ASSESSMENT OF HYDROGEOLOGIC CONDITIONS WITH EMPHASIS ON WATER QUALITY AND WASTEWATER INJECTION, SOUTHWEST SARASOTA AND WEST CHARLOTTE COUNTIES, FLORIDA

By C.B. HUTCHINSON

U.S. GEOLOGICAL SURVEY
Open-File Report 90-709

Prepared in cooperation with the SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT

Tallahassee, Florida 1991

DEPARTMENT OF THE INTERIOR

MANUEL LUJAN, JR., Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

Any use of trade, product, industry, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

For additional information write to:

District Chief U.S. Geological Survey Suite 3015 227 North Bronough Street Tallahassee, Florida 32301 Copies of this report can be purchased from:

U.S. Geological Survey Books and Open-File Reports Section Federal Center, Building 810 Box 25425 Denver, Colorado 80225

CONTENTS

	Page
Abstract	- 1
Introduction	- 2
Purpose and scope	
Previous investigations	- 5
Description of the study area	- 5
Physiography and drainage	. 5
Physiography and drainage	- 6
History of water-resources development	. 6
Irrigation	- 6
City of Venice	- 8
City of Englewood	- 8
Private water-supply systems	- 10
Class I injection wells	- 10
Observation wells	1.5
Hydrogeologic framework	- 15
Surficial aguifer system	- 23
Intermediate aguifer system	- 28
Floridan aguifer system	- 31
Suwannee permeable zone	- 34
Lower Suwannee-Ocala semiconfining unit	39
Injection zone	- 39
Water quality	. 43
Native ground water	. 43
Injected wastewater	- 54
Uncontrolled flowing artesian wells	- 57
Model simulation of wastewater injection	63
Subdivision in space and time	. 64
Boundary conditions	. 67
Input parameters	. 69
Numerical dispersion and stability	. 70
Numerical dispersion and stability	. 75
Limitations of the model application	. 81
Potential impacts of injection	82
Injection through an ideal well	82
Significance of injection-well design	0/
Injecting beneath a reverse-osmosis supply field	07
Areal effect of proposed injection	07
Ground-water quality problems and some management considerations	90
Ground-water quality problems and some management considerations	07
Selected references	. AT
Appendix A. Listing of model-input file	
whherery w. Firth of model-lubre life	

ILLUSTRATIONS

		Page
Figures 1-2.	Maps showing:	
	1. Location of the study area in west-central Florida	3
	2. Flood-prone areas	7
3.	Graph showing trends in water quality at Venice (\underline{A}) and Englewood (\underline{B})	9
4-6.	Maps showing:	
	4. Community water systems	12
	5. Class I injection-well sites in Sarasota, Charlotte, and Lee Counties	13
	 Locations of observation wells, springs, and hydrogeologic section lines <u>A-A'</u> and <u>B-B'</u> 	16
7.	Photograph of observation wells with casings as high as 23 feet above land surface to retain artesian head	22
· 8.	Hydrogeologic section A-A'showing well completion details and gamma-ray geophysical logs	26
9.	Hydrographs of daily maximum water levels in selected observation wells	29
10-12.	Maps showing:	
	10. Altitude of the top and thickness of the intermediate aquifar system	30
·	11. Potentiometric surface of the Tamiami-upper Hawthorn aquifer, May 1987	32
	12. Composite potentiometric surface of water-bearing unit: within the intermediate aquifer system, May 1987	
13.	Hydrogeologic section B-B' showing fault based on interpretations of gamma-ray logs	35
14-17.	Maps showing:	
	14. Configuration of the top of the dolomite layer of the Suwannee permeable zone within the Upper Floridan aquifer	36
	15. Potentiometric surface of the Upper Floridan aquifer, May 1987	38
	16. Configuration of the top of the Avon Park highly permeable zone within the Upper Floridan aquifer	44

ILLUSTRATIONS -- Continued

		Page
	17. Potentiometric surface of the very saline injection zon within the Upper Floridan aquifer	ie 45
18-21.	Maps showing dissolved-solids concentrations and Stiff diagrams depicting quality of water from springs and from wells that tap the:	
	18. Tamiami-upper Hawthorn aquifer	49
	19. Lowermost or multiple zones within the intermediate aquifer system	50
	20. Suwannee permeable zone	51
	21. Injection zone	52
22.	Hydrogeologic section with 10,000-mg/L dissolved-solids concentration delineated from packer-test and well-water analyses	55
23.	Map showing altitude of the 10,000-mg/L dissolved-solids concentration in ground water	56
24.	Diagram showing a properly constructed well tapping a single aquifer compared to improperly constructed or corroded wells that may allow cross contamination of aquifers with saline water	
25.	Map showing locations of plugged wells and uncontrolled flowing artesian wells scheduled to be plugged by the Southwest Florida Water Management District and other agencies	59
26-27.	Graphs showing:	
	26. Dissolved solids in water from a Venice Gardens Utilities production well before and after plugging of a nearby uncontrolled flowing artesian we	60
	27. Borehole geophysical logs used to assess internal circulation in an uncontrolled flowing artesian well	61
28.	Map showing internal circulation measured in uncontrolled flowing artesian wells	62
29-32.	Diagrams of:	
	29. Modeling procedures	65
	30. Finite-difference grid for a cylindrical-coordinate	

ILLUSTRATIONS - - Continued

					Page
			31.	Model grid of 27 rows and 98 columns showing locations of six observation wells within grid	68
			32.	Radial sections showing the flow field and scaled solut- concentration using various finite-difference methods	e 72
		33.	S	hs showing simulated scaled solute concentrations in ix observation wellsa comparison of finite-difference ethods	73
	34-	37.	Diag	rams of radial section(s) showing the simulated:	
			34.	Concentration of injected wastewater indicating model sensitivity to changes in input parameters	77
			35.	Flow field and concentration of wastewater injected through an ideal, fully penetrating well	83
			36.	Concentration of injected wastewater as influenced by well construction	86
			3 7.	Concentration of reverse-osmosis wastewater injected beneath a supply field where pumping stress increases upward movement of the injectant	88
		38.	Мар У	showing estimated areal spread of wastewater after 10 ears of injection at projected rates	90
				TABLES	_
Table	1.	Wate Co	er-su ounti	pply systems in southwest Sarasota and west Charlotte	Page 11
	2.	Cla C	ss I ounti	injection wells in Sarasota, Charlotte, and Lee	14
	3.	Wel	l rec	ords	17
	4.	Hyd	rogeo	logic framework	24
	5.	Hyd	rogeo	logic data from selected test wells	25
	6.	Sum	mary	of aquifer tests	27
	7.	Por	osity emico	and hydraulic conductivity of the lower Suwannee-Ocala	40
	8.	Gro	und-w	water quality	47
	9.	Res	ult o	f sensitivity tests	79

ABBREVIATIONS AND CONVERSION FACTORS

For readers who wish to convert measurements from inch-pound system of units to the metric system of units the conversion factors are listed below:

Multiply	<u>By</u>	To obtain
inch (in.)	25.4	millimeter (mm)
inch per year (in/yr)	25.4	millimeter per year (mm/yr)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
foot per day (ft/d)	0.3048	meter per day (m/d)
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km)
foot per year (ft/yr)	0.3048	meter per year (m/yr)
foot squared per day (ft2/d)	0.0929	meter squared per day (m2/d)
square mile (mi ²)	2.590	square kilometer (km²)
cubic foot (ft3)	0.0283	cubic meter (m³)
cubic foot per day (ft3/d)	0.0283	cubic meter per day (m³/d)
square foot per pound (ft ² /1b)	1.007x10	square meter per Newton
gallon (gal)	3.785	liter (L)
gallon per minute	5.45	cubic meter per day (m3/d)
(gal/min)		
gallon per day (gal/d)	3.785	liter per day (L/d)
gallon per minute	0.0631	liter per second (L/s)
(gal/min)		•
million gallons per day (Mgal/d)	0.4381	<pre>cubic meter per second (m³/s)</pre>
pound per square inch (lb/in²)	6.895	kilopascal (kPa)
pound per square foot (lb/ft²)	0.0479	kilopascal (kPa)
pound per cubic foot (1b/ft3)	0.0016	<pre>gram per cubic centimeter (g/cm³)</pre>
foot per foot (ft/ft)	1.000	meter per meter (m/m)
foot per day per foot [(ft/d)/ft]	1.000	meter per day per meter [(m/d)/m]

ALTITUDE DATUM

<u>Sea level</u>: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929) -- a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called "Sea Level Datum of 1929."

ADDITIONAL ABBREVIATIONS

ROMP - Regional Observation and Monitor Well Program

QWIP - Quality of Water Improvement Program
mg/L - milligrams per liter
pCi/L - picocuries per liter

ASSESSMENT OF HYDROGEOLOGIC CONDITIONS WITH EMPHASIS ON WATER QUALITY AND WASTEWATER INJECTION, SOUTHWEST SARASOTA AND WEST CHARLOTTE COUNTIES, FLORIDA

By C.B. Hutchinson

ABSTRACT

The 250-square mile area of southwest Sarasota and west Charlotte Counties is underlain by a complex hydrogeologic system having diverse groundwater quality. The surficial and intermediate aquifer systems and the Upper Floridan aquifer of the Floridan aquifer system contain six separate aquifers, or permeable zones, and have a total thickness of about 2,000 feet. Water in the clastic surficial aquifer system is potable and is tapped by hundreds of shallow, low-yielding, supply wells. Water in the mixed clastic and carbonate intermediate aquifer system is potable in the upper part, but in the lower part, because of increasing salinity, it is used primarily for reverse-osmosis desalinization feed water and irrigation. Within the Upper Floridan aquifer, limestone and dolomite of the Suwannee permeable zone are tapped by irrigation and reverse-osmosis supply wells. The underlying, less permeable limestone of the Suwannee-Ocala semiconfining unit generally encompasses the transition zone between freshwater and very saline water. Interbedded limestone and dolomite of the Ocala-Avon Park moderately permeable zone and Avon Park highly permeable zone comprise the deep, very saline injection zone.

Potential ground-water contamination problems include flooding by storm tides, upward movement of saline water toward pumping centers by natural and induced leakage or through improperly constructed and abandoned wells, and lateral and vertical movement of treated sewage and reverse-osmosis wastewater injected into deep zones. Effects of flooding are evident in coastal areas where vertical layering of fresh and saline waters is observed. Approximately 100 uncontrolled flowing artesian wells that have interaquifer flow rates as high as 350 gallons per minute have been located and scheduled for plugging by the Southwest Florida Water Management District in an attempt to improve ground-water quality of the shallow aquifers. Because each aquifer or permeable zone has unique head and water-quality characteristics, construction of single-zone wells would eliminate cross-contamination and borehole interflow. Such a program, when combined with the plugging of shallow-cased wells with long open-hole intervals connecting multiple zones would safeguard ground-water resources in the study area.

The study area encompasses seven wastewater injection sites that have a projected capacity for injecting 29 million gallons per day into the zone 1,100 to 2,050 feet below land surface. There are six additional sites within 20 miles. The first well began injecting reverse-osmosis wastewater in 1984, and since then, other wells have been drilled and permitted for injection of treated sewage. A numerical model was used to evaluate injection-well design and potential for movement of injected wastewater within the hydrogeologic framework.

The numerical model was used to simulate injection through a representative well at a rate of 1 million gallons per day for 10 years. In this simulation, a convection cell developed around the injection well with the bouyant fresh injectant rising to form a lens within the injection zone below the lower Suwannee-Ocala semiconfining unit. Around an ideal, fully

penetrating well cased 50 feet into the injection zone and open from a depth of 1,150 feet to 2,050 feet, simulations show that the injectant moves upward to a depth of 940 feet, forms a lens about 600 feet thick, and spreads radially outward to a distance of about 2,300 feet after 10 years. Comparison simulations of injection through wells with open depth intervals of 1,150 to 1,400 feet and 1,450 to 2,050 feet demonstrate that such changes in well construction have little effect on the areal spread of the injectant lens or the rate of upward movement. Simulations also indicate that reverse-osmosis wastewater injected beneath a supply well field, where water levels above the semiconfining unit are lowered 20 feet by pumping, would move upward after 10 years to a depth of 860 feet, or about 80 feet higher than at a site with no pumping stresses. Areal extrapolation of various pumping scenarios indicates that about 7 percent of the study area would be underlain by injected wastewater after 10 years of injection at the maximum projected capacity. Observation wells are needed in the upper part of the injection zone and within 2,000 feet of the injection well if the movement of the injectant within the first 10 years of operation is to be monitored.

INTRODUCTION

Coastal Sarasota and Charlotte Counties are being urbanized. The increased demands for potable water has produced a need for suitable methods of disposal of large volumes of wastewater. Because of the flat landscape and lack of suitable surface-water impoundment areas, ground water is the sole source of supply. No scarcity of supply exists; however, concentrations of sulfate and chloride in the ground water are undesirably high. In 1967, the city of Sarasota alleviated its water-quality problems by transporting water from a well field 15 mi (miles) east of the city. Problems of obtaining water supplies of acceptable quality persist in southwest Sarasota and west Charlotte Counties. This study focuses on that 250-mi² (square miles) area (fig. 1).

Throughout this report inferences are made concerning the chemical quality of water. The terminology used to describe water quality is modified slightly from a classification system used by Robingrove and others (1958, p. 3), as follows:

<u>Class</u>	Dissolved solids (mg/L)
Freshwater	0 to 500
Slightly saline	500 to 3,000
Moderately saline	3,000 to 10,000
Very saline	10,000 to 36,000
Briny	More than 36,000

The classification system considers freshwater to be that which meets the dissolved-solids concentration limit for potable water recommended by the Florida Department of Environmental Regulation (FDER). Slightly saline water is nonpotable, but it may be suitable for irrigation. Moderately saline water is suitable for desalinization. Very saline water is considered unusable, and the FDER allows injection of wastewater into some zones where very saline water is confined. Briny water does not occur in the study area, but it is classed as having a salinity greater than that of seawater.

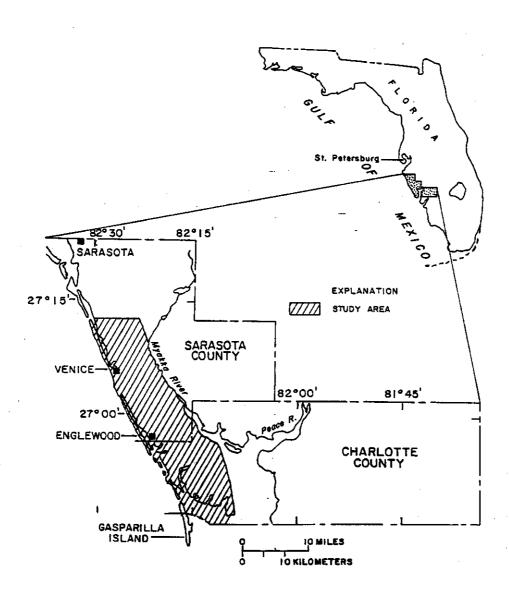


Figure 1.--Location of the study area in west-central Florida.

The study area contains a complex hydrogeologic system. Water quality varies laterally and is stratified. Six water-bearing aquifers or permeable zones are recognized. Only the upper three aquifers contain potable water, although they too are contaminated by saline water in some areas. Contamination is caused primarily by inundation by storm tides and upward leakage of chloride- and sulfate-rich water from deep zones through semiconfining units or through uncased or improperly constructed wells that tap multiple zones.

Ten municipal water-supply systems in the study area provided about 11 Mgal/d of freshwater in 1985. The water is withdrawn from more than 200 wells, generally less than 200 ft (feet) deep, that have an average yield of less than 40 gal/min. Yields of most supply systems are inadequate to meet projected demands. Consequently, some communities have built reverse-osmosis water-treatment facilities to upgrade slightly saline ground water from deep aquifers to potable quality. This water supplements and is usually blended with fresh ground water from shallow aquifers.

Several communities have been issued permits by the FDER for testing the feasibility of injecting wastewater, including reverse-osmosis wastewater and treated sewage, into zones below those containing potable water. Suitable injection zones are poorly defined and the effects of injection are not well understood. A potential exists for degrading the water quality in zones above the injection zone as a result of wastewater injection.

PURPOSE AND SCOPE

This report presents the results of a study to assess the hydrogeologic conditions and alternative water resources management measures that might be used to maintain or improve ground-water quality in southwest Sarasota and west Charlotte Counties. The study has three specific objectives:

- 1. Define the hydrogeologic framework,
- Describe ground-water quality and assess the problem of uncontrolled flowing artesian wells, and
- 3. Demonstrate the usefulness of a solute-transport model as a tool for understanding the effects of wastewater injection on the hydrologic system

The study was conducted from October 1983 through September 1988 in cooperation with the Southwest Florida Water Management District. The study area encompasses a strip 8 mi by 30 mi along the gulf coast of Sarasota and Charlotte Counties, including the towns of Venice and Englewood (fig. 1). Data were obtained from published and unpublished reports and from files of the U.S. Geological Survey (USGS). The Southwest Florida Water Management District provided data through its Regional Observation and Monitor Well Program (ROMP) and Quality of Water Improvement Program (QWIP). Where data were lacking or incomplete, field tests were made to determine aquifer characteristics and water quality.

Aquifer hydraulic properties and water-quality were estimated by using existing information. These data were supplemented with data from tests at three ROMP sites that were constructed during the study period. Flow-meter tests and geophysical logs on 15 wells open to multiple water-bearing zones were interpreted to assess the effects of borehole interflow.

A conceptual model was developed to provide an understanding of underground injection and solute transport. The heat and solute-transport (HST3D) model was used to simulate a typical injection-well system described in the conceptual model. The model proved to be a helpful tool for understanding the radial and vertical movement of injected sewage and reverse-osmosis wastewater around a single injection well that is representative of conditions in the study area. Predictive simulations provided insight for developing approaches to ground-water monitoring.

PREVIOUS INVESTIGATIONS

The first comprehensive studies of water resources in Sarasota County were performed by Stringfield (1933a; 1933b). Those early reports warned of potential negative impacts of developing additional water supplies in the county and documented flow rates of several artesian wells. Sutcliffe (1975, p. 51), in the first detailed appraisal of water resources in Charlotte County, recommended piping freshwater from the eastern part of the county to coastal urban areas. Joyner and Sutcliffe (1976) differentiated five artesian zones within the Myakka River basin. Wolansky (1983) lumped these zones into three aquifer units and mapped the head and water quality in each unit. Sutcliffe and Thompson (1983) tabulated water use for the Venice-Englewood area. Reports on test-injection wells described hydrogeologic conditions in central Sarasota County (Post, Buckley, Schuh, and Jernigan, Inc., 1984; 1989; Geraghty and Miller, Inc., 1985; Law Environmental, Inc., 1989), Englewood and North Port (CH2M Hill, Inc., 1986; 1988), and Gasparilla Island (Geraghty and Miller, Inc., 1986).

Other studies that aided this investigation include an evaluation of high transmissivity zones for liquid storage (Puri and Winston, 1974), a tabulation of uncontrolled flowing artesian wells in Florida (Healy, 1978), maps of zones widely used for subsurface injection (Miller, 1979; Wolansky and others, 1980), and aquifer properties that control movement of injected wastewater derived from studies in Pinellas County, 60 mi north of the study area (Hickey, 1982; GeoTrans, Inc., 1985). Supplementary data from the Southwest Florida Water Management District's ROMP and QWIP programs were provided through coordinator Kim Preedom.

DESCRIPTION OF THE STUDY AREA

Physiography and Drainage

Southwest Sarasota and west Charlotte Counties lie in the mid-Florida physiographic zone that includes the gulf coastal lowlands, gulf coastal lagoons, and gulf barrier chain subdivisions (White, 1970). The gulf coastal lowlands is a broad, gently sloping marine plain, and the gulf coastal lagoons and gulf barrier chain are erosional remnants of coastal prominences between estuaries. The lowlands are characterized by broad flatlands that have many sloughs, swampy areas, and creeks. Much of the area has been drained by canals and is platted for future development.

The study area is a nearly flat peninsula of land between the Myakka River and the Gulf of Mexico. The maximum tidal range unaffected by storms is about 3 ft at Venice on the gulf coast, 2.5 ft at the mouth of the Myakka River, and 2 ft at a gage 13 miles upstream. Land surface is less than 20 ft above sea level.

About 50 percent of the land has been mapped as flood prone on USGS 1:24,000 scale Flood Prone Area quadrangle maps. Figure 2 shows major areas that are statistically prone to inundation one time in 100 years. The drainage canal system and excavation of the Intracoastal Waterway at Venice have increased the potential for saltwater intrusion (Clark, 1964). The potential for intrusion is greatest during hurricanes when tides may rise as high as 6 ft above normal, as shown by the hydrograph of the Myakka River at El Jobean, Fla., during Hurricane Elena in 1985 (fig. 2). Evidence of past inundation was observed during drilling and subsequent water-quality analyses at two coastal ROMP test-drilling sites where upper and lower zones of saline water "sandwich" a relatively fresh zone.

Water Budget

A water budget is a quantitative accounting of the water entering or leaving a hydrologic system for a specific time period. A generalized water budget for the Venice-Englewood area includes the following inputs and outputs:

Inputs

Outputs

Rainfall (R)
Ground-water inflow (GI)
Stream inflow (SI)
Sewage inflow (SEW)

Evapotranspiration (ET)
Ground-water outflow (GO)
Stream outflow (SO)
Fumpage (P)

When the hydrologic system is in equilibrium, inputs equal outputs with no change in ground-water storage. Wolansky (1983) developed the following general water budget for the Sarasota-Port Charlotte drainage area, with rates in in/yr (inches per year):

$$R + GI + SI + SEW = ET + GO + SO + P$$

51 + 1.2 + O + 0.3 \approx 38 + 0.7 + 12.5 + 1.1

Pumpage, ground-water inflow, and ground-water outflow, and sewage inflow are relatively small parts of the total water budget. Evapotranspiration and streamflow are major outflows of freshwater that are difficult to harness for man's use. Capture of some of the water taken up by evapotranspiration may be possible where the water table in the surficial aquifer is lowered by pumping from a network of many low-yielding wells. The flat landscape of the study area is not suitable for impoundment of streams or diversion of surface water.

HISTORY OF WATER-RESOURCES DEVELOPMENT

Irrigation

Hundreds of wells have been drilled in the study area for a variety of purposes. During the period from 1900 to the early 1950's, many naturally flowing wells were drilled to obtain artesian (flowing) water for irrigation and stock watering. Stringfield (1933a, p. 148) reported that, in 1931, Venice Farms, a 6-mi² truck farm just east of Venice, had about 45 wells that were from 300 to 475 ft deep. Wells were usually cased to a depth of about 60 ft. Other major irrigation centers that had similarly constructed wells were

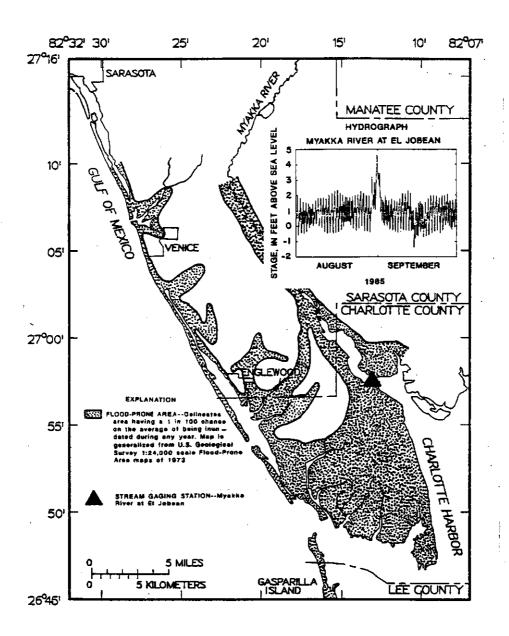
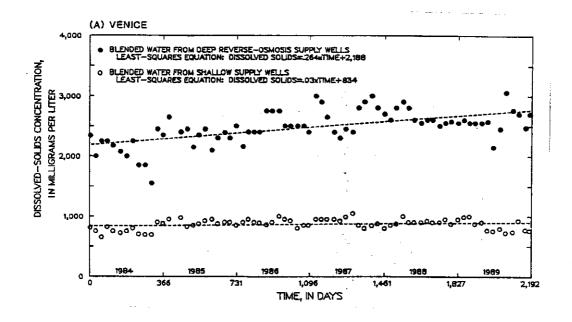


Figure 2. -- Flood-prone areas.

on the east side of the Charlotte County peninsula near the mouth of the Myakka River. As urbanization replaced agriculture, many irrigation wells were simply abandoned rather than plugged.

