Figure 5. Photograph showing bent core pipe retrieved from Middle Tampa Bay while coring from the French research vessel *Marion Dufresne* 46

Box 3–1, Figure 6. Core log describing the 11.5-meter core collected from the *Marion Dufresne* 47–49

Box 3–2. Sedimentary Indicators of Human Effects on Tampa Bay 58–60

Box 3–2, Figure 1. Graphs showing weight percent total organic carbon and total organic nitrogen, elemental atomic carbon to nitrogen ratio, and ¹⁵N composition of sedimentary organic matter in three sediment cores from Hillsborough Bay, Terra Ceia, and Feather Sound 59
Box 4–1. Community Metabolism, Primary Production, and Irradiance Relations in Tampa Bay Seagrass Beds 74–76

Box 4–1, Table 1. Summary of community production and respiration observations collected during Submersible Habitat for Analyzing Reef Quality deployments during 2001–2003 76

Box 4–1, Figure 1. Photograph showing the Submersible Habitat for Analyzing Reef Quality benthic incubation chamber 74

Box 4–1, Figure 2. Map showing Submersible Habitat for Analyzing Reef Quality deployment locations 75

Box 4–1, Figure 3. Graphs showing diurnal net primary productivity, and primary production and irradiance relations, observed within a Submersible Habitat for Analyzing Reef Quality incubation chamber during a 24-hour deployment within a Halodule bed in the Feather Sound part of Old Tampa Bay, May 4–6, 2002 76

Box 5–1. Coastal Groundwater Exchange in Tampa Bay 116–117

Box 5–1, Figure 1. Aerial photo of sinkhole feature located near the coastline of Feather Sound in Old Tampa Bay 116

Box 5–1, Figure 2. Diagram showing three dimensional resistivity profile taken near the Little Manatee River located on the eastern shoreline of Middle Tampa Bay 117

Box 5–2. Bay Region Atmospheric-Chemistry Experiment 118–119

Box 5–2, Figure 1. Photograph showing the Bay Region Atmospheric Chemistry Experiment data-collection station, located at the east end of the Gandy Bridge 118

Box 5–2, Figure 2. Photograph showing meteorological data and physical data from Tampa Bay collected at several stations within Tampa Bay 119

Box 5–3. Tracking Progress Toward Water-Quality Goals—Application of the Tampa Bay Decision Framework 134–135

Box 5–3, Figure 1. Image showing management responses to decision matrix outcomes 134

Box 5–3, Figure 2. Image showing decision matrix outcomes for the years 1975 through 2008 135

Box 5–4, Figure 1. Image showing compliance with Florida Department of Environmental Protection approved annual average chlorophyll a thresholds for each major bay segment, 1974–2008 136

Box 5–4, Table 1. Participants of the Tampa Bay Nitrogen Management Consortium 137
Box 5–5. Frequently Asked Questions about Florida Red Tide 143

Box 6–1. Regional Drinking-Water Supply—Groundwater, Surface Water, and Desalination 170–173

Box 6–1, Figure 1. Map showing Tampa Bay Water regional drinking-water supply system 171

Box 7–1. Albino Mutation in Red Mangroves 207

Box 7–1, Figure 1. Photograph showing red mangrove tree, showing the mutagenic effect of propagule albinism resulting from contamination by polycyclic aromatic hydrocarbons 206

Box 7–1, Figure 2. Map showing location of study sites in Tampa Bay, Florida 207

Box 7–2. Bioaccumulation of Select Metals in Seagrass Tissues 208–211

Box 7–2, Figure 1. Map showing location of sampling sites in Tampa Bay 209

Box 7–2, Table 1. Analysis of six trace elements of seagrass tissue and corresponding sediments, Tampa Bay, Florida, July, 2003 210

Box 7–2, Figure 2. Graph showing concentrations of selected trace metals in seagrass tissues and their corresponding sediments from 15 different sites throughout Tampa Bay 211

Box 8–1. Historic Records Shed Light on Marsh to Mangrove Conversion In Tidal Wetlands 242–245

Box 8–1, Table 1. Acres of nonmangrove, mangrove, and intertidal area in the 1870s and 1999 242

Box 8–1, Figure 1. Image showing example of original Public Land Survey notes and interpretation and overlay of Public Land Survey data on 1999 aerial photography 243

Box 8–1, Figure 2. Maps showing changes in percent cover of terrestrial, open water, mangrove, and tidal marsh habitat from the 1870s to 1999 for Terra Ceia Bay, Feather Sound, Alafia River, and Old Tampa Bay 244–245

Box 8–2. Mosquito Ditching of Mangrove Forests 246–247

Box 8–2, Figure 1. Photographs showing mangrove forest habitat near Feather Sound in Old Tampa Bay in 1952, prior to mosquito ditching, and in 2002, showing the checkerboard pattern created by mosquito ditching 246

Box 8–2, Figure 2. Photograph showing example of mosquito ditch adjacent to Tampa Bay 246

Box 8–2, Figure 3. Graph showing transition in mangrove tree species along a transect perpendicular to a mosquito ditch at Weedon Island in Old Tampa Bay 247

Box 8–2, Figure 4. Photograph showing sampling of fish in mangrove forest creeks in Tampa Bay 247

Box 8–2, Figure 5. Photograph showing hydroleveling of spoil mounds created by mosquito ditching of mangrove forests in Tampa Bay 247
Conversion Factors