Well-drilling regulations adopted by Sarasota County in the 1970's control the use of water and determine the aquifer from which water is to be withdrawn. The regulations require that (1) all wells that penetrate consolidated deposits must be cased with pipe having a minimum diameter of 3 in., and (2) all irrigation or industrial wells that yield more than 50 gal/min (gallons per minute) or have pumps greater than 1.5 horsepower must be cased to at least 300 ft below land surface. Such regulations help prevent contamination of the best quality water, which is within 200 ft of land surface, for domestic use and public water supply.


City of Venice

In 1931, the water supply of Venice was furnished by three shallow wells, all 135 ft deep, and the water had to be aerated to remove hydrogen sulfide (Stringfield, 1933a, p. 145). By 1963, thirty-two shallow wells had been installed. The quality of the raw water supply was marginal in that the average dissolved-solids concentration was 770 mg/L (milligrams per liter) (Smally, Wellford, and Nalven, Inc., 1963, p. 52). To stay abreast of the rapidly increasing population, the city increased the number of wells to about 65 by 1975 and provided additional elevated storage of treated water (Sutcliffe and Thompson, 1983, p. 32). Increased pumping from closely spaced wells led to degradation of the quality of water, and supplies had to be augmented by low-pressure reverse-osmosis treatment of slightly saline ground water from a deeper source. By 1985, about 2 Mgal/d (million gallons per day) of raw water from five deep wells was being desalinated, and 1 Mgal/d of product water was being blended with 2.5 Mgal/d of shallow well water (James Hogan, City of Venice, oral commun., 1985). Specific capacities in approximately 30 shallow production wells declined during a short, relatively dry period in 1985; subsequently, the city drilled a sixth reverse-osmosis supply well.

The average dissolved-solids concentration of the composite inflow of well water to the reverse-osmosis plant increased from about 2,100 to 2,700 mg/L between 1984 and 1989, as shown in figure 3. During the same period, the average concentration of composite water from the shallow supply wells increased from about 800 to 950 mg/L. The increasing salinity apparently is due to upcoming of moderately saline water beneath the city's well fields.

City of Englewood

Englewood chronically has lacked a reliable supply of water of acceptable quality. Contamination is common, and historically, supplies have been drawn from very shallow wells that are vulnerable to pollution and seasonal water-level fluctuations. The first 20 supply wells, 40 to 80 ft deep, supplied a demand of 0.3 Mgal/d in 1964. By 1975, forty-three production wells, clustered in two well fields, supplied an average of 1 Mgal/d and had a dissolved-solids concentration that fluctuated between 500 and 600 mg/L (Sutcliffe and Thompson, 1983). A third well field, 3 mi north of the city, began pumping about 1980. Shortly thereafter, concerns were raised over the potential for contamination of the new well field by water from nine

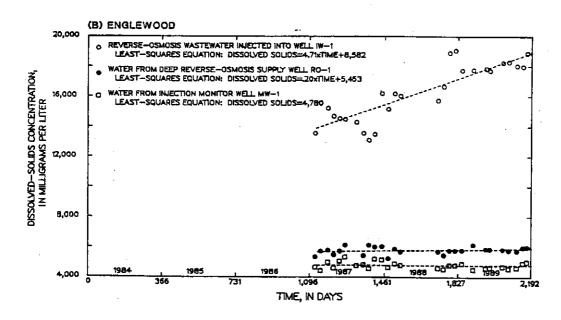


Figure 3.--Trends in water quality at Venice (A) and Englewood (B).

abandoned flowing wells on adjoining property. The abandoned wells are scheduled to be plugged. By 1985, a high-pressure reverse-osmosis desalinization facility, nine supply wells that averaged 425 ft deep, and an 1,800-ft-deep injection well for disposal of reverse-osmosis wastewater were constructed. The wastewater is a very saline concentrate that has approximately double the dissolved-solids concentration of the influent well water. The reverse-osmosis plant has a design capacity of 3.6 Mgal/d of freshwater production. The injection well was installed to meet the FDER requirements for safe disposal of reverse-osmosis wastewater that contains high levels of radium.

Figure 3 illustrates trends in water quality at the Englewood injection site, which began operation in 1987. There has been a general rise in the dissolved-solids concentration of the reverse-osmosis wastewater from about 14,000 mg/L in 1987 to 18,000 mg/L in 1989. This indicates that there has also been an increase in the concentration of reverse-osmosis feed water pumped from the nine supply wells. This increase has been attributed to wells having progressively higher dissolved solids concentrations coming online as demand for water increased (Michael Micheau, CH2M Hill, Inc., oral commun., 1989). Concentrations in reverse-osmosis supply well RO-1 and the monitor well MW-1 above the injection zone have not changed significantly.

Private Water-Supply Systems

In addition to the cities of Venice and Englewood, there are about 20 small developments that had private water-supply systems installed after about 1960 (table 1 and fig. 4). Daily capacities range from 500 to 1,152,000 gal (gallons). Freshwater-producing wells are generally less than 150 ft deep. Freshwater produced by many systems is blended with desalinated water from deeper reverse-osmosis supply wells.

Class I Injection Wells

Eight class I injection wells for disposal of wastewater were in operation in 1989 in Sarasota, Charlotte, and Lee Counties, in and adjacent to the study area, and five more are proposed or under construction (fig. 5 and table 2). Class I wells are used for disposal of liquid wastes from sewage-treatment plants and reverse-osmosis desalination systems. Because of the cost of advanced wastewater treatment, the preferred alternative is deep-well injection, whereby secondary treated (aerated, filtered, and chlorinated) sawage and untreated radium-rich reverse-osmosis wastewater are injected into highly permeable saltwater-bearing zones deep in the Floridan aquifer system. Because the FDER strictly monitors and controls injection-well systems, some site-specific hydrogeologic information is available for a regional assessment of water quality and aquifer properties.

The first injection well in the study area went online in 1984 at the Plantation residential development. Since then, wells at Venice Gardens, Englewood, and North Port became operational (fig. 5). Other proposed wells in the study area, or in adjacent Lee County that have potential for affecting the area, are listed in table 2. The estimated total capacity of the seven existing and proposed injection-well systems in the study area is about 29 Mgal/d. Six other proposed sites north, west, and south of the study area are close enough that injection at these sites may affect the study area. Injection rates are expected to increase substantially as growth continues along the gulf coast.

Table 1.--Water-supply systems in southwest Sarasota and west Charlotte Counties

[gal/d, gallon per day; mg/L, milligrams per liter; RO, reverse osmosis; ---, no data available]

· · · · · · · · · · · · · · · · · · ·		Number		Range in
	System	of	Range	dissolved
Name	capacity	supply	casing/depth	solids
	(gal/d)	wells	(feet)	(mg/L)
	120 /00	20	0/ /37 05 /30	400-650
Gasparilla Island	130,400	32	24/27-25/32	
Bay Lake Estates	40,000	3RO	44/70-44/263	1,470-2,516
Circlewoods	240,000	4	57/130-77/130	406-639
Gulf View Estates	500	1	82/115	320
Fairwinds Condominium	144,000	2RO	***	1,470-1,792
Florida Pines	2,000	1	46/133	595
Japanese Gardens	72,000	- 3	50/110-50/234	584-750
Kings Gate Club	30,000	2RO	40/208-40/215	1.718-2.040
Lake Village	75,000	2R0	90/93-93/96	1.672
Lyons Cove Condominium	6,000	1R0		2,820
•		_		
Myakka Trailer Park	17,000	1		456
Palm and Pines Trailer Park -	13,500	2R0	60/98-	2,122
Plantation	1,152,000	2RO	380-380	
Sorrento Shores	300,000	4RO	•••	
Southbay Utility	205,000	4RO	103-450	2,149
Spanish Lakes	200,000	3RO	65/95-70/160	636
Terra Cove	50,000	1RO	48/70-	1,605
Venice Ranch	17,280	2RO	60/80-60/90	476-1.680
Venice		29	36/46-88/150	900
venice		6RO	230-450	2,500
	5,500,000	980	230-430	2,500
	(55 percent recovery)			
	recovery)			
Venice Gardens	1,238,000	93	41/169-67,5/209	310-720
	2,500,000	3RO	240/380-240/500	1,140-1,260
	(50 percent		, ,	-,,-
	recovery)		. 7	
Englewood		55	20/40-49/92	400
	2.000.000	9R0	425	•••
	(70 percent			
	recovery)			•
Rotunda West	200.000	9	20/28	500
THE THE PERSON NAMED IN TH	500,000	2RÓ	187	9,000
	200,000			2,000

 $^{^1}$ Of the water pumped for reverse-osmosis plant feed water, 55 percent is desalinated and pumped into the distribution system; 45 percent has increased salinity and is pumped to waste.

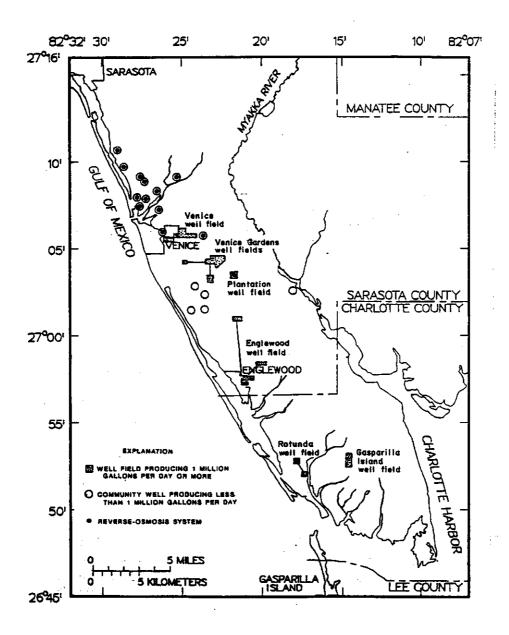


Figure 4.--Community water systems.

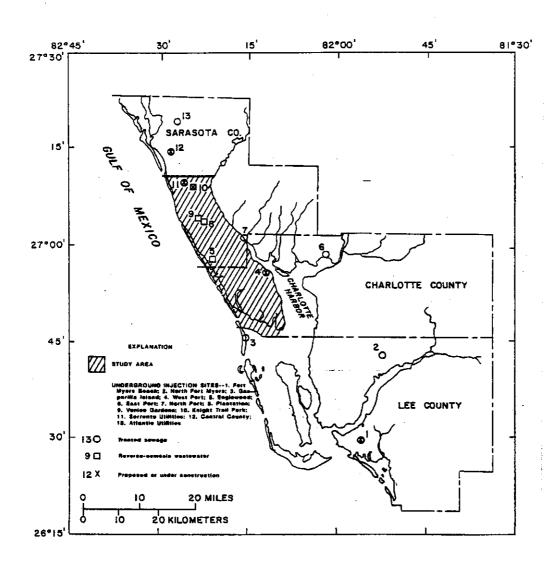


Figure 5.--Class I injection-well sites in Sarasota, Charlotte, and Lee Counties.

Table 2.--Class I injection wells in Sarasota, Charlotte, and Lee Counties [in., inch; Mgal/d, million gallons per day; RO, reverse osmosis]

		Casing				acity	
Map No.1	Name	Name Diam-		Well	(Mgal/d)		Injectant
	·	eter (in.)	Depth (feet)		Cur- rent ²	Pro- jected	-
1	Fort Myers Beach ³ (proposed)					9	Sewage
2	North Fort Myers ³	12	2,340	2.600	4	4	Sewage
3	Gasparilla Island ³	6	1,702	1,926	. 3	.8	Sewage
4	West Port (proposed)	_	-,	_,,		14	Sewage
5	Englewood	10.75	1,040	1,800	. 5	1.6	RO reject
6	East Port ³	16	1,575	2,424	1	20.5	Sewage
6 7 8 9	North Port	14	1,100	3,200	3.5	5	Sewage
8	Plantation	8.	1,102	1,605	. 8	.8	RO reject
9	Venice Gardens	8	1,388	1,705	1.8	1.8	RO reject
10	Knight Trail Park (under construction 1989)					2.6	RO reject
11	Sorrento Utilities (proposed)					3	Sewage
12	Central County Utilities (proposed)					8	Sewage
1.3	Atlantic Utilities						•
	(under construction)	12	1,902	1,480	1.2	1.2	Sewage
	Total				13.1	72.3	
	Total in study area				6.6	28.8	

¹Map numbers are keyed to well locations in figure 5.

^{21987.}

³Outside study area, as defined in figures 1 and 5.

Observation Wells

The observation-well network used in this study contains 135 wells (fig. 6 and table 3). Data from two springs were used to augment the well network data. Data from the network were used to prepare water-level maps, define the hydrogeologic framework, evaluate ground-water quality, and estimate hydraulic properties of the aquifer systems. Several sites contain well clusters of discrete-zone observation wells that provide information on the vertical distribution of head and water quality.

The first systematic drilling and testing program was undertaken by the USGS in 1962 (Sutcliffe and Joyner, 1968). Four test wells were drilled within the study area to collect hydrogeologic data, including:

- 1. Hydraulic head of each aquifer penetrated,
- 2. Chemical quality of water from each aquifer,
- 3. Materials penetrated during drilling,
- 4. Yield of each aquifer penetrated, and
- 5. Geophysical logs for each well at completed depths.

In the early 1980's, several test wells were drilled within the Englewood well field, and multizone observation wells were installed at four ROMP sites by the Southwest Florida Water Management District. The USGS measures water levels in 33 wells within the study area. Figure 7 shows the observation wells at ROMP TR5-2. Towers were constructed about 25 ft above land surface that would allow the recording of the contained artesian head using conventional equipment. Complementing this network is at least one observation well that is open to an interval above the injection zone at each wastewater-injection site.

HYDROGEOLOGIC FRAMEWORK

Water-bearing formations in west-central Florida consist of Tertiary limestone and dolomite and Quaternary marine and nonmarine clastics. The hydrogeologic framework depicted in table 4 comprises the surficial, intermediate, and Floridan aquifer systems. Each system contains one or more permeable zones separated by low-permeability semiconfining units. Upper zones are utilized for production of freshwater for municipal supply and irrigation. Lower zones contain very saline water and are a repository for injected wastewaters, including treated sewage and reverse-osmosis wastewater.

Data from test wells and published reports (table 5 and fig. 8) were used to delineate hydrogeologic units in a wedge of deposits that total about 1,700 ft thick at the Atlantic Utilities injection test site in the northern part of the study area and 2,400 ft thick at the Gasparilla Island well in the southern part. Hydrogeologic units were identified by using geophysical and lithologic logs as follows:

- 1. Top of the surficial aquifer system is land surface.
- Top of the intermediate aquifer system is based on the first observance of areally continuous clay or the shallowest large "kick" on a gamma-ray log.

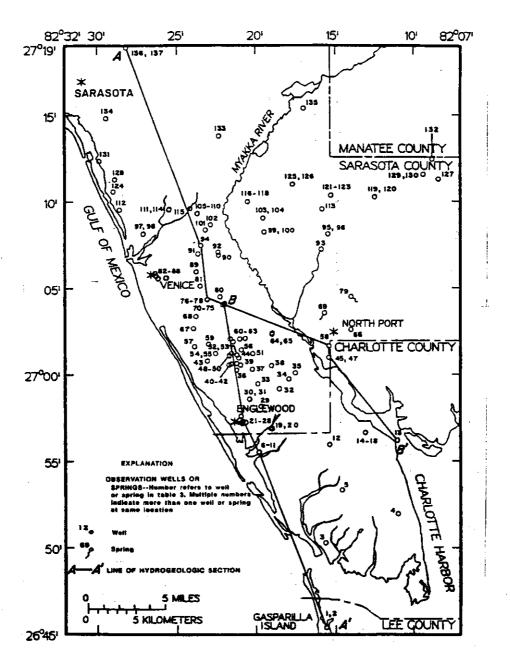


Figure 6.--Locations of observation wells, springs, and hydrogeologic section lines $\underline{A}\!-\!\underline{A}'$ and $\underline{B}\!-\!\underline{B}'$.

Table 3. -- Well records

[Data type: WL, water level; QW, quality of water; HG, hydrogeologic; AT, aquifer test; FS, flowmeter survey]

Index	Latitude-	Casing/depth	Date to	Ci
number	longitude ¹	(feet)	Data type	Site name
1.	264525082153501	1,702/1,926	WL, HG, QW, AT	Gasparilla Island injection well IW1
2	264525082153502	340/360	WL,QW	Gasparilla Island injection monitor well
3	265017082153701	346/413	WL, HG, QW	Placida well
	2651580821100	12,685	HG	Vanderbilt oil test
5	2653200821435	<32	QW,AT	Gasparilla Island well field
6	265531082194801	1,600/1,652	WL, HG, QW	ROMP TR3-3 Avon Park well
7	265531082194802	1,080/1,120	WL,QW,FS	ROMP TR3-3 Ocals well
8	265531082194803	680/900	WL,QW	ROMP TR3-3 Suwannee well
9	265531082194804	370/410	WL,QW	ROMP TR3-3 Lower Hawthorn well
10	265531082194805	155/175	WL,QW	ROMP TR3-3 Upper Hawthorn well
11	265531082194806	10/30	WL	ROMP TR3-3 surficial well
12	265557082152201	258/300	QW	USGS 19 San Cassa
13	265612082110301	68/1,407	HG,QW	Cattledock Point well
14	265638082130702	55/75	WL	ROMP TR3-1 Tamiami well
15	265638082130703	140/160	WL,QW	ROMP TR3-1 Upper Hawthorn well
16	265638082130704	250/270	WL.	ROMP TR3-1 middle Hawthorn well
17	265638082130705	380/400	WL,QW	ROMP TR3-1 lower Hawthorn well
18	265638082130706	600/620	WL.HG.QW	ROMP TR3-1 Suwannee well
	265652082185801	101	WL,QW	Englewood well 150
20	265653082190301	175/320	WL QW	Englewood reverse-osmosis test 1, RO-1
21	265710082205101	152/310	WL,QW	Englewood reverse-osmosis test 2, RO-2
22	265712082205701	51/110	WL,QW	Englewood well R-2
23	265712082205702	7/17	พ่น	Englewood WP shallow well
24	265714082203801	260/425	AT	Englewood production well
25	265716082205101	1,040/1,800	WL, HG, QW, AT	Englewood injection well IW-1

¹The latitude-longitude well number 264525082153501 represents a well in the 1-second quadrangle bounded by latitude 26°45′25" on the south and longitude 82°15′35" on the east. The suffix 01 indicates that the well is the first well inventoried in the quadrangle. A missing suffix indicates that the location of the well was approximated from township-range-section information.

Table 3. -- Well records -- Continued

Index	Latitude-	Casing/depth		
number	longitude ¹	(feat)	Data type	Site name
26	265716082205102	500/550	WL,QW	Englawood injection monito
27	2657220822103	25/40	AT	Englewood production wall 27
28	265735082205701	49/55	AT	Englewood production well
29	265809082194001	45/65	WL	Englewood well TH 6
30	265834082202401	43.5/55	WL,QW	Englewood well 14
31	265834082202402	10/20	WL,QW	Englewood well 14A
32	2659100821830	/930	HG	Venetia 19
33	265927082195201	56/110	OW	Englewood test well C-8
34	265944082175401	28/101	QW	USGS 20 Plamore
35	2700050821730	/996	HG ·	Venetia 9
36	2700150822113	31/75	AT	Englewood production test
37	270018082201301	47/120	QW ·	Englewood test well C-7
38	2700300821900	/840	HG OW	Venetia 3A
39	270032082205801	52/253	QW, FS	Venetia (Berry 8)
40	2700330822142	35/70	QW,AT	Englewood production test well 4
41	270036082213401	41.5/70	WL,QW,AT	Englewood test well C-10
42	2700380822113	35/70	QW,AT	Englewood production test well 5
43.	270047082230501	42/719	HG	Dolphin Bath & Racquet Cl
44	270057082210501	48/185	QW.FS	Venetia (Berry 7)
45	270058082152501	1,100/3,200	WL,HG,QW,AT	North Port deep injection well DIW
46	270058082152502	730/750	WL,QW	North Port onsite monitor well
47	270058082152503	560/600	WL,QW	North Port ensite menitor well
48	2701040822141	42/70	QW,AT	Englewood production test well 3
49	270106082214101	109/135	WL,QW	Englewood deep zone well
50	2701070822112	43/70	QW,AT	Englewood production test well 1
51	270112082201201	65/120	QW	Englewood test well C-9
52	270112082213301	58/70	WL,QW	Englewood production well
53	270112082213302	20/25	WL	Englewood water-table well 8A
54	270113082223302	40/70	WL,QW	Englewood production well
55	270113082223303	10/15	WL	Englewood water-table well 5

Table 3.--Well records -- Continued

Index	Latitude-	Casing/depth	_	
number	longitude ¹	(feet)	Data type	Site name
56	070105000066	000	•••	-
	2701250822055	830	HG	Venetia 15
	270137082235301	263/305	WL,QW	Manasota deep well 14
58	270138082152401	1,100/1,150	WL, HG, QW	North Port satellite monitor well SMW
59	2701450822300	760	HG	Venetia 12A
	270153082212601	224/620	FS	Venetia 3 (Berry 9)
	270203082210101	212/315	QW, FS	Venetia (Berry 3)
	270203082213701	207/608	QW.FS	Venetia 2 (Berry 4)
63	270205082204001	290/472	FS	Venetia (Berry 5)
64	270219082185801	110/270	WL,QW,AT	Manatee Jr. College south well
65	270223082185701	41/158	t37 Ott	
43	2/0223002183/01	41/118	WL,QW	Manatee Jr. College middle well
66	2702350821400	916	HG	Frizell 1
	270240082235701	460/475	WL, HG, QW	ROMP TR4-2
	2703220822347	•		· –
		61/160	AT	Venice Gardens MWVG-1
	270333082154000	40.4000	WL,QW	Warm Mineral Springs
70	2704020822206	60/200	AT	Plantation well
71	270403082220001	66/180	WL,QW	Plantation monitor well 1
72	270404082215801	52/65	WL.QW	Plantation monitor well 2
73	270406082215901	630/650	WL,QW	Plantation zone 4 monitor well
74	270406082220101	1,102/1,605	WL, HG, QW, AT	Plantation deep injection test well DITW
75.	270407082215801	228/366	QW,AT	Plantation reverse-osmosi test well 2
76	270420082230501	1,388/1,705	HG,QW,AT	Venice Gardens deep injection well DIW
77	270421082230401	770/800	WL,QW	Venice Gardens injection
78	270421082230402	200/400	WL,QW	monitor well 800 Venice Gardens injection
79	270420002140000		TT 041	monitor well 400
	270430082140000	ct m.co	WL,QW	Little Salt Spring
āŲ (2704300822215	61/160	AT	Venice Gardens TP-49
	2705080822331	60/160	AT	Venice Gardens TFVG-1
	270533082261001	200/650	AT	Venice RO-5
83	2705340822609	206/441	QW,AT	Venice RO-6
84	2705360822539	77/140	QW,AT	Venice well 2
	2705360822542	42/59	AT	Venice well 9S
86	270542082261801	86/163	WL.QW	Venice well 35
	270542082261802	68		Venice well 36
	2705520822621		WL,QW	
	270557082234601	29/110 47/390	AT F5	Venice well 31 Venice Ranch Trailer Park
90	270654082222001	42/464	FS	(Ellis) Everglades Estates 1

Table 3.--Well records--Continued

Index	Latitude-	Casing/depth	D	_
number	longitude ¹	(feet)	Data type	Site name
91	270659082233901	50/190	FS	Fox Lea Farms
		60/358	FS	Everglades Estates 2
	270705082222201	•		Test 18 Blackburn Ranch
	270714082155201	282/351	WL,QW	
	270728082232801	229/1,046	HG,QW	Wheelwright 1
95	270807082152701	500/550	WL	MacArthur Tract 14FS
96	270807082152702	275/300	WL	MacArthur Tract 14GS
97	270808082270502	492/510	WL,QW	ROMP TR511 Suwannee well
98	270808082270503	275/289	WL,QW	ROMP TRS 1 Hawthorn well
	270814082192701	500/554	WL.	MacArthur Tract 3F
	270814082192702	65/230	WL	MacArthur Tract 3E
101	270822082231101	40/286	WL.QW	Henry Ranch 1
	270840082225101	/78	WL,QW	Henry Ranch 3
	270902082193108	699/1,000	WL.	RMR Cluster 21 Floridan
103	2/0902062193106	033/1,000		well
104	270902082193109	/240	WL	RMR Cluster 21 Hawthorn well
105	270919082234201	8/13	WL	ROMP TR5-2 surficial well
106	270919082234202	100/120	WL,QW,AT	ROMP TR5-2 upper Hawthorn well
107	270919082234203	245/265	WL,QW	ROMP TR5-2 lower Hawthorn well
108	270919082234204	360/400	WL, QW, AT, FS	ROMP TR5-2 Tampa well
109	270919082234205	510/700	WL,QW,AT	ROMP TR5-2 Suwannee well
110	270919082234206	850/890	WL, HG, QW	ROMP TR5-2 Ocala well
111	270931082252901	44/256	WL,QW,FS	Ewing Ranch (Holland)
	270932082283501	308/669	FS	Sorrento Shores well
113	270933082154901	500/550	WL	MacArthur Tract 14FN
114	270934082252801	100	WL,QW	Myakka River Nursery
			WL, HG, AT, QW	
115	2709360822409	1,643/1,915	WL, EG, AI, QW	exploratory/monitor well
116	270959082203001	410/425	WL, HG	ROMP 19 WLAM
117	270959082203002	87/205	WL	ROMP 19 WUAM
		32/67	WL,QW	ROMP 19 WS
118	270959082203003		, ,	MacArthur Tract 20F
119	271015082122901	500/629	WL.	MacArthur Tract 20G
120	271015082122902	101/253.5	WL	HACRICHUE ILAGE 200
121	271021082151601	410/419	WL,HG	ROMP 19 ELAM
	271021082151602	80/121	WL.	ROMP 19 EUAM
122			***	ROMP 19 ES
122 123	271021082151603	14.5/34.5	WL	WORL IS ES
	271021082151603 271035082285901	14.5/34.5 710	WL,QW	Southbay Utilities deep well

Table 3.--Well records--Continued

Index number	Latitude- longitude ¹	Casing/depth (feet)	Data type	Site name
126	271059082173902	60/240	WL	MacArthur Tract 6E
127	271118082082401	62/301	WL	Mabry Carlton 16
128	271118082285301	157/255	WL,QW	Osprey well 9
129	271134082092201	78/100	WL.	Big Slough deep well
130	271134082092202	19/25	WL	Big Slough shallow well
131	271222082295201	41/224	WL,QW	Sarasota County Historical Society
132	271227082084801	311/369	WL	Mabry Carlton 6
133	271348082221801	182	WL	Buck Hawkins Bermuda Patch
134	271450082292601	1,200	WL,QW	Mann Golf Course well
135	271522082165801	72/360	WL	Old Palmer well
136	271853082280901	1,480/1,902	WL, HG, QW, AT	Atlantic Utilities test/ injection well
137	271853082280902	1,130/1,240	QM	Atlantic Utilities deep monitor well

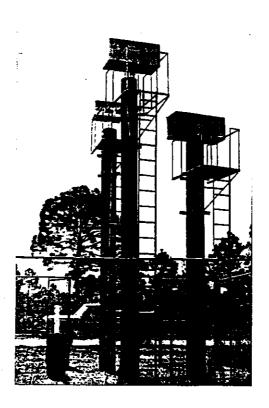


Figure 7.--Observation wells with casings as high as 23 ft above land surface to retain artesian head. (Photograph by L.D. Windom.)

- Top of the Upper Floridan aquifer occurs where thick, relatively pure limestone is encountered and gamma-ray activity subsides.
- 4. Top of the Suwannee-Ocala semiconfining unit occurs below the base of a dolomitic limestone that is distinguished by high activity on gamma-ray logs.
- Top of the Ocala-Avon Park moderately permeable zone is based on the presence of transmissive intervals identified in test injection wells.
- 6. Top of the Avon Park highly permeable zone is the occurrence of a vertically persistent dolomite section that commonly is fractured and provides geophysical signatures of high resistivity on the dualinduction log and cycle skipping (cyclic high-amplitude velocity measurements) on the sonic log.
- 7. Top of the middle confining unit of the Floridan squifer system is marked by the occurrence of dolomite that contains inclusions of anhydrite and gypsum. This stratum is considered to be impermeable.

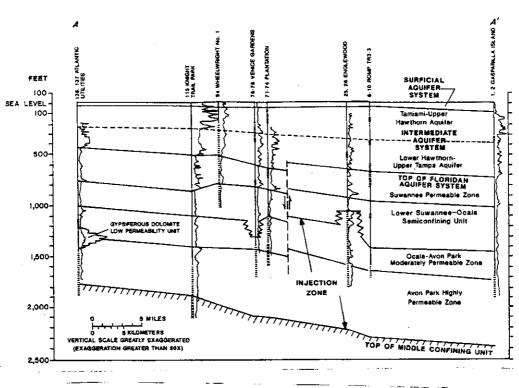
Many aquifer tests have been conducted in the study area, including five during this study. Table 6 lists the findings of each test, which are keyed by index number to the location map in figure 6. The following sections present detailed analyses of tests of the injection zone.

Surficial Adulfer System

The surficial aquifer system consists primarily of Pliocene to Holocene age intermixed sand, clay, shell, and phosphate gravel having stringers of limestone and marl. The 50-ft-thick aquifer system is unconfined; however, lenses of sand, marl, and limestone contain water under confined conditions in some areas. It is tapped for public supply where more permeable; underlying aquifers contain saline water. The Gasparilla Island well field (fig. 4) is typical of development of the surficial aquifer system with 32 supply wells that are 27 to 32 feet deep and that are finished with 3 to 7 ft of well screen (table 1). Yield is restricted to about 20 gal/min for each well to prevent upconing of saline water.

Depth to the water table is generally less than 5 ft. In areas of low topographic relief and near the coast and Myakka River, the water table is virtually at land surface. Fluctuations of the water table vary in response to rainfall and range over about 5 ft. Figure 9 shows several hydrographs including that of the water level in a 25-ft-deep observation well within one of Englewood's well fields. Water levels between 1980 and 1988 ranged from about -5 to 14 feet, with respect to sea level. The water table is affected by seasonal variations in rainfall and by pumping from nearby production wells that tap the underlying intermediate aquifer.

Table 4.-- Hydrogeologic framework


System	Series	Stratigraphic unit	Hydrogeologic unit			Depth below land surface (feet)	Use of zone
Quaternary	Holocene Pleistocene	Terrace deposits Caloosa- hatchee Marl	Surficial aquifer system		Surficial aquifer	0-50	Source of
_	Pliocene	Tamiami			Semiconfin- ing unit	50-60	domestic and muni- cipal supplies
Tertiary 	Miocene	Formation Hawthorn Formation	system		Tamiami - upper Hawthorn aquifer ²	60-100	
		,	aquifer		Semiconfin- ing unit Lower	100-240	
•		Tampa Lime-	ntermediate aquifer system		Hawthorn- Upper Tampa aquifer ²		Source of reverse-
· .		stone	hter		Lower Tampa semiconfin- ing unit	410-500	osmosis feed and irriga- tion sup- plies
	Oligocene	Suwannee Limestone		an aquiter 3	Suwannee permeable zone	500-750	
	Eccene	Ocala Lime-	em ₃		Lower Suwan- nee-Ocala semiconfin- ing unit	750- 1,100	Injection zone for sewage and re-
		Avon Park	iler syste	Upper Floridan	Ocala-Avon Park moder- ately perm- eable zone	1,100- 1,400	
* .		Formation ²	Floridan aquifer system ³	Idn	Avon Fark highly perm- eable zone	1,400- 2,075	verse- osmosis waste- water
			╬	Middle con- fining unit		2,075- 2,400	
	Paleocene	Oldsmar and Cedar Keys Formations			Lower Floridan aquifer ³	2,400- ?	Unused

¹Based on nomenclature of Southeastern Geological Society (1986). ²Based on nomenclature of Wolansky (1983). ³Based on nomenclature of Miller (1986).

Table 5.--<u>Hydrogeologie data from selected test wells</u> (SSN-D. Southmest Floride Motor Menagement District; FMG, Floride Bureau of Geology)

		Section- township- range	Well identification ¹	Altitude of top of hydrogeologis unit (feet)								
	Latitude- longitude			Altitude of Land surfecs (feet)	Depth of hole (feet)	Inter- mediate equifor		Lower Suwannee- Ocals semi- confining unit	Ocala-Avon Park mod- erately perme- eble cone	Avon Park bighly permechie gone	Hiddle confining unit	Data eource
1 2	645250821335	4-435-202	Gesperille Jeland	_	1.026		-732		-1.452	-1,730		Garaghty and Hiller, Inc. (1866)
	630170021537	12-425-20E	injestion well INC Placide #5		1,120	-52 -52	-/32	-1,020	-1,432	-1,740		Suteliffe and Joyner (1968)
	631580821100	35-418-218	Vanderbilt Gil Lest well	7	12.565	-12	-668	-1.829	-1.276	-1.678	-2.364	Puri and Winston (1874) FBG W-3214
	655310811948	6-418-205	NOMP IN3-1 Aven Fask	7	12,041		-600	-4,-4	-1,474	,	- 21001	1411 mm minorem (14)1, 140 m 1614
• •		- 110 440	test hole		1,700	-29	-656	- 848	-1.428	-1.430		SIGNO
13 2	656126621163	2-418-216	Cattledock Point well	š	1.407	-40	-660	- 970				Lithologic and goophysical logs
				-	-,							
18 2	634366821307	4-418-218	BOYP TRI3-1 Surrannes									
			took hele	7	850	-13	-590					SHIMD
25 2	6 57 16482205 L	31-405-20€	Englowed injection well									
			19-1	. 10	1,600	-40	-640	- 670	-1,050	-1,570		CK2H Hill, Inc. (1966)
	45010011070	2 L - 405 - 20E	Venetie 19	11	930	-28	-720					FBG tos H-10218
	705658821730	15-105-208	Yenakia #	11	986	-88	-705					13G log W-9860
36 2	708308821100	9-408-20E	Youette 3A	14	848	-88	-645					FBG Log W-8883
43 2	700470822305	11-48S-18E	Dolphin Bath &									
** *	10041007793	11-104-104	Interest Club	5	719	-20	-590					Geophysical logs
45 2	700540821523	12-485-202	North Port deep injection			-84	- ,					esophytical tota
	.,		well DIM	•	3,300	-65	-550	- 815	-1.695	-1.405	-2,005	CH2H #111, Tno. (1867a)
36 2	701250622855	6-406-205	Venetia 15	13	120	-60	- 530	- 755	-,	-,	-,	FMO log W-0463
	701340821524	1-403-205	North Part patallite		**-			,				·- · · · · · · · · · · · · · · ·
			monitor well #94	4	1.150	-60	-715	- 905				CH2M H111, Inc. (1987a)
39 2	701450822306	3-406-196	VeneLia 12A	15	768	-85	-535	- 735				FBG Log W-9890
	702350021400	32-3 95 -21E	Frisch 1	13	018	-67	-482	÷ 787				ING Log H-8884
	702400022337	34-365-192	BCMP TR4-2 test belo	13	607	-62	- 525					SHIFTED
74 2	102225904047	34- 396-19 E	Plantation days injection									Post, Buckley, Schub, and Jernigen, In-
			Last well DIM	12	1,405	-44	-840	- 839	-1,400	-1,180		(1804)
76 2	704200822305	12-306-102	Yantes Gardans doop									
	707280822328	A4-848-14E	imjection well DIA	12 14	1,705	-33	-598	- 808	-1,300	-1,424		Gernghty and Hiller, Inc. (1865)
84 2	(441740655956	34.162.162	Mocloright 1	24	1,040	-26	-485	- 772				FSG log H-7386
87 2	708080822705	34-368-107	MOST THIS! Suremore took		•							
• •		00.000.100	hale	10	654	-15	-478					SIERO
110 2	709190822342	22-385-186	BOHP TRS-2 Ocale			-13	77					ern mer
			took bale	15	905	-35	-485	- 735				Notebinson and Trusser (in press)
115 2	700350621409	21-363-366	Kalabt Traft Park									
			exploratory/monitor well		2,154	-15	-505	- 850	-1,100	-1,435	-1,895	Law Environmental, Inc. (3988)
	700594422030		BOYE 19 MLAN	26	123	-30	-375				•	SHTHEO
	710210611514		BOHP 10 ELAH	31	410	-10	-367		,			SHFHED
134 2	1718530 822808	35-3 69-19 6	Atlantic Whilitles						i i			Foot, Buckley, Schuk, and Jernigen, In-
			test/imisskiem well	17	1,002	- 3	-448	- 780	-1,009	-1.420	-1.780	(1846)

 $^{\rm i}$ Melie identified on test below may have a drilled depth that does not necessarily coincide with the well depth listed in table 3.

OPEN INTERVAL--Open
hole or screened
interval in observation
and injection wells

FAULT--Arrows show relative direction movement

FILLED ZONE--Openhole section of borehole filled with rubble or cement

1

CAMMA-RAY LOG--Shows trace of geophysical log used to correlate hydrogeologic units. Gamma acitivity increases to the right.

Figure 8.--Hydrogeologic section A-A' showing well completion details and gamma-ray geophysical logs. (Location of section is shown in fig. 6.)

Table 6. -- Summary of squifer tests

[ft2/d, feet squared per day: (ft/d)/ft, feet per day per foot]

Index No.	Latitude- longitude	Hydro- geologic unit or open interval		Trans- missivity (ft ⁴ /d)	Leakance coefficient [(ft/d)/ft]	Storage coefficient	Réference
1	2645250821535	AP	1,702-1,926	64,000			Geraghty and Miller, Inc. (1985)
5	2653200821435	S	<32	1.340-1.850		0.02	Sutcliffe (1975, p. 34)
24	2657140822038	LH-UT	260-425	8,200		.000085	CH2M Hill, Inc. (1980)
25	2657160822051	O-AP	1.040-1.600				CH2M Hill, Inc. (1986)
		O-AP	1,040-1,600				CH2M Hill, Inc. (1986)
27	2657220822103	Ī	25-40	7,800		.00005	Wolansky (1983)
28	2657350822057	T	49-55	5,500	0.0007	.00011	Wolansky (1983)
36	2700150822113	T	31-75	1,280	. 12	.00087	CH2M Hill, Inc. (1978)
40	2700330822142	ī	35-70	3,320	.000036	.000016	CH2M Hill, Inc. (1978)
41	2700360822134	I	41.5-70	3,800	.00024	.00017	Wolansky (1983)
42	2700380822113	7	35-70	1,525	.005	.000058	CH2M Bill, Inc. (1978)
45	2700580821525	SUW-O	560-1,100				CH2M Hill, Inc. (1988)
		SUW-AP	580-1,500				CH2M Hill, Inc. (1988)
		AP	1,100-2,000				CH2M Hill, Inc. (1988)
		AP-OLD	1,100-3,200	140,000- 370,000			CR2M Bill, Inc. (1988)
48	2701040822141	1	42-70	1,608			CH2M Eill, Inc. (1978)
50	2701070822112	I	43-70	2,970	. 013	.00065	CH2M Hill, Inc. (1978)
64	2702190821858	T-VE	110-270	200	'	.00002	USGS test, 1984
58	2703220822347	T-VH	61-160	650	.00022	.0003	Geraghty and Miller, Inc. (1980)
70	2704020822206	T-VE	60-200	300			Post, Buckley, Schuh, and Jernigan, Inc. (1981)
74	2704050822201	O-AP	1,102-1,605	67,000			Post, Buckley, Schuh, and Jernigan, Inc. (1984)
75	2704070822158	LH-UT	228-356	5,600	.00025	.00033	Fost, Buckley, Schuh, and Jernigam, Inc. (1982b)
76	2704200822305	AP	1,388-1,705	24,000			Geraghty and Miller, Inc. (1985)
80	2704300822215	T-VB	51-160	400			Geraghty and Miller, Inc. (1980)
51	2705080822331	T-UH	50-160	850			Geraghty and Miller, Inc. (1980)
82	2705330822610	LR-SUW	200-650	17,900	.0001	.00013	Wolansky (1983)
83	2705340822509	TH-UT	206-441	15,400	*-	,00064	Post, Buckley, Schuh, and Jernigan, Inc. (1982a)
84	2705360822539	T-UH	77-140	550	.0005	.000042	Fost, Buckley, Schub, and Jernigan, Inc. (1982s)
85	2705360822542	I	42-59	1.100	.0001	.00013	Clark (1964)
88	2705520822621	T-UH	29-110	800	.00018	.00011	Clark (1964)
106 108	2709190822342	T-UH	80-100	5,000			USGS test, 1985
	2709190822342	LH-UT	240-410	10,000			USGS test, 1986
109	2709190822342	SUM	510-700	13,000			Hutchinson and Trommer (in press
109	2709360822409	AP	1,599-1,915				Law Environmental, Inc. (1988)
136	2718530822809		1,460-1,902	5,000	***		Post, Buckley, Schuh, and Jernigan, Inc. (1989)

 $^{^{1}}$ Test wells tap a single hydrogeologic unit or open interval of permeable and semiconfining zones as follows:

SUM-O = Sumannee-Ocala open interval SUM-AP = Sumannee-Avon Park open interval O-AP = Ocala-Avon Park open interval AP = Avon Fark highly permeable zone AF-OLD = Avon Park-Oldamar open interval

²Test at the RCMP TR5-2 site consisted of pumping a well open from 60 to 410 feet and making generalizations about depth intervals of permeable units based on flowmeter surveys. The test hole was subsequently cased at multiple intervals as indicated in table 3.

S = Surficial squifer system
T = Temismi open interval
T-UE = Temismi -upper Hawthorn squifer
LH-UT = Lower Hawthorn-upper Tamps squifer
LH-SUW = Lower Hawthorn-Sumemmee open interval
SUW = Suwamnee permeable zone

Recharge to the surficial aquifer system occurs as rainfall, upward leakage through semiconfining beds where the altitude of the potentiometric surface of the intermediate aquifer system is higher than the water table, infiltration of irrigation water, and upward flow from deep aquifers through improperly cased wells or abandoned flowing wells. Discharge from the surficial aquifer system is by evapotranspiration, upward seepage into streams and along the coast, pumpage from wells, and downward leakage where the water table is higher than the potentiometric surface of the intermediate aquifer system.

Hydraulic properties of the surficial aquifer system vary over short distances, primarily due to heterogeneity of lithologic units. Clark (1964, p. 32) reported a transmissivity of 1,100 ft²/d (square feet per day) for the "first artesian aquifer" at Venice, based on a pumping test of a well cased to 42 ft and open to 59 ft below land surface. This test was categorized by Wolansky (1983, p. 17) and Duerr and Wolansky (1986, p. 10) as a test of the surficial aquifer system because the deposits comprise the Bone Valley Formation and upper part of the Tamiami Formation. Sutcliffe (1975, p. 34) reported transmissivity of the surficial aquifer system to range from 1,340 to 1,870 ft²/d at the Gasparilla Island well field in Charlotte County.

Wells at the Vanice, Englewood, Rotunda, and Gasparilla Island well fields tap the surficial aquifer system. Elsewhere, hundreds of small-diameter wells tap the aquifer for domestic supply, lawn irrigation, and watering livestock. Through 1986, the Englewood Water District, which supplies Englewood and nearby communities, received 726 shallow-well permit applications. In 1986, there were 77 applications for small-diameter, private wells.

Intermediate Aquifer System

The intermediate aquifer system includes all rocks that lie between and collectively retard the exchange of water between the overlying surficial aquifer system and the underlying Floridan aquifer system. The system consists of Miocene and younger fine-grained clastic deposits that are interlayered with carbonate rocks. Discontinuous confining units, consisting of sandy clay, clay, and marl at the top, middle, and bottom of the system, separate it into two aquifer units known as the Tamiami-upper Hawthorn aquifer and the lower Hawthorn-upper Tampa aquifer.

The intermediate aquifer system thickens from north to south from less than 400 ft north and east of Venice to more than 600 ft at Gasparilla Island (fig. 10). Fine-grained sediments separate the Tamiami-upper Hawthorn and lower Hawthorn-upper Tampa aquifers within the system and are not clearly delineated by gamma-ray logs due to naturally occurring high gamma activity of the phosphorite in the carbonate rocks. Lithologic and flowmeter logs indicate multiple zones of high and low permeability that appear to be discontinuous. Transmissivity is generally less than 10,000 ft²/d, and the system exhibits storage characteristics of a confined aquifer (table 6).

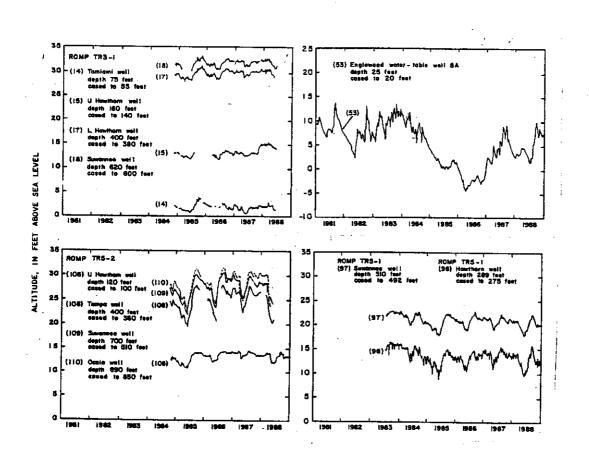


Figure 9.--Daily maximum water levels in selected observation wells. (Site numbers in parentheses are indexed to table 3 and fig. 6.)

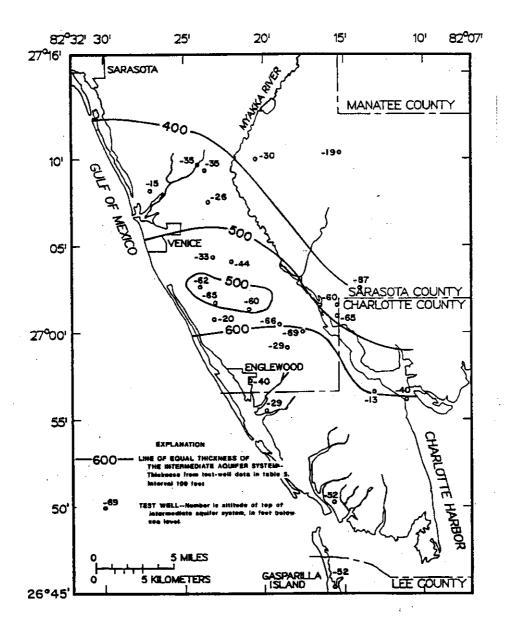


Figure 10.--Altitude of the top and thickness of the intermediate aquifer system.

Water-level hydrographs in figure 9 show that head increases with depth throughout the study area. Levels rise in the rainy summer in response to reductions in pumpage and upgradient recharge east of the study area, and they fall in the dry spring when ground-water outflow and pumpage exceed recharge. Relatively large head differences (10 - 25 ft) between shallow and deep zones within the intermediate aquifer system indicate appreciable hydraulic separation of aquifer units; however, water-level trends are parallel, implying that the aquifers are interconnected or affected by the same stresses. Interconnection of aquifer systems through uncased, fully penetrating wells is a problem in the study area that will be addressed separately.