Inch/Pound to SI

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inch (in.)</td>
<td>2.54</td>
<td>centimeter (cm)</td>
</tr>
<tr>
<td>foot (ft)</td>
<td>0.3048</td>
<td>meter (m)</td>
</tr>
<tr>
<td>mile (mi)</td>
<td>1.609</td>
<td>kilometer (km)</td>
</tr>
<tr>
<td>mile per hour (mph)</td>
<td>1.609</td>
<td>kilometer per hour (kmh)</td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acre</td>
<td>0.4047</td>
<td>hectare (ha)</td>
</tr>
<tr>
<td>acre per year (acre/yr)</td>
<td>0.4047</td>
<td>hectare per year (ha/yr)</td>
</tr>
<tr>
<td>square mile (mi²)</td>
<td>2.59</td>
<td>square kilometer (km²)</td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gallon (gal)</td>
<td>3.785</td>
<td>liter (L)</td>
</tr>
<tr>
<td>Flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>million gallons per day (Mgal/d)</td>
<td>0.04381</td>
<td>cubic meters per second (m³/s)</td>
</tr>
<tr>
<td>Mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tons per year (tons/yr)</td>
<td>0.9072</td>
<td>megagram per year (mg/yr)</td>
</tr>
</tbody>
</table>

Temperature in degrees Fahrenheit (°F) can be converted to degrees Celsius (°C) as follows:
°C = (°F - 32)/1.8

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Tide and water depth measurements are given in metric units (meters).
Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRACE</td>
<td>Bay Regional Atmospheric Chemistry Experiment Study</td>
</tr>
<tr>
<td>COC</td>
<td>contaminant of concern</td>
</tr>
<tr>
<td>DDT</td>
<td>dichlorodiphenyltrichloroethane</td>
</tr>
<tr>
<td>EDS</td>
<td>effects dataset</td>
</tr>
<tr>
<td>EPCHC</td>
<td>Environmental Protection Commission of Hillsborough County</td>
</tr>
<tr>
<td>DO</td>
<td>dissolved oxygen</td>
</tr>
<tr>
<td>FDACS</td>
<td>Florida Department of Agriculture and Consumer Services</td>
</tr>
<tr>
<td>FDEP</td>
<td>Florida Department of Environmental Protection</td>
</tr>
<tr>
<td>FWRI</td>
<td>Florida Fish and Wildlife Conservation Commission Fish and Wildlife Research Institute</td>
</tr>
<tr>
<td>FGFWFC</td>
<td>Florida Game and Freshwater Fish Commission</td>
</tr>
<tr>
<td>FOCC</td>
<td>Florida Oceans and Coastal Council</td>
</tr>
<tr>
<td>></td>
<td>greater than</td>
</tr>
<tr>
<td><</td>
<td>less than</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>μE m² s⁻¹</td>
<td>microEinsteins, the unit used for photosynthetically active radiation (PAR)</td>
</tr>
<tr>
<td>μg/L</td>
<td>microgram per liter</td>
</tr>
<tr>
<td>μ</td>
<td>micron</td>
</tr>
<tr>
<td>mg/L</td>
<td>milligram per liter</td>
</tr>
<tr>
<td>Ma</td>
<td>million years ago</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>N</td>
<td>nitrogen</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>NEDS</td>
<td>no-effects dataset</td>
</tr>
<tr>
<td>ppt</td>
<td>parts per thousand</td>
</tr>
<tr>
<td>%</td>
<td>per mil</td>
</tr>
<tr>
<td>PPCP</td>
<td>pharmaceutical and personal care products</td>
</tr>
<tr>
<td>P</td>
<td>phosphorus</td>
</tr>
<tr>
<td>PAR</td>
<td>photosynthetically active radiation</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyl</td>
</tr>
<tr>
<td>PAH</td>
<td>polycyclic aromatic hydrocarbon</td>
</tr>
<tr>
<td>PEL</td>
<td>probable effects level</td>
</tr>
<tr>
<td>SWFWMD</td>
<td>Southwest Florida Water Management District</td>
</tr>
<tr>
<td>SHARQ</td>
<td>submersible habitat for analyzing reef quality</td>
</tr>
<tr>
<td>TBBI</td>
<td>Tampa Bay Benthic Index</td>
</tr>
<tr>
<td>TBEP</td>
<td>Tampa Bay Estuary Program</td>
</tr>
<tr>
<td>TNBEP</td>
<td>Tampa Bay National Estuary Program</td>
</tr>
<tr>
<td>TBNMC</td>
<td>Tampa Bay Nitrogen Management Consortium</td>
</tr>
<tr>
<td>TBRCPC</td>
<td>Tampa Bay Regional Planning Council</td>
</tr>
<tr>
<td>TBTTRT</td>
<td>Tampa Bay Tidal Tributary Research Team</td>
</tr>
<tr>
<td>TAC</td>
<td>Technical Advisory Committee (of the TBEP)</td>
</tr>
<tr>
<td>ka</td>
<td>thousand years ago</td>
</tr>
<tr>
<td>TEL</td>
<td>threshold effects level</td>
</tr>
<tr>
<td>TMDL</td>
<td>total maximum daily load</td>
</tr>
<tr>
<td>USEPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>USF</td>
<td>University of South Florida</td>
</tr>
<tr>
<td>USGS</td>
<td>U.S. Geological Survey</td>
</tr>
</tbody>
</table>