The USGS measures water levels in the intermediate and Floridan aquifer systems each May and September to portray annual low and high conditions, respectively. Figures 11 and 12 show the May 1987 potentiometric surface of the Tamiami-upper Hawthorn aquifer and the composite or average potentiometric surface of all water-bearing units within the intermediate aquifer system. Flow in both units is from east to west and heads are above sea level at the coast, which indicates that recharge occurs somewhere east of the Myakka River and discharge is upward to the surficial aquifer and west and south to the Gulf of Mexico and Charlotte Harbor. Depressions in the potentiometric surfaces occur at well fields between Venice and Englewood and east of the Myakka River at Warm Mineral Springs and Little Salt Springs. At Warm Mineral Springs, divers reached a depth of 230 ft (Royal, 1978, p. 216), which corresponds to the middle of the intermediate aquifer system.

Floridan Aquifer System

The Floridan aquifer system consists of a thick sequence of carbonate rocks that generally have been referred to in the past as the Floridan aquifer. The Floridan aquifer system, as defined by Miller (1986), comprises:

"a vertically continuous sequence of carbonate rocks of generally high permeability that are mostly of middle and late Tertiary age, that are hydraulically connected in varying degrees, and whose permeability is, in general, an order to several orders of magnitude greater than that of those rocks that bound the system above and below.

"* * * (in west-central Florida), less-permeable carbonate units of subregional extent separate the system into two aquifers, * * * called the Upper and Lower Floridan aquifer."

In the study area, the permeable part of the Floridan aquifer system is the Upper Floridan aquifer. Deep test holes at Sarasota (Sutcliffe, 1979) and at the North Port injection site (CH2M Hill, Inc., 1988) have demonstrated that, once intergranular evaporites of the middle confining unit (table 4) are encountered in drilling, there is relatively little or no permeability down to the bedded evaporites that form the base of the Floridan aquifer system. The Lower Floridan aquifer apparently does not exist in southwest Sarasota and west Charlotte Counties.

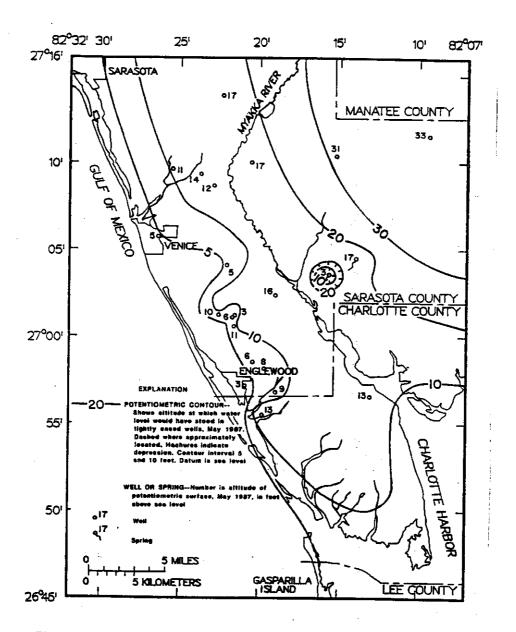


Figure 11.--Potentiometric surface of the Tamiami-upper Hawthorn aquifer, May 1987. (Modified from Lewelling, 1987a.)

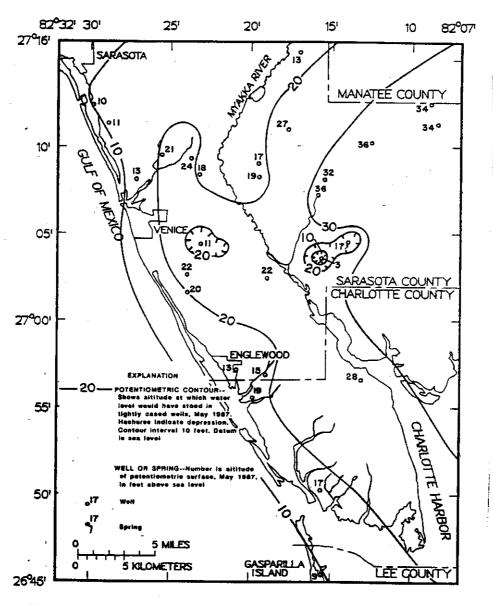


Figure 12.--Composite potentiometric surface of water-bearing units within the intermediate aquifer system, May 1987. (Modified from Lewelling, 1987a.)

Within the study area, the Upper Floridan aquifer has not been widely exploited for water supplies because of its generally poor water quality. Until recently, it was tapped only by a few deep irrigation wells with shallow casings (less than 100 ft) for high yield of relatively poor quality water. With the development of reverse-osmosis and large sewage-treatment plants, the aquifer has become an important source of slightly saline to moderately saline water as well as a receptacle for injected wastewater.

Data from geologic logs and hydraulic testing at injection-well sites have revealed much about local hydrogeologic conditions that can be extrapolated beyond the study area. Regional hydrogeologic units within the Upper Floridan aquifer are defined herein in descending order: (1) the Suwannee permeable zone, (2) the lower Suwannee-Ocala semiconfining unit, (3) the Ocala-Avon Park moderately permeable zone, and (4) the Avon Park highly permeable zone.

Suwannee Permeable Zone

The Suwannee permeable zone is the uppermost permeable unit within the Upper Floridan aquifer. The zone was defined by using lithologic and geophysical logs of wells listed in table 5. The 300-ft-thick zone is confined above by clayey carbonate rocks within the intermediate aquifer system and below by low-permeability limestones at the base of the Suwannee or upper part of the Ocala Limestone. The top of the zone lies between 500 and 750 ft below land surface and slopes from 485 ft below sea level at ROMP TR5-2 southward to 732 ft below sea level at Gasparilla Island (index numbers 110 and 1, respectively, in fig. 6 and table 5). The zone is characterized by moderate transmissivity as determined in tests at ROMP TR5-2 (13,000 ft²/d, index number 109, table 6) and North Port (8,900 ft²/d, index number 45, table 6).

The lithology of the Suwannee permeable zone is characterized by porous limestone in the upper 200 ft and interbedded limestone and dolomite in the lower 100 ft. The zone yields water from several discrete intervals (CH2M Hill, Inc., 1988, p. 3-11). Based on tests at the North Port well, which taps the full thickness of the zone, producing intervals are in the limestone and comprise about one-third of the total thickness of the zone. The dolomitic interval (760-810 ft) within the Suwannee permeable zone does not appear to yield significant quantities of water.

A fault was discovered through geophysical log correlation of the dolomitic limestone interval near the base of the Suwannee permeable zone. The dolomitic limestone interval is identified by a gamma-ray correlation marker of increased radiation activity. A 100-ft offset of the interval is interpreted from gamma-ray logs of wells 4,000 ft apart at the North Port injection site. The marker on logs of the satellite monitor and injection wells occurs at 800 to 900 ft and 700 to 800 ft, respectively (fig. 13). Displacement appears to occur above the gamma-ray correlation marker and possibly below the marker between the lower part of the intermediate aquifer system and extending below the base of the Ocala-Avon Park moderately permeable zone. The fault was traced areally in figure 14 by mapping the configuration of the top of the dolomitic limestone interval on gamma-ray and lithologic logs of wells listed in table 5. The fault strikes approximately east-west.

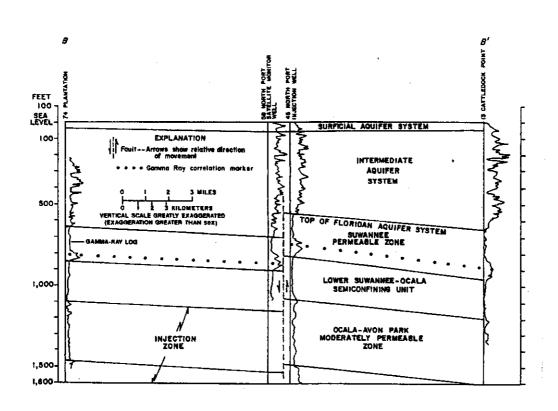


Figure 13.--Hydrogeologic section <u>B-B'</u> showing fault based on interpretations of gamma-ray logs. (Location of section is shown in figs. 6 and 14.)

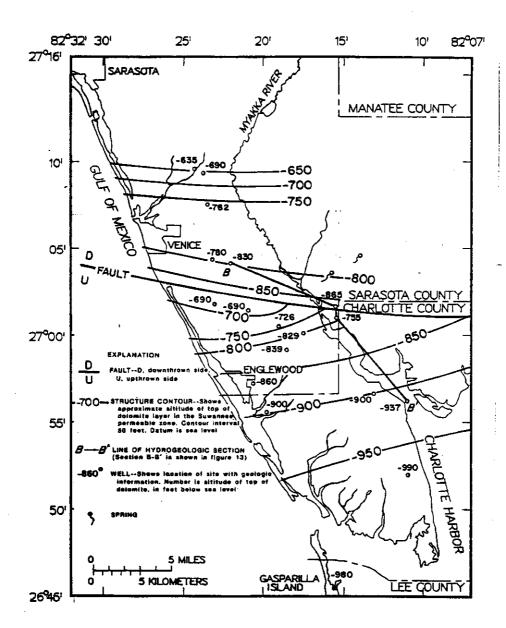


Figure 14.--Configuration of the top of the dolomite layer of the Suwannee permeable zone within the Upper Floridan aquifer.

Other evidence, which points to the offset as a fault as opposed to a stratigraphic or erosional feature is:

- If the offset is stratigraphically controlled, a reversal of the northsouth regional dip of formations would have had to occur, which is not likely in a marine depositional environment.
- If diagenetic dolomitization had occurred along an isolated erosional or solution feature, the offset would likely correspond to a local anomaly within the regional framework. It is not likely that such a feature could be mapped regionally.
- The fault aligns with a 100-ft offset in the Suwannee Limestone approximately 20 mi east of the North Port injection site, as delineated in a geologic section by Gilboy (1985).
- 4. The fault is approximately parallel to similar faults within the Suwannee Limestone near Cape Coral, 40 mi south-southeast of North Port, as mapped by Sproul and others (1972), which indicates response to the same tectonism at both sites.
- 5. Warm Mineral and Little Salt Springs are from 2 to 3 mi north of the fault. As their names suggest, warm saline water flows from the springs, indicating a deep source such as upwelling along a fault or fault zone.
- 6. Although the top of the Ocala Limestone is an erosional surface, evidence for the offset does not support an erosional feature, such as a river channel. The gamma-ray correlation marker slopes constantly through wells 13, 58, and 74, which implies that the marker at well 45 is high relative to the regional slope (fig. 13). The Suwannee permeable zone is slightly thicker in well 45 than it is in well 58. This is the opposite of what would be expected if Suwannee sediments had been deposited over an irregular Ocala surface.

A section of the May 1987 potentiometric-surface map that encompasses the southwest Sarasota and west Charlotte Counties study area is shown in figure 15 (Lewelling, 1987b). The map represents water levels in the freshwater-bearing part of the Upper Floridan aquifer, which correspond to the heads in the Suwannee permeable zone. Artesian heads are above land surface and the gradient is from east to west from 30 ft above sea level at the Myakka River to about 20 ft above sea level at the gulf coast. Depressions were drawn around Warm Mineral and Little Salt Springs because the chemical and physical properties of the discharge suggest a deep source, possibly the Upper Floridan aquifer. Annual fluctuations of the surface between May low and September high levels are about 5 ft at ROMP sites TR5-1 and TR5-2 and about 2 ft at ROMP TR3-1 (fig. 9).

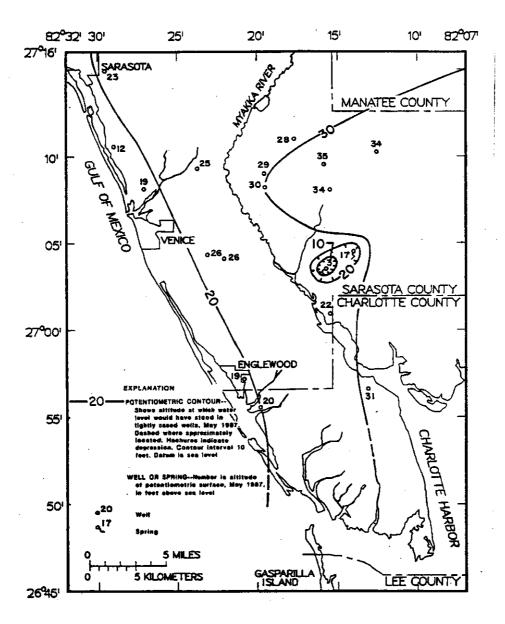


Figure 15.--Potentiometric surface of the Upper Floridan aquifer, May 1987. (Modified from Lewelling, 1987b.)

Lower Suwannee-Ocala Semiconfining Unit

Chapter 17-28.21 of the Florida Department of Environmental Regulation (1982b) rules for underground injection control states:

"At least one confining zone above the injection zone is required. The applicant must demonstrate that the confining zone has sufficient areal extent, thickness, lithologic and hydraulic characteristics to prevent injected fluid movement and that it insures protection of underground sources of drinking water."

In the study area, the lower Suwannee-Ocala semiconfining unit is the principal hydrogeologic unit that satisfies the FDER requirement. The unit is a fine-grained, soft to partially indurated, micritic limestone containing abundant miliolid remains and scattered large foraminifera. In the 1980's, the unit was identified over a wide area of southwest Florida through drilling and testing at injection-well sites. Frior to injection-site testing, the unit was considered to have permeability comparable to the rest of the Upper Floridan aquifer, although it was tapped by only a few irrigation wells over 800 ft deep.

The Suwannee-Ocala semiconfining unit was delineated by interpreting gamma-ray logs. The unit exhibits low gamma radiation and is characteristic of pure limestone. It occurs immediately below the dolomitic limestone marker bed. The top of the Suwannee-Ocala semiconfining unit occurs above the base of the Suwannee Limestone in several geologic logs of test wells in the study area. The bottom of the unit is highly irregular and corresponds to the top of the injection zone within the Ocala Limestone at sites 25, 45, and 74 and was estimated to coincide with the top of the Avon Park Formation at other test wells for which hydrogeologic data are available (table 5).

Hydraulic properties of the semiconfining unit were estimated from an aquifer test at ROMP TR5-2 and measured core permeabilities and packer tests at the injection sites. As part of this study, a radial flow model was used to simulate drawdown in a lower Suwannee-Ocala semiconfining unit observation well in response to pumping from the overlying Suwannee permeable zone (Hutchinson and Trommer, in press). Vertical hydraulic conductivity estimated through computer simulation is 0.1 ft/d (feet per day), which falls within a range of 0.1 to 0.25 ft/d for vertical and horizontal conductivities measured in cores and packer tests (table 7). Hydraulic conductivity of the unit is low compared to that of the overlying Suwannee permeable zone (65 ft/d) and the underlying injection zone (100 ft/d).

Injection Zone

The injection zone comprises about 1,000 ft of permeable rocks of the Upper Floridan aquifer below the lower Suwannee-Ocala semiconfining unit and above the middle confining unit of the Floridan aquifer system (table 4). Two permeable units within the zone have been identified through drilling and testing at injection-well sites (fig. 5). The upper unit, herein named the Ocala-Avon Park moderately permeable zone, consists of about 300 ft of interbedded, porous limestone and dolomite. The lower unit, the Avon Park highly permeable zone, consists of up to 700 ft of massive, hard, dark-brown dolomite that contains large solution channels that have developed along

Table 7.--Porosity and hydraulic conductivity of the lower Suwannee-Ocala semiconfining unit

[ft/d, feet per day; --, no data]

	Depth (feet)		Hydra conduc	ulic tivity		
Index number		Porosity	Verti- cal (ft/d)	Hori- zontal (ft/d)	Method	Source
25	922	0.37	0.01	0.03	Lab	CH2M Hill, Inc.
	926	.40	.01	.03	Lab	(1986)
	931	.45	.09	.11	Lab	
	916-926			. 25	Packer	
45	862	.37	.57	.57	Lab	CH2M Hill, Inc.
	913	. 37	2.27	1.13	Lab	(1988)
	916	37	. 28	. 57	Lab	
	947	.31	.09	.14	Lab	
	1,020	. 24	.06	.09	Lab	
	1,029	.22	.06	.06	Lab	
	1,072	. 22	.03	.06	Lab	
	1,074	. 22	.02	.02	Lab	
	1,105	. 27	.01	.01	Lab	
	1,020-1,032	•		.19	Packer	
	1,054-1,066			.52	Packer	
74	842	.09		••	Lab	Post, Buckley,
	854	. 43			Lab	Schuh, and
	913	.03	••	. 23	Lab	Jernigan, Inc. (1982b)
76	1,217	.28			Lab	Geraghty and
	1,262	. 24			Lab	Miller, Inc.
	1,328	.28			Lab	(1985)
110	750-1,100		.1	.1	Model	Hutchinson and Trommer (in pres
115	1,053	.22	.01	.08	Lab	Law
	1,152	. 25	.005	.007	Lab	Environmental,
	1,043-1,068			2.2-7.3	Packer	Inc. (1989)

¹Index numbers correspond to those in table 3 and figure 6.

fractures (Wolansky and others, 1980). This highly fractured lower unit is recognized by cycle skipping on sonic logs and high resistivity on induction logs. Test-injection wells commonly are cased to the uppermost permeable unit within the injection zone. This depth is highly variable, as demonstrated by 1,040 ft and 1,702 ft of casing in the Englewood and Gasparilla Island test-injection wells, respectively (index numbers 25 and 1 in fig. 6).

Transmissivity of the injection zone was estimated mostly from singlewell tests that are required by the FDER as part of the injection site permitting process (table 6). The tests were usually conducted on partially penetrating wells and are summarized in the following test to provide insight as to the variability of this important regional unit.

- 1. Gasparilla Island.--A transmissivity of approximately 64,000 ft²/d was estimated in an unspecified procedure by using data from a 560-gal/min, 8-hour injection test (Geraghty and Miller, Inc., 1986). The well has a 224-ft open-hole interval from 1,702 to 1,906 ft below land surface in the upper part of the Avon Park highly permeable zone. Interpretations of geophysical logs, lithologic logs, and packer tests were used to conclude that the Ocala-Avon Park moderately permeable zone had an insignificant injection capacity; therefore, it was cased off.
- 2. Englewood.--A transmissivity of approximately 80,000 ft²/d was estimated from a log-log time-drawdown plot for a 1,000-gal/min, 480-minute withdrawal test (CH2M Hill, Inc., 1986). The well has a 760-ft openhole interval from 1,040 to 1,800 ft below land surface in the upper part of the injection zone. A previous test, with a 1,150-foot openhole interval from 450 to 1,600 feet deep and just into the top of the Avon Park highly permeable zone, yielded a transmissivity of 48,000 ft²/d, estimated by the above procedure, for a 962-gal/min, 395-minute test.
- North Port. -- A transmissivity between 140,000 and 370,000 ft²/d was estimated using various analytical techniques for a 2,200-gal/min, 24-hour test (CH2M Hill, Inc., 1988). The well is 3,200 ft deep and has a 2,100-ft open-hole interval that fully penetrates the 910-ft-thick injection zone and taps underlying units. The lower transmissivity value was based on analysis of data from the pumped well. The higher value was derived from analysis of data from a partially penetrating satellite monitor well 4,000 ft north of the pumped well. A fault may lie between the two wells, thereby complicating analysis of the test. Earlier tests, conducted as the well was being drilled, produced transmissivity estimates of 8,900 and 72,000 ft²/d for open-hole intervals of 560 to 1,100 ft and 560 to 1,600 ft, respectively. By subtraction, transmissivity is approximately 63,000 ft²/d for the interval from 1,100 to 1,600 ft that taps the Ocala-Avon Park moderately permeable zone and the upper 100 ft of the Avon Park highly permeable zone. A subsequent analysis of a 200-minute test of the interval from 1,100 to 2,000 ft produced a transmissivity estimate of 150,000 ft²/d for the total thickness of the injection zone. Comparison of test results indicates that the lower 400 ft of the injection zone is more permeable than the upper 500 ft, and permeability is low in formations below 2,000 ft.

- 4. Plantation. -- A transmissivity of approximately 67,000 ft²/d was estimated using various procedures to analyze plots of drawdown and recovery for a 650-gal/min, 5-day injection test (Post, Buckley, Schuh, and Jernigan, Inc., 1984). The well was reported to have a 503-ft open-hole depth interval from 1,102 to 1,605 ft at the top of the injection zone, but when logged, the bottom 256 ft of hole had filled in. If only the upper 247 ft were tested, it could be considered a representative test of the Ocala-Avon Park moderately permeable zone, and results are similar to the 80,000-ft²/d value estimated from the North Port injection site.
- 5. Venice Gardens.--A transmissivity of approximately 24,000 ft²/d was calculated from a 37-minute recovery period following a 1,400-gal/min, 24-hour injection test (Geraghty and Miller, Inc., 1985). The well has a 317-ft open-hole interval from depths of 1,388 to 1,705 ft in the upper part of the Avon Park highly permeable zone. Geophysical log interpretations were used to conclude that the Ocala-Avon Park moderately permeable zone would not accept significant quantities of injectant; therefore, this zone was cased off in the completed injection well.
- 6. Knight Trail Park. -- A transmissivity of approximately 300,000 ft²/d was estimated using semilogarithmic plots of drawdown and recovery for a 747-gal/min, 3-hour test (Law Environmental, Inc., 1989, p. 3-38). The well has a 272-ft open-hole interval that taps the lower part of the Avon Park highly permeable zone. The first significant hydraulic conductivity was encountered at a depth of about 1,600 ft, which is about 150 ft below the top of the dark-brown dolomite that comprises the Avon Park highly permeable zone. Although the 150-ft interval appears to have a low hydraulic conductivity, it may be just coincidental that no fractures were encountered by the borehole. The dolomitic injection zone correlates stratigraphically with that in St. Petersburg as described by Hickey (1982, p. 15) who reported it as having variable hydraulic conductivity in the upper part. He originally hypothesized that a confining unit existed between the producing intervals in the upper and lower parts of the zone (much like what is observed at Knight Trail Park). Subsequent data from injection tests at St. Petersburg proved that the permeable intervals are interconnected. This interconnection was attributed by Hickey to fractures at some distance from the well that were not encountered by the borehole. It is likely that the Knight Trail Park injection-monitor well was not open to fractures in the upper part of the injection zone; therefore, it was cased off.
- 7. Atlantic Utilities..-A transmissivity of approximately 5,000 ft²/d was estimated using a logarithmic plot of drawdown for a 1,390-gal/min, 24-hour test (Post, Buckley, Schuh, and Jernigan, Inc., 1989, p. 8-15). The well has a 422-ft open-hole interval in the Avon Park highly permeable zone. Although the site is about 10 mi north of the study area (fig. 5), test data may be extrapolated to the boundary. The low transmissivity may be attributed to an anomalous relatively impermeable gypsiferous dolomite section above the injection zone that correlates with the upper part of the Avon Park highly permeable zone at other injection sites.

Although there was little uniformity in how the aquifer tests were conducted and analyzed, it is apparent from test results that the transmissivity, and hence the hydraulic conductivity, of the upper part of the injection zone is quite variable, whereas the lower part has fairly uniform transmissivity. Of the seven test-injection sites, three had significant injection capacity in the upper part (Ocala-Avon Park moderately permeable zone), as well as in the underlying Avon Park highly permeable zone.

The Avon Park highly permeable zone is the primary zone targeted for injection because of its ability to receive large volumes of wastewater with relatively low injection pressure. Wolansky and others (1980) produced a regional map of west-central Florida showing the configuration of the top of the zone based on hydrogeologic data from two test wells within southwest Sarasota and west Charlotte Counties. The estimated top of this zone has now been revised (fig. 16) by using additional data from deep injection and ROMP test holes. The surface slopes uniformly under a gradient of 15 ft/mi from north to south from about 1,400 ft below sea level at Venice to 1,700 ft below sea level at Gasparilla Island. The revised map may be useful for estimating depths of proposed injection wells.

The potentiometric surface of the injection zone was mapped using water levels measured in two observation wells and six injection wells prior to injection of wastewater (fig. 17). The zone contains very saline water of constant density with dissolved-solids concentrations varying between about 25,000 and 35,000 mg/L. Some water-level measurements were several years apart and do not represent a "snapshot" of the potentiometric surface. The map depicts the potential for ground-water movement to the coast with an environmental head gradient of about 1 ft/mi between the North Port and Englewood injection wells where water-level measurements are accurate. Head measurements at the Plantation and Gasparilla Island injection wells were estimated from historical records of pumping tests. These two wells were drilled using a closed-circulation method, which precluded accurate measurements of head in the injection zone.

WATER QUALITY

Native Ground Water

The quality of ground water is controlled by contact time with and composition of rocks and soil through which it moves. Thus, the chemical quality of water from an aquifer depends upon lithology of the aquifer. Quartz sand, the principal mineral of the surficial aquifer system, is relatively insoluble. The sandy and clayey limestone and dolomite of the intermediate aquifer system are more soluble than the quartz sand, but because they contain silicate minerals, they are probably less soluble than the relatively pure carbonates of the Upper Floridan aquifer. In addition to the dissolution of the rock matrix, solute is added in deep zones where ancient seawater is slowly being flushed from the system and in shallow zones where intrusion is occurring. The above conceptual system should result in water that has increasing salinity with depth and proximity to the gulf coast.

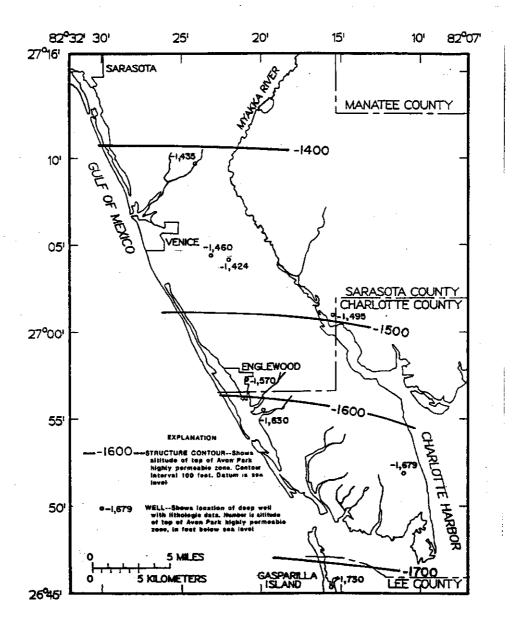


Figure 16.--Configuration of the top of the Avon Park highly permeable zone within the Upper Floridan aquifer. (Modified from Wolansky and others, 1980.)

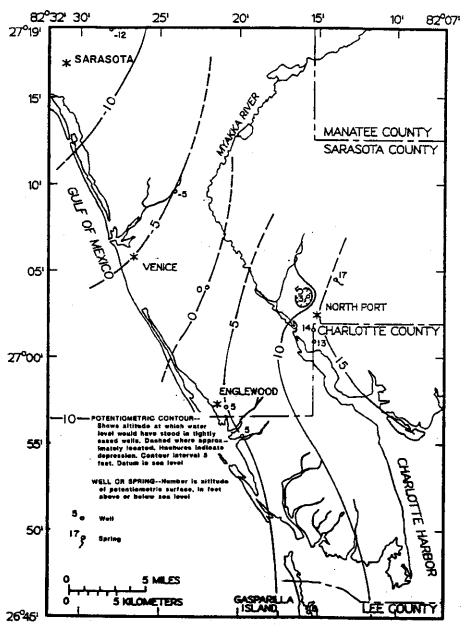


Figure 17.--Potentiometric surface of the very saline injection zone within the Upper Floridan aquifer.

The principal chemical constituents in ground water within the study area that affect potability are chloride, sulfate, dissolved solids, fluoride, and radium. Iron and color often affect the potability of water for esthetic rather than health reasons. Recommended or permitted maximum concentrations for these constituents in public water supplies are as follows:

Constituent	Standard for public drinking water systems 1
Chloride (mg/L)	250
Color (Pt-Co units)	15
Dissolved solids (mg/L)	500
Fluoride (mg/L)	1.62
Iron (mg/L)	0.3
Radium 226 + 228 (pCi/L)	5
Sulfate (mg/L)	250

¹Florida Department of Environmental Regulation, 1982a. ²Based on mean air temperature of study area, 73 °F.

Dissolved-solids concentration is the major concern for ground-water management in the study area. Critical concentrations for various uses of an aquifer are as follows:

Dissolved-solids range (mg/L)	Use of aquifer				
<500	Potable water source.				
500-8,000 (approximate)	Source of water for irrigation supplies and low-pressure reverse-osmosis treatment process.				
>10,000	Potential receiving zone for treated sewage or source for high-pressure reverse-osmosis treatment process.				

The study area is in a coastal pensinsular setting where a shallow, potable water lens grades downward and coastward to seawater. Transition zones from freshwater to very saline water do not conform to hydrogeologic boundaries; however, permeability may control the position of the interface.

Figure 6 shows the locations of wells and springs for which chemical analyses are listed in table 8. Figures 18 through 21 illustrate the areal distributions of dissolved-solids concentrations within four important water-bearing zones: shallow Tamiami-upper Hawthorn aquifer, composite intermediate aquifer system, Suwannee permeable zone, and the deep injection zone. Superimposed on the maps are Stiff diagrams that show relative concentrations of major constituents that comprise the dissolved solids. Conclusions drawn from table 8 and the maps are:

Table 6 .-- Ground-water quality

[Bicerbonste was calculated by multiplying measured alkalinity by 1.2184. Dissolved-solids residue is reported if the snelyels was made; otherwise, dissolved solids represents the calculated sum of ionic constituents. mg/L, milligrams per liter; --, no data;

Index No.	Letitude- longitude	Casing/depth (feet)	Date	Cal- cium (mg/L)	Hagne- slum (mg/L)	Sodium (mg/L)	Potas- stum (mg/L)	onate (mg/L HCO ₃)	Sul- fata (mg/L)	Chlo- ride (mg/L)	Dis- solved solids (mg/L)	Site name
	64525082153501 64525082153502	1,702/1,926 340/360	1-29-85 11-18-66	753	989	9,484 10,600	418	140	2,660	18,982 18,800	36,100 32,800	Gasparilia Island injection well IW Gasparilia Island injection monitor well
5 2	65017082153701 653200821435 65531082194801	346/413 <32 1,600/1,652	1-13-66 11-18-69 9-03-88	300 120 700	440 5 1,100	3,700 42 11,000	100 0 460	354 139	470 0 2,800	7,100 74 19,000	12,000 421 35,200	Placide #8 Gasparille Island well field ROMP TR3-3 Avon Park well
8 2 9 2 10 2	65531082194802 65531082194803 65531082194804 65531082194805 65557082152201	1,060/1,120 880/900 370/410 135/173 238/300	9-03-86 5-28-87 9-04-86 9-03-86 5-13-88	750 400 110 110 230	1,000 500 100 200 160	9,500 4,200 330 1,500 970	380 120 20 56 28	148 177 175 141 180	2,300 1,100 280 470 450	17,000 8,000 760 3,100 2,000	31,000 14,000 1,700 5,500 4,000	ROMP TR3-3 Ocals well ROMP TR3-3 Sumannes well ROMP TR3-3 lower Hawthorn well ROMP TR3-3 upper Hawthorn well USGS 19 Sen Cassa
13 2	65612082110301	68/85 68/169 68/410 66/743 68/1,031	0-00-88 0-00-68 0-00-68 3-21-68 3-23-66	300 130 240 244 ; 299	470 90 180 170 259	3,400 230 1,200 1,050 1,880	120 15 32 28 60	196 194 148 154 148	500 17 520 512 718	7,000 760 2,300 2,100 3,640	24,500 2,130 5,320 4,904 8,040	Cattledock Point well
17 2 18 2	65638082130703 65638082130705 85638082130706 65652082185801	68/1,407 140/160 380/400 600/620 /101	3-25-68 5-06-86 5-06-86 2-02-86 9-15-87	464 110 130 110	666 80 84 79	5,190 380 360 270	186 14 20 17	134 183 175 217	1,500 17 500 470 25	9,870 920 610 410 2,500	18,000 2,040 1,910 1,500 1,700	ROHP IR3-1 upper Hawthorn well ROMP IR3-1 lower Hawthorn well ROMP IR3-1 Suwennee well Englewood well 150
21 2 22 2 25 2	65653082190301 65710062205101 65712082205701 65716082205101 65716082205102	175/320 152/310 51/110 1,040/1,600 500/550	12-17-75 1-06-76 5-22-74 1-23-86 2-04-88	130 210 95 594 173	120 110 6 2680 2500	490 540 19 9,990 926	17 19 1 2 2290 2130	159 165 - 244 146 100	150 160 29 2,550 264	1,200 1,400 40 19,050 2,400	2,200 2,600 330 33,300 4,490	Englewood RO 1 Englewood RO 2 Englewood well R-2 Englewood well R-2 Englewood injection well IM-1 Englewood injection monitor well EM-1
31 2 33 2 34 2	65834082202401 65834082202402 65927082195201 65944082175401 70016082201301	43.5/55 10/20 56/110 28/101 47/120	9-22-87 2-08-79 4-09-81 8-04-86 4-09-81	24 130 170 74	2 60 110 28	230 680 84	8 14 6	64 184 190 178	28 13 130 16	320 6 670 1,500 250	1980 1140 1,630 3,240 590	Englawood well 14 Englawood well 14A Englawood test well C-8 USGS 20 Plamore Englawood test well C-7
40 2 41 2 42 2	70032082205801 700330822142 70036082213401 700380822113 70057082210501	52/253 35/70 41.5/70 35/70 48/183	4-10-81 0-00-78 1-19-78 0-00-78 4-09-81	170 295 110 300 90	100 38 7 10 48	380 73 36 8 2	12 1 7	200 304 362 308 195	430 0 0 4 210	830 72 80 38 190	2,170 484 423 406 791	Venetia (Berry 8) Englawood production test well 4 Englawood test well C-10 Englawood production test well 5 Venetia (Berry 7)
45 2	70038082152501 270038082152502 270038082152503 2701040822141 270106082214101	1,100/3,200 730/750 360/600 42/70 109/135	11-13-87 11-13-87 11-13-87 0-00-78 9-15-87	1,520 920 1,000 282	720 720 72 32	8,700 3,500 2,500 77	315 126 68	134 122 124 304	3,060 1,450 975 0	18,600 7,910 5,400 62 70	32,800 15,000 10,900 1458 1360	North Port deep injection well DIM Horth Port onsite monitor well Horth Port onsite monitor well Englawood production test well 3 Englawood deep cone well 3
51 2 52 2 54 2	701070822112 70112082201201 70112082213301 70113082223302 70137082235301	43/70 65/120 58/70 40/70 283/305	0-00-78 4-08-81 1-14-80 8-05-86 8-25-66	302 82 140 12	18 32 9 15	59 92 75 55	7 2 7	317 213 378 376 180	0 16 0 26 1	270 110 180 58	546 756 531 850 250	Englewood production test well 1 Englewood test well C-0 Englewood production well 8 Englewood production well 5 Honesote deep well 14
61 2 62 2 63 2	70138082152401 270203082210101 270203082213701 270205082204001 270218082165801	1,100/1,150 212/315 207/608 290/472 102/274	11-27-87 1-31-84 2-01-84 1-30-84 3-21-84	1,360	456	5,800 	230	139	1,960 600 730 850 840	13,000 380 460 680 1,100	11,200 11,500 11,700	Venetia 2 (Berry 4)
69	270223082185701 270240082235701 270333082154000	41/158 480/475 66/160	3-21-84 5-19-82 4-24-72 7-31-73 3-11-87	210 500 520	110 580 730	120 5,200 7,300	7 250 210	162 150 150	30 720 1,700 1,700 53	170 260 9,500 11,400 89	1,600 18,000 21,000	ROMP IR4 2 Harm Mineral Springs top Warm Mineral Springs 230-foot dept

Page 56

Table 8 .-- Ground-water quality -- Continued

Index No.	Latitude- longitude	Casing/depth (feet)	Date	Cal- cium (mg/L)	Hagne- sium (mg/L)	Sodium (mg/L)	Potes- sium (mg/L)	onata (mg/L NCO3)	Sul- fate (mg/L)	Chlo- ride (mg/L)	Dis- solved solids (mg/L)	Site name
	70404082215801	52/65	3-11-87						198	29	228	Plantation monitor well 2
	70406082215901	630/650	3-11-67						1,250	892	3,520	Plantation zone 4 monitor well
	70406082220101	1,102/1,803	8-08-83	850	982	5,546	546	130	2,540	18,900	34,090	Plantation deep injection test wall DIT
	70407082215801	228/365	5-16-82	243	139	154	19	150	972	358	2,058	Plantation RO test well 2
76 2	70420082230501	1,388/1,705	6-10-85			10,947			2,530	17,745	32,100	Venice Gardens deep injection well DIW
77 2	70420082230502	770/800	6-10-85			613			1,320	1,116	3,780	Venice Gardens injection monitor well 800
78 2	70420082230503	200/400	6-10-85			423			1,320	842	2,930	
79 2	270430082140000		10-30-72	160	130	750	19	171	510	1,300	3,000	Little Salt Spring
83 2	2705340822609	206/441	6-13-82	310	143	138	18	134	1,200	300	2,750	Venice RO 6
84 2	2705360822539	77/140	6-05-82	120	45	101	29	9.7	415	130	1,240	Venice well 2
66 2	270542082261801	86/163	11-20-87	**	**				270	110	1680	Vanice well 35
	270542082261802	/68	0-21-87						150	110	620	Venice well 36
	270714082155201	282/351	4-22-68	100	80	63	5	170	410	120	890	Test 18 Blackburn Ranch
	270728082232801	229/1,046	9-09-65	430	160	32	5	140	1,500	60	12,300	Wheelwright 1
97 2	270808082270502	492/510	11-23-87						1,400	54	1,600	ROMP TR5-1 Suwannee well
98 2	270808082270502	275/289	11-23-87						1,200	33	1,400	ROMP TR5-1 Hewthorn well
	270622062231101	40/286	4-01-81	330	130	26	5	137	1,300	30	1,900	Henry Rench 1
	270840082225101	178	4-03-81	340	120	35	5	178	1,200	60	1,900	Henry Ranch 3
	270919082234202	100/120	5-06-88	220	76	40	5	173	730	54	1,300	ROMP TR5-2 upper Hewthorn well
107	270919082234203	245/265	5-06-86	300	120	32	5	157	1,100	36	1,700	RCHP TR5-2 lower Hawthorn well
108 2	270919082234204	360/400	3-06-86	450	150	23	4	145	1,500	38	2,300	RCHP TR5-2 Tamps well
	270919082234205	510/700	5-07-88	520	150	22		149	1,700	41	2,500	ROMP TR5-2 Sumannee well
	2709190 8223420 6 2709310 82252 901	850/890	7-08-85	450	160	16 29	5	135	1,600	20	2,400	
	270934082252801	/100	D-17-87	400	130	40	3	141	1,500	50	12,200	Ewing Ranch (Holland) Hyakka River Hursery
				202		10.000	***					
	2709359522409 270959082203003	1,599/1,915	3-09-89	792	1,120	10,200	397	171 348	1,600	18,900	37,570	Knight Trail Park ROMP 19 WS
	271035082285901	/710	8-19-80	460	170	130	6	170	1,700	260	2,900	Southbay Utilities deep well
	271118082285301	157/259	2-18-66	78	23	29	3	190	82	78	420	Osprey well 9
	271222082295201	41/224	2-08-82	260	160	40	7	180	1,100	36	1,700	
	271450082292601	/1,200	9-17-87						1,400	280	1,800	
	271853082260901	1,480/1,902	11-29-88	19	1,400	12,500	303		3,700	24,000	36,100	Atlantic Utilities test/injection well
	271853082280902	1,130/1,240	5-19-88	343	116	42	4	155	1,040	117	1,800	
				410	1,350	10,500	390	142	250	19,000	500	Drinking water standards

Dissolved-solids concentration estimated from specific conductance (New, 1985, p. 57).

**Hagnesium and potassium estimated as the residual of dissolved solids-measured constituents, then allocated in proportion to ratios observed in equivalent hydrogeologic units at ROMP TR3-3.

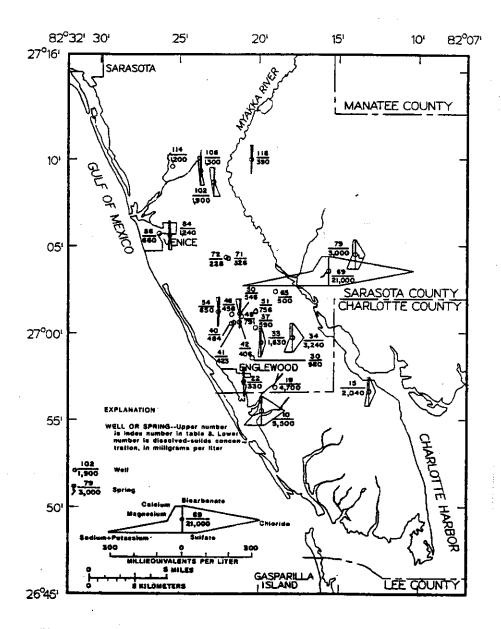


Figure 18.--Dissolved-solids concentrations and Stiff diagrams depicting quality of water from springs and from wells that tap the Tamiami-upper Hawthorn aquifer.

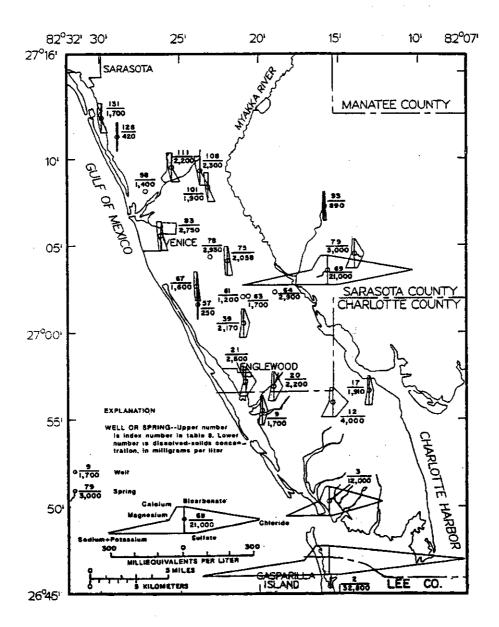


Figure 19.--Dissolved-solids concentrations and Stiff diagrams depicting quality of water from springs and from wells that tap the lower-most or multiple zones within the intermediate aquifer system.

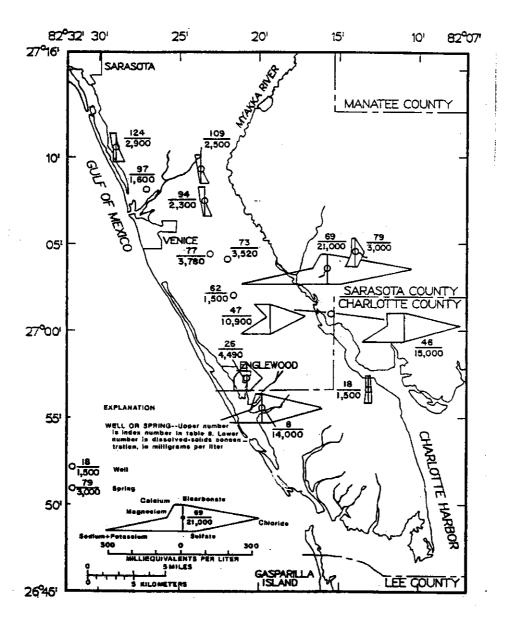


Figure 20.--Dissolved-solids concentrations and Stiff diagrams depicting quality of water from springs and from wells that tap the Suwannee permeable zone.

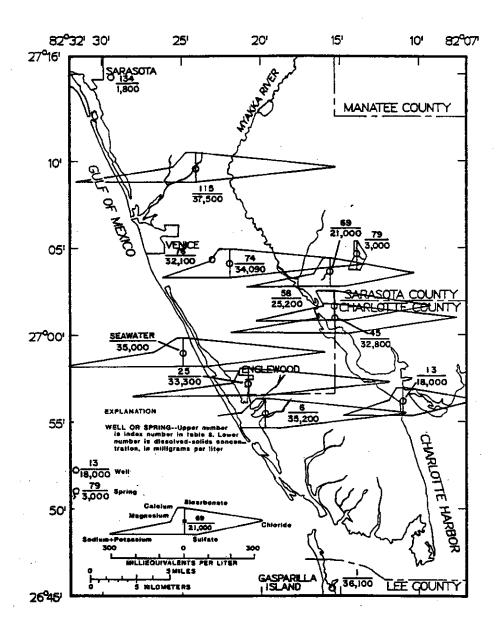


Figure 21.--Dissolved-solids concentrations and Stiff diagrams depicting quality of water from springs and from wells that tap the injection zone.

- Raw ground water generally does not meet drinking-water standards. --Only
 thirteen wells produced water that had a dissolved-solids concentration
 of less than the 500-mg/L limit for potable supply. Two of these wells
 are 30 ft deep or less and tap the surficial aquifer, nine are between
 65 and 180 ft deep and tap the Tamiami-upper Hawthorn aquifer, and two
 are more than 250 ft deep. Nineteen other wells between 55 and 185 ft
 deep that tap the Tamiami-upper Hawthorn aquifer produced water that
 contained at least 500 mg/L of dissolved solids (17 wells diagrammed in
 fig. 18 and wells 52 and 87 in table 8).
- Salinity of ground water generally increases with depth. Median dissolved-solids concentrations for the sampled zones are as follows:

Hydrogeologic unit	Number of <u>samples</u>	Median dissolved solids _(mg/L)	Class
Surficial aquifer system	2	<500	Fresh
Tamiami-upper Hawthorn aquifer (fig. 18)	25	660	Slightly saline
Composite intermediate aquifer system (fig. 19)	23	2,170	Slightly saline
Suwannee permeable zone (fig. 20)	12	3,210	Moderately saline
Injection zone (fig. 21)	9	32,800	Very saline

Coastal areas do not conform to this general water-quality model, as indicated by analyses in table 8 from isolated depth intervals at ROMP sites TR3-1 and TR3-3 and from the Cattledock Point well as it was being drilled. At each site, water with a high chloride concentration was observed at depths of less than 200 ft. Salinity decreases considerably between about 200 and 600 ft, but eventually the water becomes very saline with depth. Very saline water near the surface can probably be attributed to past tidal inumdation because the sites are low-lying and near the coast.

- 3. Salinity changes from north to south. -- In the upper three hydrogeologic units, water is less saline in the north than in the south. Water type grades from calcium sulfate in the north to sodium chloride in the south where there is probably residual seawater in the system. Water in the injection zone is very saline and is similar in composition to seawater.
- 4. Little Salt and Warm Mineral Springs derive water from deep sources.-Little Salt (site 79) and Warm Mineral Springs (site 69) may be fed from
 multiple zones between land surface and the injection zone. Stiff diagrams of spring-water quality are included in figures 18 through 21 to
 facilitate comparison with water quality from discrete permeable zones
 that possibly contribute to spring flow. Little Salt Spring discharges
 water with a dissolved-solids concentration of 3,000 mg/L, which is
 similar in composition to water from wells that tap the Suwannee permeable zone (median dissolved solids of 3,210 mg/L). Water from Warm
 Mineral Springs, with a dissolved-solids concentration range between
 18,000 and 21,000 mg/L, is very saline and resembles water collected

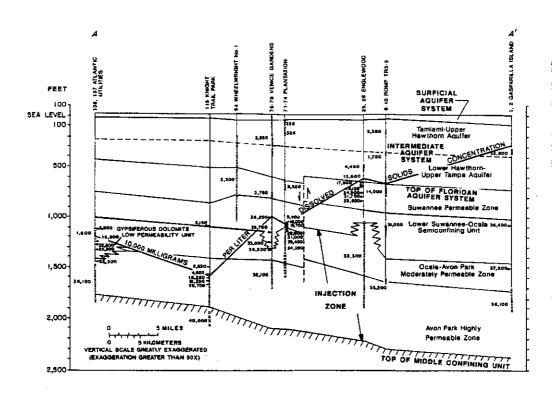

from an interval between 68 and 1,407 ft in the Cattledock Point well (dissolved-solids concentration of 18,000 mg/L). This implies that the spring taps the injection zone and, therefore, may provide a conduit for upward movement of injected wastewater. The dissolved-solids concentration, temperature, and individual ionic constituents indicate that the spring flow sampled at a depth of 230 ft contains about 60 percent seawater. Likely avenues for the spring's discharge are upward along unmapped faults similar to the fault discovered 2 to 4 miles to the south.

Figure 22 shows hydrogeologic section A-A' (line of section is shown in fig. 6) with superimposed dissolved-solids concentrations derived from packertest and well-water analyses. The 10,000-mg/L line of dissolved solids, which is the minimum concentration acceptable for injection, is about 1,200 ft deep at the Atlantic Utilities injection site (136) in the north about 3 mi inland and less than 300 ft deep at the Gasparilla Island site (1, 2), which is actually off the Florida peninsula. In the northern part of the study area, the lower Suwannee-Ocala semiconfining unit contains or is underlain by moderately saline water that is unacceptable for injection, as exemplified at the Atlantic Utilities and Plantation sites (136 and 71-74). In the southern part, the thick semiconfining unit separates usable water from injected wastewater.

The altitude of the 10,000-mg/L dissolved-solids interface was mapped by using water-quality information from injection sites (fig. 23). The highest interface altitude is about 500 ft below sea level along the gulf coast. The interface dips inland to the north and northeast under a gradient of 50 ft/mi. Comparison with figure 22 indicates that the 10,000-mg/L interface is below the top of the potential injection zone in the northern third of the study area. At the Atlantic Utilities injection site (site 13, figs. 5 and 23), 20 mi north of the study area, the interface lies 1,200 ft below sea level. This altitude is 200 ft below the top of the Ocala-Avon Park moderately permeable zone, which coincides with the top of the injection zone defined within the study area.

Injected Wastewater

Two classes of wastewater are injected through deep wells in the study area: treated sewage and reverse-osmosis wastewater. The sewage is largely residential and commercial in nature and does not contain hazardous or industrial wastes. The injectant is characteristically aerated, filtered, and chlorinated secondary effluent with about 5 mg/L of suspended solids, a pH of about 8.0, and a dissolved-solids concentration of less than 500 mg/L. The reverse-osmosis wastewater is a concentrated solution that contains about twice the dissolved-solids concentration as in the feed water pumped from wells. Reverse-osmosis processes in use in the study area include spiralwound membrane and hollow-fiber low-pressure systems, which operate at approximately 200 lb/in2 (pounds per square inch). Englewood uses a high-pressure system, which operates at approximately 600 lb/in2. The dissolved-solids concentration of the wastewater is about 5,000 mg/L at Venice, 7,000 mg/L at Plantation, and 15,000 mg/L at Englewood. The reason for injection as opposed to discharge to bays and estuaries is that the waters have dissolved radium-226 concentrations above 5 pCi/L (picocuries per liter).

EXPLANATION

OPEN INTERVAL--Open hole
or screened interval in
observation and injection
wells. Number is dissolvedsolids concentration in
milligrams per liter

FAULT--Arrows show relative direction of movement

FILLED ZONE--Open-hole section of borehole filled with rubble or cement

Figure 22.--Hydrogeologic section with 10,000-mg/L dissolved-solids concentration delineated from packer-test and well-water analysis. (Wells are indexed to lists of data in tables 3 and 8.)

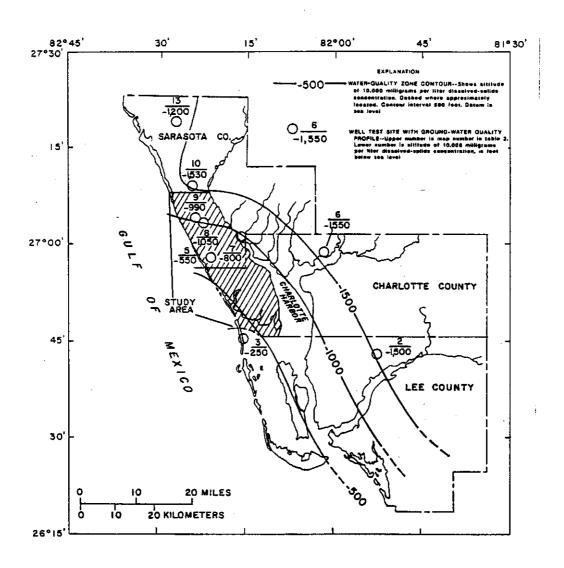


Figure 23.--Altitude of the 10,000-mg/L dissolved-solids concentration in ground water.

UNCONTROLLED FLOWING ARTESIAN WELLS

Sarasota and Charlotte Counties lie within the principal problem area identified by Healy (1978) in an appraisal of uncontrolled flowing artesian wells. Healy defined such wells as:

"...artesian well(s) either without a mechanism for controlling discharge or a well that is allowed to flow continuously at the land surface as well as those wells that only flow internally below land surface through corroded or leaky casings or from improperly cased or otherwise poorly constructed wells."

Figure 24 is a schematic diagram that compares a properly constructed well in a single artesian aquifer with two uncontrolled flowing artesian wells. The uncontrolled wells have corroded or shallow casings and cross connect permeable zones, thereby allowing upward flow of more saline water from the deep zone into less saline shallow zones. The typical uncontrolled flowing well is a 300- to 500-ft-deep irrigation well with 50 ft of corroded and leaky casing that was drilled in the 1950's. As housing developments replaced farmland, many wells were capped and forgotten. Figure 25 shows locations of approximately 100 uncontrolled flowing wells identified in the study area (Preedom, 1984). By 1986, about half of the wells had been plugged by the Southwest Florida Water Management District and public utilities agencies.

A well-plugging program conducted by Venice Gardens Utilities has proved successful at the Venice Gardens well-field area (fig. 4). Thirteen wells within 1 mi of well-field number 2 were plugged under the program (Peter Palmer, Geraghty and Miller, Inc., written commun., 1986). Figure 26 dramatically illustrates a 50-percent reduction in dissolved solids in water from a supply well after plugging of a nearby uncontrolled flowing artesian well. The dissolved-solids concentration of blended raw water from 38 wells in the field was reduced from about 750 to 600 mg/L after plugging the 13 wells.

Borehole geophysical surveys were conducted to assess the problem of internal flow in deep wells that are open to multiple permeable zones. Procedures consisted of running caliper and flowmeter logs while each well was shut in (no flow at land surface). Internal flow was quantified on the basis of relations between cross-sectional area and measured borehole velocity. Figure 27 illustrates an example survey in a 190-ft deep well (index no. 91, table 3) where internal flow was measured at 73 gal/min. Most of the flow enters the borehole between 100 and 120 ft, as evidenced by the flowmeter and fluid-conductance logs. The logger operator explained that the "kick" in the fluid conductance log is not caused by a change in water quality but by rapid flow over the sensitive logging tool. All flow reenters the formation at the bottom of the 60-ft well casing. The caliper log indicates an obstruction in the well at a depth of 37 ft.

Figure 28 shows results of spinner flowmeter surveys in 14 wells throughout the study area. The wells range in depth from 185 to 1,066 ft. Internal flow rates, measured between 0 and 350 gal/min, with a median rate of 10 gal/min, are relatively high in the Venice area and highest at ROMP site TR5-2 (site 108, fig. 28). There, a 480-ft deep well had been constructed with 60 ft of casing and was open for about 1 yr prior to conversion to a cluster well



Figure 24.--A properly constructed well tapping a single aquifer compared to improperly constructed or corroded wells that may allow cross contamination of aquifers with saline water.

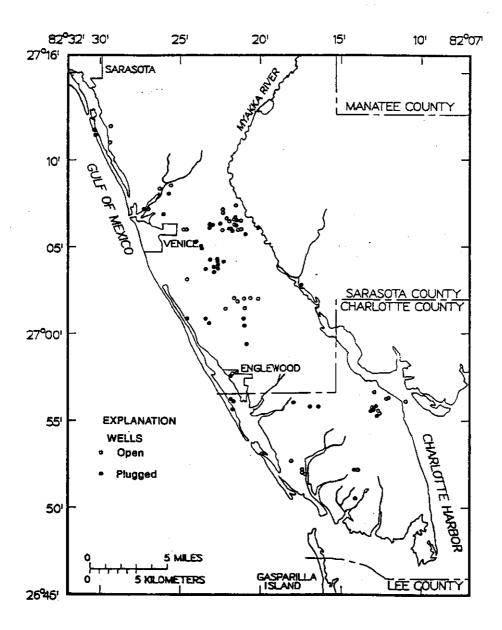


Figure 25.--Locations of plugged wells and uncontrolled flowing artesian wells scheduled to be plugged by the Southwest Florida Water Management District and other agencies.

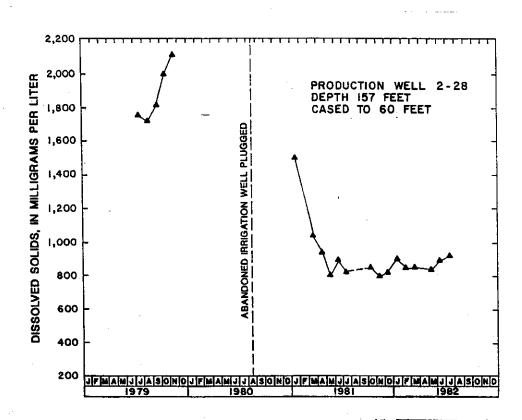


Figure 26.--Dissolved solids in water from a Venice Gardens Utilities production well before and after plugging of nearby uncontrolled flowing artesian well. (From Geraghty and Miller, Inc., written commun., 1986).

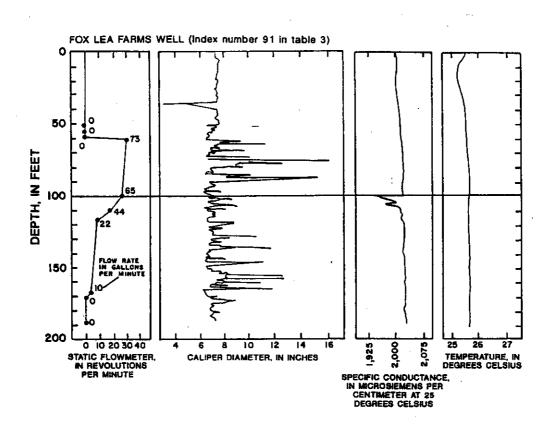


Figure 27.--Borehole geophysical logs used to assess internal circulation in an uncontrolled flowing artesian well.

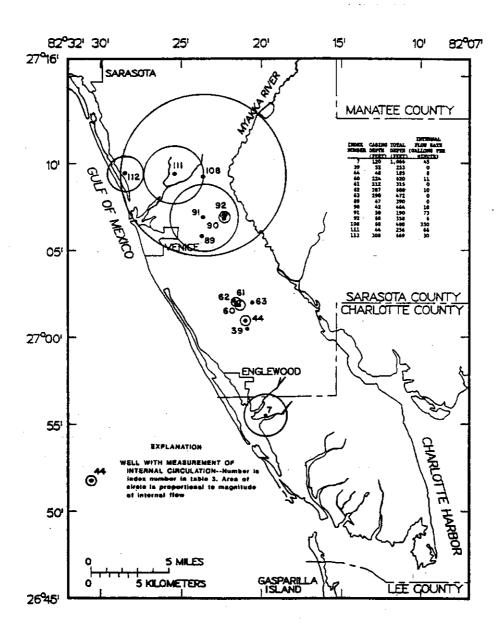


Figure 28.--Internal circulation measured in uncontrolled flowing artesian wells.

containing two small-diameter wells. Flow in that well entered the borehole at 350 ft and left the borehole at 330 ft. Seven other wells with open depth intervals approximately between 300 and 400 ft did not have nearly as much internal flow as that measured in the ROMP TR5-2 well.

Water-level and water-quality investigations have shown that each aquifer or permeable zone has unique head and chemical characteristics. Construction of single-zone wells would safeguard ground-water resources by preventing cross-contamination and borehole interflow.

MODEL SIMULATION OF WASTEWATER INJECTION

The hydrogeologic system in southwest Sarasota and west Charlotte Counties is conceptualized as containing multiple permeable zones separated by leaky semiconfining units. Ground-water salinity increases with depth and proximity to the gulf coast, and there is upwelling of ground water in this coastal zone of natural discharge. Superimposed on this simplified 2,000-ft-thick system is a projected 29 Mgal/d of treated sewage and reverse-osmosis wastewater injected into the bottom 1,000 ft. An assessment of the likely fate of the injected fluids using a model as a numerical simulation tool is an objective of this study. Questions to be answered are:

- 1. How will the wastewater spread radially from a representative well?
- 2. What is the rate of vertical movement of wastewater from the injection zone through the overlying semiconfining unit?
- 3. Does well construction control the distribution of wastewater in the injection zone?
- 4. Does pumping from a reverse-osmosis supply well field above the injection zone speed circulation of the injected wastewater upward into the supply
- 5. What is the long-term areal impact of injecting at projected rates?

A model of ground-water flow and solute transport was used to improve the understanding of the hydrologic system and answer questions concerning the effects of injecting reverse-osmosis wastewater and treated sewage. The model uses a numerical solution that involves integrated finite-difference methods to solve partial-differential equations of ground-water flow and solute transport. The model, HST3D (Heat and Solute Transport in Three Dimensions; Kipp, 1986a), can simulate variable-density ground-water flow and liquid-waste disposal into deep saline aquifers. It represents the latest generation of a program developed by INTERCOMP Resource Development and Engineering, Inc. (1976), and revised by INTERA Environmental Consultants, Inc. (1979). The parent code, known as the Subsurface Waste Injection Program (SWIP), has been completely rewritten with many modifications, improvements, and corrections. The reader is referred to Kipp's (1986a) report for a complete discussion of the model code and numerical methods. The model is used as a tool in this study to analyze the mechanics of wastewater injection through a representative well.

Ideally, a three-dimensional model that incorporates all layers and variations in hydraulic properties and injection rates is desirable. Considering the lack of a detailed regional hydrogeologic framework and the limitations of modern computer facilities, injection is simulated using an alternative two-dimensional model of flow and transport radially around a single prototype well representative of those constructed in the study area. Conclusions drawn from simulation of the single-well injection case are used to assess regional impacts.

Modeling procedures and their application to the study are diagramed in figure 29. The hydrogeologic region representative of the study area was formulated around a hypothetical ideal well cased through the lower Suwannee-Ocala semiconfining unit and fully penetrating the Ocala-Avon Park injection zone. The region was subdivided into discrete areas defined by cylindrical coordinates, boundary conditions were established, and hydraulic and transport properties were estimated for each element in the point-distributed grid. Model-input values of selected physical parameters, including viscosity, temperature, and density, were held constant in all model simulations. Other input parameters and time and space subdivisions were adjusted by trial and error within limits to establish a "best estimate" model of injection through an ideal, fully penetrating well.

Three simulation phases were employed in modeling injection and solute transport. In the first phase, finite-differencing options available in the model were tested to evaluate numerical dispersion and stability, and a comparison check was made with results of the saturated-unsaturated transport (SUTRA) finite-element model. The second phase included testing the sensitivity of the "best-estimate model" by varying imput parameters over plausible ranges of values. In the third phase, the model was used to simulate the probable response of the hydrologic system to various injection scenarios.

Subdivision in Space and Time

The continuous aquifer region was subdivided spatially by using a cylindrical-coordinate system with a grid mesh (fig. 30). The primary subdivision is the cell, which is the volume over which flow and solute balances are made to give the nodal finite-difference equations. The second subdivision is the element, bounded by four corner nodes, which is the minimum volume with uniform porous-medium properties. A third subdivision is the subdomain, which is the common volume of an element with a cell. A cell may have as many as four subdomains if it is an interior cell, or as few as one subdomain if it is a corner cell. The finite-difference equations are assembled by adding the contributions of each subdomain in turn to the equation for a given cell. Because wells are usually open over the more permeable zones of the formation, the open-hole intervals are specified by sets of elements rather than by cells. The upper and lower parts of the open-hole interval are one-half the cell thickness in length, unless the cell in question forms an upper or lower boundary, in which case, the cell is already a half cell. In a well bore segment that terminates at a half cell, flow (and solute) is spread over the whole cell at half the whole cell rate. To help overcome this limitation, injection casing was set one node below the top of the injection zone (1,150 ft) rather than at the top.

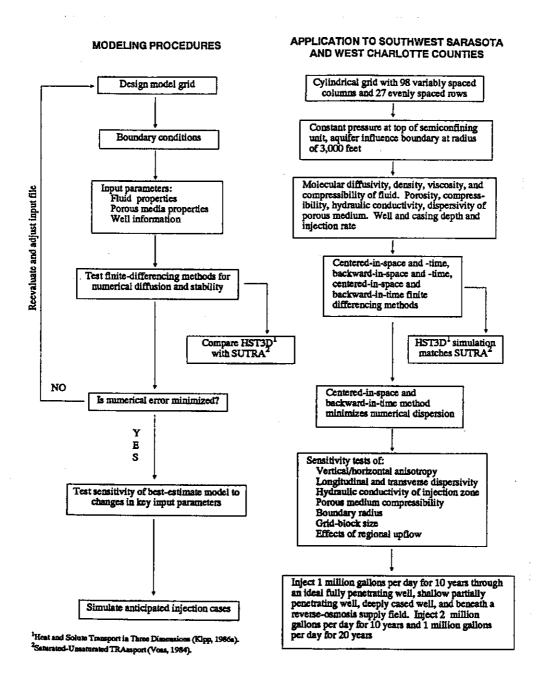


Figure 29.--Modeling procedures.

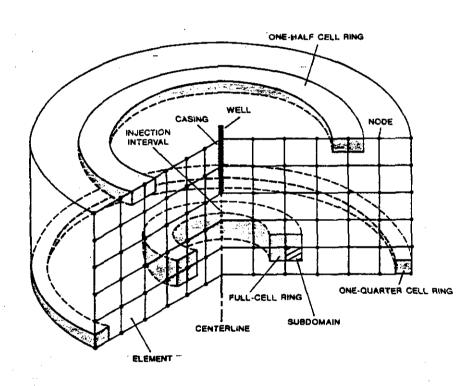


Figure 30.--Finite-difference grid for a cylindrical-coordinate system. (Modified from Kipp, 1986a.)

The nodal grid of 27 evenly spaced horizontal rows and 98 variably spaced vertical columns extends radially outward 3,000 ft from the injection well (fig. 31). Vertical 50-ft spacing was assigned within the depth interval 750 to 2,050 ft, which encompasses the lower Suwannee-Ocala semiconfining unit, Ocala-Avon Park moderately permeable zone, and Avon Park highly permeable zone. Radial spacing expands logarithmically from the well, where spacing between columns 1 and 2 is 0.14 ft, out to 350 ft (column 45), where spacing then becomes a uniform 50 ft to the perimeter at 3,000 ft. Spatial subdivision empirical guidelines for stability in central-in-space finite-difference equations (Voss, 1984, p. 232) suggest that the largest radial dimension should not exceed 4 times the longitudial dispersivity (which was set at 20 ft), and the largest vertical dimension should be less than 10 times the transverse dispersivity (which was set at 5 ft). Tests of the effectiveness of the grid spacing are evaluated in the "Sensitivity Analysis" section.

Time increments used to step through the model computations are expanded automatically by the model. As the simulation progresses, an empirical algorithm tends to increase the time step such that the maximum specified change in pressure or solute scaled concentration is achieved. Simulations that were made to observe effects of spatial and temporal subdivision using various finite-difference weighting are described in the "Numerical Dispersion and Stability" section.

Boundary Conditions

The major criterion used to define hypothetical boundaries for the model was to determine the area that might be affected by a fully penetrating well that injects 1 Mgal/d for 10 yr. The model encompasses the injection zone from 1,100 to 2,050 ft deep and the overlying lower Suwannee-Ocala semiconfining unit from 750 to 1,100 ft deep. The bottom coincides with the impermeable middle confining unit of the Floridan aquifer system (Miller, 1986) and is considered a no-flow boundary. The top is a constant-pressure boundary equivalent to a 750-ft column of freshwater, presumed to exist in overlying formations. The injection well forms the left boundary and is cased from 750 to 1,150 ft and has an open interval from 1,150 to 2,050 ft. The right boundary is defined by a transient flow, aquifer-influence function, which utilizes the Carter-Tracy approximation as adapted by Kipp (1986b) to compute flow rates between the inner gridded aquifer region and an infinite outer region where aquifer properties are known only in a general sense. Use of the Carter-Tracy approximation eliminates the need for spatial subdividing the outer region, which is beyond the zone of transport. The primary benefit of using the aquifer-influence function boundary condition is the reduction in size of the simulation region, resulting in less computer storage requirements and a savings in execution time. The radii of the inner region was set at 3,000 ft. The outer region is modeled as an infinite cylinder with a height of 1,300 ft. Tests conducted to evaluate the aquifer-influence boundary condition are described in the "Sensitivity Analysis" section.

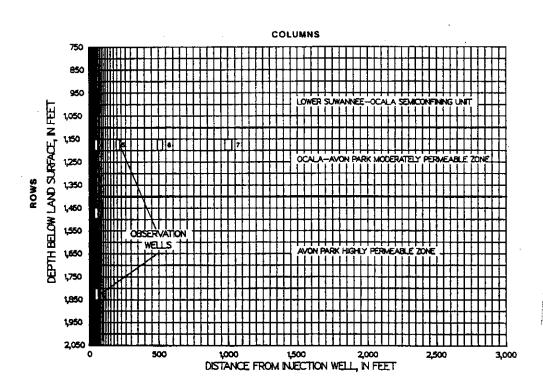


Figure 31.--Model grid of 27 rows and 98 columns showing locations of six observation wells within grid.

Input Parameters

Model-input parameters were derived from aquifer tests, laboratory tests of rock cores, and published standards as follows:

 Fluid properties.--Density, viscosity, and compressibility of the injectant and native waters were either measured or estimated. Measured values at 25 degrees Celsius are:

	Density		Viscosity,	Specific conductance, µS/cm at 25°	
Water sample	g/cm3	lb/ft3	<u>centipoise</u>	Celsius	
Englewood reverse- osmosis wastewater	1.0095	63.01	0.9289	23,000	
Gasparilla Island treated sewage	. 9992	62.37	.9039	3,500	
ROMP TR3-3 (1,050- 1,700 ft deep)	1.0232	63.87	.9500	41,000	

The physical properties of these three waters were represented in the model as reverse-osmosis injectant, treated sewage injectant, and native formation water, with the exception that native water density was set at 64.0 lb/ft³. The order-of-magnitude range in specific conductance is an indicator of the contrast in water quality between the injectant and native formation water. In addition to these properties, compressibility of water was held constant at 3.3x10 fft²/lb (4.4x10 10 m²/n) (Freeze and Cherry, 1979, p. 52), and molecular diffusivity of the solute in the porous media was set at 8.75x10 7 ft²/d (9x10 m²/d) (Kimbler and others, 1975).

Porous media properties. -- Three porous zones were modeled that correspond
with hydrogeologic units: (1) lower Suwannee-Ocala semiconfining unit,
(2) Ocala-Avon Park moderately permeable zone, and (3) Avon Park highly
permeable zone. Values assigned to these zones include:

	Zone		
	(1)	(2)	(3)
Hydraulic conductivity (ft/d)	0.1	25	100
Porosity	.25 1.5x10 ⁻⁵	.15 6.2x10 ⁻⁶	.15 5.5x10 ⁻⁷
Matrix compressibility (ft2/lb)	1.5x10 °	6.2x10 `	5.5x10 '
Longitudinal dispersivity (ft)	20	20	20
Transverse dispersivity (ft)	5	5	5

Modeled hydraulic conductivity and compressibility values were based on aquifer tests described in this report, packer tests, laboratory measurements (table 7), and values derived from a separate model analysis of an aquifer test described by Hutchinson and Trommer (in press).

Estimates of the porosity of the lower Suwannee-Ocala semiconfining unit was based on laboratory measurements of limestone cores from test-injection wells (table 7). Except for the values at North Port, it is unclear whether the porosities reported by the laboratory are "total" or "effective." Effective porosity, which accounts for interconnected pore space, was measured at North Port (CH2M Hill, Inc., 1988). Porosity was set at 0.25 in the semiconfining unit and 0.15 in the injection zone where fracture porosity is presumed predominant in the dolomites. Hickey (1989) derived a fracture porosity of 0.10 for the dolomitic injection zone in Pinellas County and successfully simulated injection and solute transport under the assumption of diffuse flow through a porous medium.

Longitudinal and transverse dispersivities of the system were set at 20 ft and 5 ft, respectively. These values meet gridding stability criteria recommended in Voss (1984, p. 232), where longitudinal and transverse dispersivities are greater than one-fourth and one-tenth of the radial and vertical grid spacings, respectively. The validity of the porous media properties were evaluated by means of sensitivity tests.

3. Well characteristics. -- The injection-well surface occurs at the first column of nodes. A depth interval of 1,150 to 2,050 ft is specified as the length of well bore that communicates with the injection zone. The model allocates injection flow of 1 Mgal/d (694 gal/min) over rows 1 through 19 by mobility factors that are based on cell position, relative hydraulic conductivity, and an element completion factor. An element completion factor of zero means the well is cased off from the aquifer in that element. A reduced permeability around the well bore can be approximately represented by specifying a completion factor less than one. Injection rate was lowest in the half cell at the bottom of the casing (6 gal/min) and highest through whole cells within the Avon Park highly permeable zone (49 gal/min).

In addition to the injection well, six observation wells that have 50-ft completion intervals were included (fig. 31). Graphs of scaled solute concentration and hydraulic pressure in the observation wells were used to test the stability of the model simulation.

Numerical Dispersion and Stability

An inherent problem in mathematical models is the difficulty in applying finite-difference methods to problems of convective transport. It is well known that the type of finite-difference method used can introduce numerical dispersion caused by truncation error that is virtually indistinguishable from physical dispersion (Lantz, 1970; INTERCOMP Resource Development and Engineering, Inc., 1976; and Kipp, 1986a). Compounding this problem are spatial and temporal instabilities, represented by oscillations in the flow and concentration fields, which may persist without growth or decay.

Numerical dispersion and stability can be controlled through judicious selection of finite-difference approximation methods and adherence to spatial and temporal subdivision criteria. Under selected methods, the magnitude of the truncation error is a function of the Darcian velocity, size of time step, and element size. Stability is a function of the pore velocity, size of time step, element size, and dispersivity. Stability in the radial injection model

requires small elements near the well and small time steps early in the simulation to adequately portray rapidly changing pressures and concentrations. As the simulation progresses, a constant-velocity flow field is established and the solute front is distributed over a much larger cylindrical face. Velocity and concentration changes reduce as the simulation progresses; hence, the time step may be increased as the simulation progresses, and element size may be enlarged in proportion to the radial distance from the injection well.

Guidelines for selecting various combinations of finite-difference approximation methods are summarized by INTERCOMP Resource Development and Engineering, Inc. (1976, p. 5.5). The centered-in-space (CIS) and centered-in-time (CIT) combination is desirable in that there is no truncation error and, therefore, no numerical dispersion. Stability problems in the solution may arise if the ratio of time step to element size becomes too large at a specific pore velocity. The backward-in-space (BIS) and backward-in-time (BIT) combination always produces a stable solution; however, numerical dispersion may produce severe errors due to truncation of the time and space derivatives. Use of a CIS-BIT combination removes spatial but not temporal truncation error and can be unstable if spatial discretization dispersivity guidelines are not met. Using the BIS-CIT combination removes temporal (but not spatial) truncation error and can be unstable if the ratio of time step to block size is too large.

Model runs were made to test how different combinations of finite-difference approximation methods would control numerical dispersion and stability of the model solution. Initially, a CIS-CIT combination was employed under the assumption that numerical dispersion would be eliminated and a stable solution would be obtained. After many runs, it was determined that, regardless of the time and spatial subdivisions used, a stable solution could not be achieved. When time steps were too large, divergent oscillations in the pressure and solute-concentration fields were apparent, and the model would exceed the specified maximum iterations allowed for a cycle at a given time plane. When time steps were very small (0.000001 to 0.0001 day), oscillations did not expand; however, the model computations would take several days of computer time to simulate several hours of injection. Apparently, the small elements near the well bore limit the time step. Results of simulations that demonstrate these instabilities are shown in figures 32 and 33.

When CIS-CIT, CIS-BIT, and BIS-BIT simulation results in figure 32 are compared, significant differences are evident. BIS-BIT (diagram C) produces a smooth, nonoscillatory flow field with a maximum radius of intrusion of about 2,300 ft, but the severity of truncation error, which affects the distribution of solute, is unknown. CIS-CIT (diagram A) produces a mildly oscillating flow field with a maximum radius of intrusion of about 2,700 ft. Instability denoted by the flow field is severe in both permeable units of the injection zone between radii of 200 and 700 ft where grid spacing ranges from 29 to 50 ft. The instability under CIT apparently produces more dispersion of the solute distribution than does truncation error under BIT. CIS-BIT (diagram B) produces a thinner lens of injectant when compared to BIS-BIT, which indicates that some improvement is achieved by eliminating spatial truncation error. INTERCOMP Resource Development and Engineering, Inc. (1976, p. 4.43), suggests that the density influence may be so dominant that truncation error is overshadowed by convection.

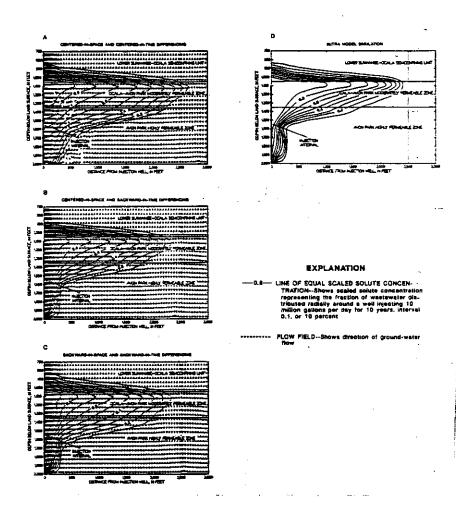


Figure 32.--Radial sections showing the flow field and scaled solute concentration using various finite-difference methods.

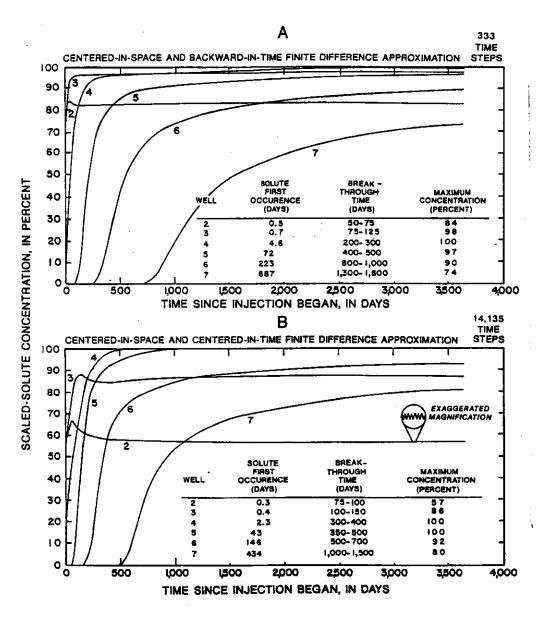


Figure 33.--Simulated scaled solute concentrations in six observation wells--a comparison of finite-difference methods. (See fig. 31 for locations of wells within model grid.)

Figure 33 shows how concentrations vary with time at six points (simulated wells) within flow fields simulated using CIS-BIT and CIS-CIT combinations of finite-difference approximation methods. The curves all show first occurrences of solute, rapid rises in concentration to some breakthrough region, and maximum scaled solute concentrations. First occurrence times under the CIS-CIT method are sightly more than half those simulated under the CIS-BIT method. The largest difference in the IIIst occurrence came and well 7. The arrival time is 434 days when the CIS-CIT method (diagram B) is The largest difference in the first occurrence time is 253 days at used, compared to 687 days for the CIS-BIT method (diagram A). Breakthrough curves also appear to be influenced by the CIS-CIT oscillating flow field in that breaks in slope are not as sharp as in the CIS-BIT uniform flow field. Breakthrough occurs earlier under the CIS-BIT method close to the injection well and earlier under the CIS-CIT method beyond about 350 ft, which indicates that the zone of severest oscillation retards breakthrough near the well and accelerates breakthrough in distant regions. Maximum concentrations for wells 2, 5, 6, and 7 are within 10 percent under each finite-difference method, and at well 4, the CIS-CIT and CIS-BIT concentrations peak after about 50 to 75 days at 57 and 84 percent, respectively. During early time, concentrations at well 2 increase steadily and then peak as bouyancy operates to truncate the rise and eventually dilute the initial slug of injectant. Although it cannot be seen on the graphs in figure 33, the CIS-BIT plots (diagram A) are smooth curves through 333 points, whereas the CIS-CIT plots (diagram B) are sawtoothed (oscillatory) curves through 14,135 points. The numbers of points represent time steps required for the simulation. The scale of oscillations is on the order of one-hundredth of 1 percent. The instability percentage is small, but when it is multiplied through thousands of time steps, the additive smearing of the solute distribution may be large.

The distributions of scaled solute concentrations simulated under the various finite-difference approximation methods do not vary greatly, indicating that each combination of methods produces an acceptable solution. The time that it takes to complete a 10-yr, 1-Mgal/d injection simulation, however, is an important modeling consideration. Following is a comparison of the number of time steps and central processing time of the various finite-difference approximation methods operated on a PRIME 9955 computer system.

Finite-difference approximation method	Range of time steps (days	Number of time steps required for solution	Central processing unit time (minutes)
CIS-CIT	0.00001-1	14,135	5,500
BIS-BIT	.0001-20	327	130
CIS-BIT	.0001-36	244	83
BIS-CIT	.000101	about 3,000 (abort)	927

For the specified finite-difference grid, the CIS-BIT method minimized numerical dispersion and oscillation and required fewer time steps and, thus, less computer time than other methods. The BIS-GIT method always produced a divergent solution, which resulted in abnormal termination of model runs before one-half day of simulation had been completed.

A separate model run was made by using SUTRA to see if HST3D produced unreasonably severe error caused by oscillatory instabilities using CIS-CIT or numerical dispersion using CIS-BIT. SUTRA employs a hybrid finite-element and

integrated finite-difference approximation method that utilizes "upstream weighting," or backward-in-space differencing (Voss, 1984). If through the use of different numerical methods the two models produce similar results, then numerical errors are probably small, and confidence would be gained in the HST3D simulation. This emperical relation was devised in light of difficulties perceived with the rigorous mathematical analysis of numerical error. The distributions of scaled solute concentrations simulated in the CIS-BIT and SUTRA runs are similar (fig. 32, diagrams B and D). The main difference is that the SUTRA simulation produced a sharper front (delineated by closer-spaced contours) than that simulated by using CIS-BIT. Under SUTRA and CIS-BIT simulations, the zone of dispersion between the 0.1 and 0.9 scaled solute concentrations at the top of the injection zone ranged over radial distances of 1,400 and 1,800 ft, respectively. The similarity of results produced by the separate models supports the credibility of the HST3D simulations. Sensitivity analyses and predictive simulations in the following sections of the report are based on CIS-BIT methods because processing time is minimized.

Sensitivity Analysis

Tests were made of the model's sensitivity to changes of physical and hydraulic properties by varying one input parameter at a time over a reasonable range and then simulating 10 yr of injecting 1 Mgal/d. A sensitivity test of the model, therefore, is used as a tool for demonstrating which properties or characteristics have the most effect on the movement of injectants. Properties that greatly affect the simulated distribution of solute should be measured as accurately as possible in data-collection programs.

Results of sensitivity tests are shown in figure 34 as scaled solute-concentration distributions. The 0.1 and 0.9 lines of equal scaled solute concentration, derived from the previously described best-estimate model, are superimposed for comparison. The sensitivity test results are summarized in table 9, which lists simulated lateral and upward distances of injectant movement.

- 1. Porosity.--Porosity of the injection zone was set at 0.075 and 0.3 to bracket the best estimate of 0.15. The ratio of permeability to porosity controls velocity of injectant flow and, hence, the rate of solute transport. High porosity produces a low velocity because it increases the cross-sectional area through which flow occurs. Correspondingly, it simply takes a longer time to replace the large volume of native water in a given volume of squifer. Low porosity has the opposite effect. Figure 34 (diagrams A and B) and table 9 indicate that lateral movement of injectant is very sensitive to porosity. The range in lateral movement between 1,700 and 3,000 ft was produced over a range in porosity from 0.3 to 0.075.
- 2. Dispersivity.--Dispersivity is a scale-dependent property of the porous medium that controls dispersion of the injected fluid. Transverse dispersivity was increased from 5 ft in the best-estimate model to 50 ft, and longitudinal dispersivity was varied between 5 and 50 ft with respect to 20 ft in the best-estimate model. A fourth test was made with zero dispersivity. The resulting scaled solute-concentration distributions (fig. 34, diagrams C, D, E, and E; and table 9) show thicker and wider (more dispersed) spreads of injectant when transverse and longitudinal dispersivities are increased, respectively. When

dispersivities are lowered, there is less dispersion, which results in a narrowing of the transition zone between the injectant and native formation water. Under zero dispersivity, the model would be expected to simulate a sharp interface. Simulation of a transition zone several cells wide in diagram F may provide a clue as to the degree of temporal truncation error inherent in the centered-in-space and backward-in-time finite-difference approximation. Although the low-dispersivity conditions violate rules-of-thumb, which guarantee spatial stability, the model seems to have achieved valid solutions. Vertical and lateral movement of the injectant front does not appear to be very sensitive to the narrow range of dispersivity tested; however, dispersivity is a major control on the distribution of solute within the injectant lens.

- 3. Spatial subdivision.--The model grid was made finer to see if this change would affect the distribution of scaled solute concentration. First, the grid was increased to 127 columns in the radial direction to halve grid spacing in the zone between 100 and 700 ft. This includes the area where oscillations in the flow field were seen (fig. 32). The model was run under CIS-CIT differencing and the resulting flow field and scaled solute plots were similar to those shown in figure 32. Next, the grid was increased to 53 rows (maintaining 127 columns) to check the model's sensitivity to vertical discretization. The model was run under CIS-BIT differencing and the resulting plot of scaled solute concentration was similar to that of the best-estimate model (fig. 34, diagram G. CPU time increased from 83 minutes to 2,126 minutes and time steps increased from 244 to 856. It was concluded that the 27 by 98 grid is adequate and the model is not significantly improved by finer subdivision.
- 4. Vertical flow conditions.--The model does not account for natural upward flow in the hydrologic system, although the potential for such flow is evident from the many deep flowing wells and very saline springs in and near the study area. A test of the model's sensitivity to those conditions was made by increasing the model-computed pressure at the bottom of the model from 912.4 to 916.8 lb/in². This is equivalent to imposing a head difference of about 10 ft between the bottom and top of the model. Compared to the best-estimate nonartesian model (fig. 34, diagram H and table 9), the injectant would move about 40 ft higher (200 ft compared to 160 ft) and 50 ft less laterally (2,250 ft compared to 2,300 ft) under conditions of natural upward flow after 10 yr.
- 5. Hydraulic conductivity of the semiconfining unit..-The lower SuwanneeOcala semiconfining unit caps the injection zone, thereby restricting
 upward movement of injected wastewater. Sensitivity tests included
 varying the vertical and horizontal hydraulic conductivities between
 0.01 and 1 ft/d to bracket the best-estimate model value of 0.1 ft/d.
 The rate of upward movement of injectant through the semiconfining unit
 (fig. 34, diagrams I and I; and table 9) is sensitive to changes in
 hydraulic conductivity within the plausible range. Injectant would
 move upward only about 100 ft under tightly confined conditions and
 completely through the 350-ft thick unit if hydraulic conductivity was 1
 ft/d.

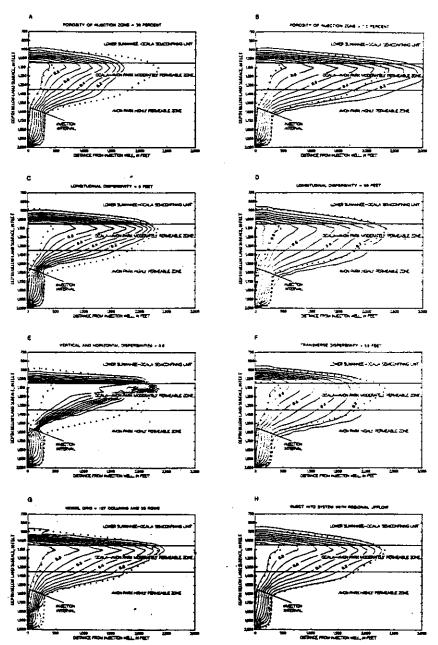
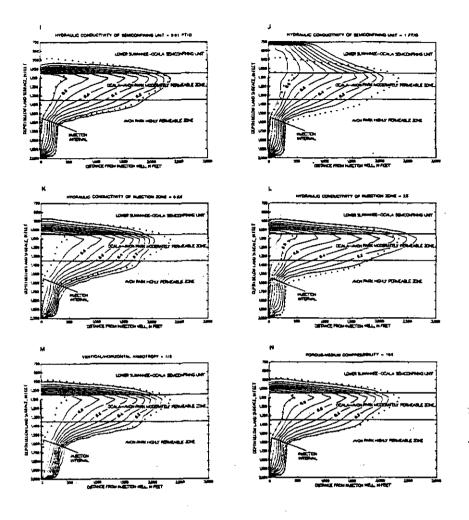



Figure 34.--Radial sections showing the simulated concentration of injected wastewater indicating model sensitivity to changes in input parameters.

EXPLANATION

0.6 — LINE OF EQUAL SCALED-SOLUTE CONCENTRATION—Shows sessed solute soncentration after a parameter is changed, representing the fraction of wastewater distributed residily around a well injecting 18 million gallona per day for 10 years. Interval &1, or 10 percent.

COMPARATIVE SCALED SOLUTE CONCENTRATION—Shows scaled solute concentrations from the best-estimate model with baseline parameters. The 0.1 and 0.8 lines of equal concentration are shown for comparison with concentrations straightful in each sensitivity test.

Figure 34.--Radial sections showing the simulated concentration of injected wastewater indicating model sensitivity to changes in input parameters--continued.

Table 9.--Results of sensitivity tests
[ft/d, feet per day; lb/in², pound per square inch]

Diagram		Injectant movement ²	
in figure 34	Parameter ¹	Lateral ³ (feet)	Upward (feet)
	Best-estimate model	2,300	160
A	Injection zone porosity = 0.075 (0.15)	3,000	160
В	Injection zone porosity = 0.3 (0.15)	1,700	160
C	Transverse dispersivity = 50 feet (5 feet)	2,100	200
D	Longitudinal dispersivity - 50 feet		
	(20 feet)	2,400	200
E	Longitudinal dispersivity - 5 feet (20 feet) -	2,200	150
. F	Dispersivity = 0.0	·	
G	Model grid 53x127 (27x98)	2,400	170
н	Increase pressure at bottom of model to	2	
	916.8 lb/in ² (912.4 lb/in ²)	2,250	200
I	Hydraulic conductivity of semiconfining unit	2.300	100
	- 0.01 ft/d (0.1 ft/d)	2,300	100
J	Hydraulic conductivity of semiconfining unit		
	= 1 ft/d (0.1 ft/d)	2,100	>350
K	Hydraulic conductivity of injection zone -		
	0.5x	2,000	170
L	Hydraulic conductivity of injection zone -	•	
	2x	2,700	160
M	Vertical:horizontal anisotropy = 1.5 (1:1)	2,200	150
N	Porous-medium compressibility = 10x	2,100	150
	Porous-medium compressibility = 0.1x	2,300	160
	Boundary of inner aquifer region = 4,000 feet		
	(3,000 feet)	2,300	160
	Thickness of outer aquifer region - 2,000 feet	=,000	
	(1,300 feet)	2,300	160

¹Parameter in parentheses is value used in the best-estimate model.

²Freshwater injected into very saline between depths of 1,150 feet and 2,050 feet at a rate of 1 Mgal/d for 10 yr.

^{\$}Represents maximum distance of the 0.1 scaled solute concentration line outward from the injection well. The model is sensitive to parameter changes that produce lateral movement less than 2,050 feet or more than 2,550 feet.

^{*}Represents maximum distance of the 0.1 scaled solute concentration line upward above the top of the injection zone at 1,100 feet. The model is sensitive to parameter changes that produce upward movement above 190 feet.

- 6. Hydraulic conductivity of the injection zone. -- Sensitivity tests included halving and doubling vertical and horizontal hydraulic conductivities of the Ocala-Avon Park moderately permeable zone and the Avon Park highly permeable zone (fig. 34, diagrams K and L; and table 9). These changes produced approximately the same results as the porosity sensitivity tests. Although approximately the same volumes of aquifer are contaminated with the injectant, compared to the best-estimate model, the distribution of the solute has changed. Reducing hydraulic conductivity results in a thick snub-nosed concentration front, which apparently is caused by retardation of bouyancy. Increasing hydraulic conductivity produces a thin lens at the top of the injection reservoir due to enhanced bouyancy. Because hydraulic conductivity may vary over an order of magnitude, it is potentially a more important parameter than is porosity, which probably lies within a fairly narrow range.
- 7. Vertical-horizontal anisotropy. --Anisotropy can influence hydraulic properties of sedimentary aquifer systems. Hickey (1989) introduced vertical-horizontal anisotropy as a 1:3 ratio in an injection study of a carbonate system in Pinellas County. A test was made of the sensitivity of the model to anisotropy by setting vertical hydraulic conductivity of all zones at one-fifth the horizontal hydraulic conductivity. The resulting scaled solute-concentration distribution (fig. 34, diagram M; and table 9) varies slightly from the isotropic best-estimate model in that upward movement of injectant is reduced from 160 to 150 ft. The sensitivity analysis demonstrates that anisotropy inhibits upward movement of bouyant wastewaters, but the model is relatively insensitive to changes in the ratio.
- 8. Porous medium compressibility.--Vertical compressibility is a model input parameter that controls the degree to which stress varies storage within the hydrogeologic system. Injection increases hydraulic head, lowers effective stress borne by the granular skeleton of the porous medium, and causes expansion of pores and an associated increase in porosity. Therefore, it may be anticipated that increasing the matrix compressibility will attenuate the injectant plume and reducing compressibility will expand it. Results of such sensitivity tests (fig. 34, diagram N; and table 9) demonstrate that a tenfold reduction and increase in compressibility produces little change in the distribution of the scaled solute concentration. The model is not sensitive to large changes in compressibility, probably because of the relatively small maximum pressure change of 5 lb/in² imposed on the system at the well bore. Although the percent change in pore volume is very small, it will be numerically large over a large region.
- 9. Radial boundary conditions.--Tests were made to assess the sensitivity of the model to changes in dimensions of the outer and inner aquifer region. The first test consisted of changing the thickness of the outer aquifer region from 1,300 to 2,000 ft. A second test was then conducted by changing the radius of the inner aquifer region from 3,000 to 4,000 ft and increasing the radial grid from 98 to 118 columns. Neither test produced a noticeable change in the distribution of the scaled solute concentration, as indicated in table 9. Because the model is insensitive to changes in radial boundary conditions, those of the best-estimate model were deemed to be adequate.

Limitations of the Model Application

A conceptual approach to solute-transport modeling was used in the application of this model. The hydrogeologic system was conceptualized, its properties identified and estimated, and it was transformed into the mathematical analog. The mathematical model approximates the physical processes that control the conceptual model, but it is only an approximate representation of the prototype hydrogeologic system.

The hydrogeology has been simplified to the extent that an operational mathematical model could be constructed. Hydrogeologic data from several sources within and near the study region were used to construct a model that simulates injection through a representative well. Results should not be construed as valid for a specific injection site. Also, because the model was not calibrated against observed distributions of solute and pressure, a sensitivity approach was relied upon to test the reliability of a best-estimate model

Two limitations are recognized that could considerably reduce confidence in simulated results. The first is that the simulated hydrogeologic system is represented as a porous medium rather than a block and fracture system with dual porosity. Hickey (1989) used the parent INTERCOMP model to simulate observed pressures and concentrations in the highly fractured system in Pinellas County. He concluded that the system responded to injection stresses as an equivalent porous medium. Injection in the study area is into the same zone of crystalline dolomite, although it is less transmissive and appears in borehole video surveys to be less fractured than in Pinellas County.

A second important limitation is the assumption that regional horizontal flow is negligible. The magnitude of the regional lateral flow may be estimated using Darcy's equation:

$$\tilde{\mathbf{v}} = (\mathbf{K} \mathbf{I})/\mathbf{n},\tag{1}$$

where \dot{v} = average linear velocity, in ft per day;

K - horizontal hydraulic conductivity, in ft per day;

I - hydraulic gradient, in ft per ft; and

n - porosity.

For the Ocala-Avon Park moderately permeable zone, where the injectant accumulates, horizontal velocity is about 0.06 ft/d, based on K of 25 ft/d, n of 0.15, and I of 0.0004 ft/ft (2 ft/mi). After 10 yr, the injectant front would move about 200 ft farther downgradient and 200 ft less upgradient, thereby shifting an otherwise radially symmetrical lens of injectant downgradient. The shift is small compared to the 2,300-ft simulated radial spread. Injection near a discharge point, such as Warm Mineral Springs where the hydraulic gradient is steep, may considerably alter the configuration of the injectant lens. For much of the area, the gradient is uniform and relatively low; therefore, regional flow will not greatly affect the shape and position of the injectant lens.

Potential Impacts of Injection

The solute-transport model was used to simulate the hydrologic system's response to wastewater injection. Objectives of this predictive modeling phase were to assess the potential for upward movement of injectant to potable aquifers and lateral movement outward from injection wells. A single-well model was used to represent local flow and transport given a range of estimated or measured input values. Results were used to assess potential regional movement of injected wastewater from existing and proposed wells in the study area. The model-input file is listed in Appendix A.

Combinations of assumed hydrologic conditions and injection-well designs and operations that were simulated include:

- Injecting through an ideal well that fully penetrates the injection zone to assess system response to a highly efficient injection system.
- Injecting through single wells with various cased and open-hole sections to test a variety of well designs.
- Injecting through a single well beneath a well field where pumping for reverse-osmosis product water increases the potential for upward leakage of injectant.
- 4. Injecting through an array of 10 waste-disposal wells proposed for the study area and nearby communities to estimate the potential areal spread of injected wastewater.

Interpretation of model results includes assessment of the direction of flow and the concentration of injectant. The injectant front is considered to occur where the scaled solute concentration in the formation is 0.1, or 10 percent of injected water. Results are used to provide guidelines for injection and monitor-well construction and calculation of travel times.

Injection Through an Ideal Well

The ideal injection well is defined as cased from land surface through the lower Suwannee-Ocala semiconfining unit, with the open-hole section fully penetrating the injection zone. The well would have a 1-ft radius, about 1,150 ft of casing, and be about 2,050 ft deep. The model simulated injection through an ideal well to define the development and expansion of a lens of relatively fresh wastewater. Figure 35 illustrates the scaled solute concentration in the ground-water flow field after 1 (diagram \underline{A}) and 10 (diagram \underline{B}) yr of injection at a rate of 1 Mgal/d and then 10 yr after ceasing injection (diagram \underline{B}). Also shown are scaled solute concentration diagrams that represent injection of 2 Mgal/d for 10 yr (diagram \underline{D}) and 1 Mgal/d for 20 yr (diagram \underline{C}).

Convection caused by the density contrast between the injected freshwater and native saltwater is readily evident from the direction of movement in the flow field in figure 35 (diagrams A and B). After 1 year, a convection cell in the flow field is well defined, with buoyant wastewater pooled about the base of the lower Suwannee-Ocala semiconfining unit and denser formation water moving toward the bottom of the well (fig. 35, diagram A). The injectant

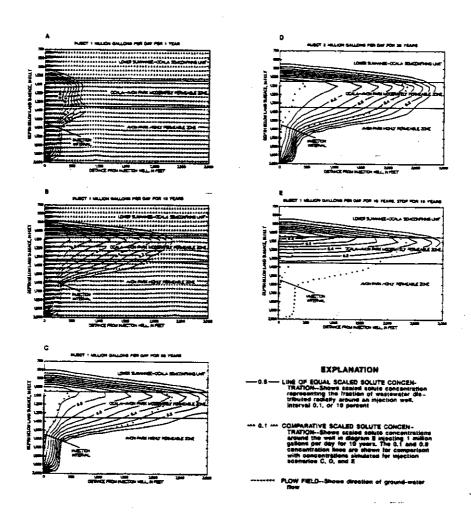
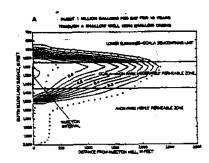


Figure 35.--Radial sections showing the simulated flow field and concentration of wastewater injected through an ideal, fully penetrating well.

moved about 75 ft above the top of the injection zone to a depth of 1,025 ft. After 10 yr, the lens has extended outward to a radius of 2,300 ft and moved upward about 160 ft into the semiconfining unit to a depth of 940 ft (fig. 35, diagram B). Pressure build-up was a maximum of 5 lb/in² at the bottom of the casing. At a radius of 500 ft, the maximum build-up was 4 lb/in² at the top of the injection zone. During the periods of 1 - 20 and 10 - 20 yr, the simulated injectant front moved upward from 1,025 to 850 ft and 940 to 850 ft, respectively (compare diagrams A and C, B and C, fig. 35). The computed steady-state rate of upward movement is 0.025 ft/d, or 9 ft/yr. Because vertical movement through the semiconfining unit is a function of hydraulic conductivity, the rate of upward movement could likely vary over an order-of-magnitude range as indicated by the range in hydraulic conductivities listed in table 7.

Model simulations indicate that the injectant moves 75 ft upward in the first year, and afterwards the steady rate of upward movement is 9 ft/yr. At this rate it would take about 31 yr for the injectant to move through the 350-ft-thick semiconfining unit to the Suwannee permeable zone. A 31-year simulation indicated that indeed the injectant had moved to the top of the semiconfining unit. Injecting at a rate of 2 Mgal/d for 10 yr produces a lens with a radius of about 2,900 ft (fig. 35, diagram D). Compared to the 1-Mgal/d-for-10-yr injection scenario, the simulated 2-Mgal/d lens moves upward about 30 additional ft, and the radial area of spread increases from about 0.6 to 1 mi² (compare diagrams B and D, fig. 35).

Vertical and horizontal movement proceeds even after injection stops. The simulated front moves up from 940 to 900 ft and outward from 2,300 to 2,900 ft in the 10-year interval following injection (fig. 35, diagram E). The steady-state rate of upward movement under buoyant flow conditions with no injection is 0.011 ft/d, or 4 ft/yr. Model results indicate that, if injection were stopped after 10 yr, injectant could travel from 940 to 750 ft to reach the Suwannee permeable zone about 48 yr after injection ceased.


Significance of Injection Well Design

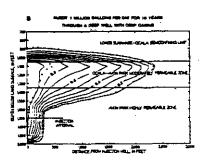

The cost of a 1,500-ft deep, 12-in. diameter injection well and monitorwell system is about \$1 million (R.L. Westly, Law Environmental, Inc., oral commun., 1988). Regulations require that the injection tubing be doubly cased through zones that contain water with less than 10,000 mg/L of dissolved solids and that the well be tested for mechanical integrity. The cost given above includes the cost of designing and testing the injection wells. review of initial designs for 12 of the 13 injection wells in figure 5 indicated that these designs generally propose injection through a partially penetrating well that is cased through the lower Suwannee-Ocala semiconfining unit to the first permeable zone containing water with greater than 10,000 mg/L dissolved solids. In the study area, this zone often occurs in the lower part of the Ocala Limestone. The Florida Department of Environmental Regulation (FDER) Technical Advisory Committee for underground injection control that reviews the designs often recommends that wells fully penetrate or be cased to the Avon Park highly permeable dolomite, which substantially increases construction costs.

Figure 36 shows a comparison of model-simulated transport of relatively fresh wastewater injected in the study area at a rate of 1 Mgal/d for 10 yr under two well designs: (1) 1,400 ft deep with 1,150 ft of casing and open to the Ocala-Avon Park moderately permeable zone (diagram A), and (2) 2,050 ft deep with 1,450 ft of casing and open to the Avon Park highly permeable zone (diagram B). Results of each simulation also are compared to the ideal, fully penetrating well model defined previously. The figure shows that the relatively buoyant injectant forms a circular lens around the injection well. Approximate dimensions of each lens and position of its top within the lower Suwannee-Ocala semiconfining unit after 10 yr of injection are compared as follows:

	Open-hole interval of injection well (ft below land surface)		
	1,150-1,400	1,150-2,050	1,450-2,050
Maximum radius of lens (ft)	2,280	2,300	2,320
Thickness of lens at 1,000-ft radius (ft)	525	570	570
Depth to top of lens (ft)	890	940	950
Upward movement through semiconfining unit (ft)	210	160	150
Pressure build-up at bottom of casing (lb/in²)	9.1	5.1	2.7
Pressure build-up at 500-ft radius and depth of 1,150 ft (lb/in²) -	4.1	4.1	4.0

Conclusions drawn from the model simulations are that the configuration and position of the lens are not greatly affected by well construction. Although the deeply cased well (1,450-2,050 ft) injects into the lower part of the injection zone, convective forces due to density contrasts buoy the injectant above the bottom of the casing to the lower Suwannee-Ocala semiconfining unit, which partially constrains and flattens the lens. The shortcased well (1,150-1,400 ft) injects a lens that is configured similarly to both the deeply cased well and the ideal well. The main differences are that the top of the injectant lens is about 60 ft higher and the injectant is more concentrated around the short-cased well than around the deeply cased well. Injection pressures would be highest in the short-cased well because the injection interval is less transmissive than the other two well configurations. Pressure build-up in the injection zone is not affected by well design, as indicated by the equivalent pressure build up of 4 lb/in² at the top of the zone at a radius of 500 ft under each well design.

EXPLANATION

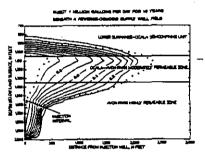
—0.6—LINE OF SQUAL SCALED SQUITE CONCENTRATION— Shows scaled solute consentration representing the fraction of weatewater distributed radially sound as induction well interval 0.1, or 10 percent

COMPARATIVE SCALES SOLLIES CHIMICATIVAS CANADAMA INCOMPARATIVE SCALES SOLLIES CHIMICATIVAS CANADAMA INCOMPARATIVE SCALES SOLLIES CHIMICATIVAS CANADAMA INCOMPARATIVE SCALES CANADAMA INCOM

Figure 36.--Radial sections showing the simulated concentration of injected wastewater as influenced by well construction.

Travel time of the injectant front from the injection zone through the lower Suwannee-Ocala semiconfining unit to the potable water-bearing Suwannee permeable zone varies slightly with casing depth. Under the previously described ideal well conditions, the steady-state upward rate of movement was 9 ft/yr, and estimated travel time was about 31 yr. Analogous travel times for shallow-cased and deep-cased wells are estimated to be 26 and 32 yr, respectively.

Injecting Beneath a Reverse-Osmosis Supply Field


The study area encompasses four sites where reverse-osmosis wastewater is injected directly below a well field, which draws feed water from the Suwannee permeable zone. Pumping for supply lowers head (pressure) at the bottom of the Suwannee permeable zone, which coincides with the top of the injection model. There is potential for a significant increase in upward movement of injectant from the injection zone through the lower Suwannee-Ocala semiconfining unit to the Suwannee permeable zone. A model simulation was made to assess this potential effect.

The model was originally set up to simulate injecting 1 Mgal/d as treated sewage with physical properties similar to freshwater. To simulate pumping from a well field, the constant pressure at the top of the model was reduced from 333 to 325 lb/in² to represent a drawdown of 20 ft at the top of the semiconfining unit. Other differences are that density of the injectant was increased from 62.4 (freshwater) to 63.0 lb/ft³ (moderately saline reverse-osmosis wastewater) and increasing viscosity from 0.9039 to 0.9289 centipoise to approximate the physical characteristics of the reject water, which had a dissolved-solids concentration of about 14,000 mg/L. These changes were required because the best-estimate model was based on physical characteristics of relatively fresh treated sewage.

Figure 37 shows the radial distribution of injected reverse-osmosis wastewater simulated by the model after injecting 1 Mgal/d for 10 yr. The 0.1 and 0.9 scaled solute concentrations simulated previously for the ideal injection well are superimposed for comparative purposes. Results indicate that, even though the injectant is moderately saline, it is relatively buoyant in the very saline injection zone. A 20-ft reduction in head that may be caused by pumping for reverse-osmosis supply would induce upward movement through the lower Suwannee-Ocala semiconfining unit. The simulation results indicate that the front would move upward into the semiconfining unit to a depth of 860 ft, or about 80 ft higher during the same period than at a site where less dense treated sewage was injected with no pumping from above the injection zone.

Areal Effect of Proposed Injection

Seven active and proposed injection sites within the study area were shown to have a combined projected injection capacity of 28.8 Mgal/d (table 2). Injection capacities range from a low of 0.8 Mgal/d at Plantation to a high of 14 Mgal/d at the proposed West Port site (table 2). An objective of this study was to estimate what the areal spread of injected wastewater might be with all sites fully operational. To achieve this goal, the ideal single-well radial model was used to draw inferences about the fate of injected fluid at the seven injection sites within the study area injecting 28.8 Mgal/d and three sites just to the north and south of the study area injecting 10 Mgal/d.

EXPLANATION
LINE OF EQUAL SCALED SOLUTE CONCENTRATION—
Shows scaled solute concentration ripresenting
the traction of reversa-commoist westwater detributed (adially around an injection well beneath
soluted (internal o.1, or 10 percent

Figure 37.--Radial section showing the simulated concentration of reverse-osmosis wastewater injected beneath a supply field where pumping stress increases upward movement of the injectant.

It was shown earlier that, after 10 yr of injecting 1 Mgal/d, fluid would rise to the top of the injection zone and form a lens about 600 ft thick and have a radius of about 2,300 ft. The areal spread of such a lens is a approximately 0.6 mi2. Assuming there is direct proportionality between injection rate and area of spread, the 14-Mgal/d site should be underlain by a lens 600 ft thick and spread over an area of about 8.4 mi². The method of linear extrapolation was used to roughly approximate the potential spread of injectant around the 10 injection sites within and near the study area, as depicted in figure 38. The figure gives some insight as to what the lateral extent of injectant in the system would be if all wells began injecting at the same time and operated at projected maximum capacities for 10 yr. Approximately 17 mi2, or 7 percent, of the 250-mi2 study area would be underlain by injected wastewater. Areas would be doubled for a 20-year projection. Although the spread of injectant is delineated by circles on the figure, it should be noted that regional lateral flow in the injection zone would tend to distort them. Regional lateral flow, estimated previously to be 0.06 ft/d, would tend to offset and distort the circles about 200 ft to the west, or downgradient as indicated by figure 17. Injected sewage at North Port has the potential for moving northward to Warm Mineral Springs, but should be detected years beforehand in the satellite monitor well (index no. 58 in fig. 6 and table 3) between the injection well and the spring.

GROUND-WATER QUALITY PROBLEMS AND SOME MANAGEMENT CONSIDERATIONS

A diversity of potential water-quality problems arises due to both natural phenomena and human activity. Shallow freshwater that is used primarily for public supplies and irrigation is subject to contamination by upconing of saline water beneath pumping centers and through abandoned or improperly constructed artesian wells. Contamination also may occur naturally, as much of the land is low lying and subject to tidal flooding. Slightly to moderately saline ground water, tapped by irrigation and reverse-osmosis supply wells, is subject to contamination by upconing of very saline water induced by pumping, especially where the underlying water is unconfined. Model results imply that upconing may be accelerated by injecting wastewater through deep wells, thereby forcing very saline water upward in areas of pressure buildup. Deep, very saline water, although it is an unused resource, may be contaminated by the injection of nutrient-rich treated sewage and radium-rich reverse-osmosis wastewater.

Local and State agencies manage the hydrologic system through a system of regulation, permitting, and conformance monitoring. Regular observations of water quality and water levels commonly are required and actions are taken to correct or mitigate imminent problems. Water-use permits are issued by the Southwest Florida Water Management District on the basis of projected drawdown, or the effect that pumping might have on encroachment of very saline water. When water levels decline below those specified in the permit, or water-quality constraints are exceeded, pumping restrictions may be imposed. Sarasota County further requires that irrigation wells be deeply cased to preserve the freshest water for public supply and that municipalities that own public-supply well fields maintain water level and water-quality observationwell networks. The Southwest Florida Water Management District additionally has established the previously described ROMP network of permanent observation wells and is plugging uncontrolled flowing artesian wells as part of its QWIP. Reverse-osmosis source water is continually sampled and analyzed out of concern that high concentrations of dissolved solids will require the conversion of low pressure systems to more expensive high pressure systems.

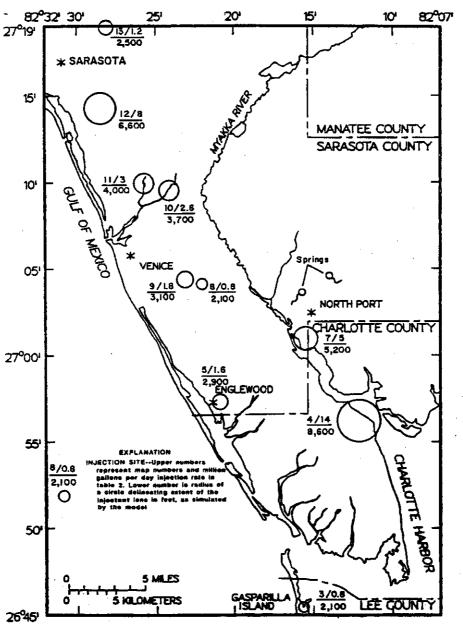


Figure 38.--Estimated areal spread of wastewater after 10 years of injection at projected rates.

Injection of wastewater is managed by the Florida Department of Environmental Regulation, which requires that: (1) permittees demonstrate that the well will not be damaged by a multiple of the anticipated injection pressure, (2) there is an alternate method of disposal if the injection well fails, (3) the injection zone contains water having 10,000 mg/L or greater dissolved-solids concentration and is adequately confined so that upward movement will be prevented, and (4) water levels and water quality in the permeable zone above the injection zone be monitored periodically to provide advance warning of injectant movement toward formations that contain potable water.

This report provides information that may be useful for management of ground-water resources, especially with respect to wastewater injection. Maps of the hydrogeologic framework and water quality of the injection zone may aid in siting injection wells and estimating casing depths. Model simulations indicate that construction of a shallow, partially penetrating injection well does not greatly alter the distribution of injected fluid or rate of upward movement compared to the more expensive, fully penetrating or deeply cased well. Injecting beneath a reverse-osmosis supply well field would accelerate upward movement of wastewater. Modeling can provide insight in selecting locations of observation wells and for designing sampling programs. Simulations show that the best place to monitor movement is in the upper part of the injection zone because the injectant is relatively bouyant and tends to form a lens that is partly constrained by the lower Suwannee-Ocala semiconfining unit from rising further. Model-simulated movement of the lens of injectant shows that it probably will take more than 20 yr for the injectant to travel 4,000 ft from a 1-Mgal/d injection well. This would suggest that an observation well located at a distance less than 2,000 ft from the injection well would be required to monitor movement within the first 10 yr of operation. However, it should be noted that the rate of upward movement at a representative injection site is about 9 ft/yr in the lower Suwannee-Ocala semiconfining unit, as simulated by the model. Therefore, the lower Suwannee-Ocala semiconfining unit slows but does not prevent injected fluid movement into the overlying freshwater aquifers.

SUMMARY AND CONCLUSIONS

The 250-mi² area of southwest Sarasota and west Charlotte Counties is underlain by a complex hydrogeologic system that contains water with a wide variation in quality. Conditions or actions that could alter ground-water quality include flooding by storm tides, upward movement of poor quality water toward pumping centers from deep zones by leakage or by short circuit through uncased or improperly constructed and abandoned artesian wells, and lateral and vertical movement of treated sewage and reverse-osmosis desalinization wastewater injected into deep zones. This study has been specifically directed toward (1) defining the hydrogeologic framework in the area, (2) describing the ground-water quality and the effects of uncontrolled flowing artesian wells or the quality, and (3) demonstrating the usefulness of a solute-transport model as a tool for understanding the effects of wastewater injection on the aquifer system. The findings of this study are briefly summarized as they pertain to these objectives in the following paragraphs.

The Hydrogeologic Framework.--The study area is underlain by the surficial, intermediate, and Floridan aquifer systems, which contain six separate aquifers or permeable zones. The 50-ft thick surficial aquifer system has a transmissivity of about $1,500 \, \text{ft}^2/\text{d}$ and contains potable water in areas where

tidal flooding does not occur. The intermediate aquifer system consists of permeable quartz and phosphatic sands and carbonate deposits interlayered with discontinuous clay confining units that separate the system into the Tamiamiupper Hawthorn aquifer and the lower Hawthorn-upper Tampa aquifer. The 450to 600-ft-thick intermediate aquifer system has a transmissivity generally less than 10,000 ft2/d and exhibits storage characteristics of a confined aquifer. Water in the upper part of the intermediate system is fresh. In the lower part, slightly to moderately saline water is used for reverse-osmosis feed water and irrigation. The Upper Floridan aquifer has a maximum thickness of 1,600 ft within the Floridan aquifer system, and comprises four hydrogeologic units: (1) the 250-ft-thick Suwannee permeable zone, (2) the 350-ft- thick lower Suwannee-Ocala semiconfining unit, (3) the 300-ft-thick Ocala-Avon Park moderately permeable zone, and (4) the 700-ft-thick Avon Park highly permeable zone. The Suwannes permeable zone has an approximate transmissivity of 14,000 $\mathrm{ft^2/d}$ and is tapped by irrigation and reverse-osmosis supply wells. A 100-ft offset in a dolomitic marker bed within the zone was mapped to portray the trace of an east-west fault through the study area. The underlying lower Suwannee-Ocala semiconfining unit has a vertical hydraulic conductivity of about 0.1 ft/d and generally encompasses the transition zone between freshwater and very saline water and may be breached by the fault. The lower two hydrogeologic units have hydraulic conductivities of 25 and 100 ft/d and comprise the injection zone, which contains very saline water.

Ground-Water Quality. -- The study area is in a coastal peninsular setting where a shallow freshwater lens in upper aquifers grades downward and coastward to very saline water. Median dissolved-solids concentrations were identified as follows: (1) surficial aquifer system, less than 500 mg/L; (2) Tamiami-upper Hawthorn aquifer, 660 mg/L; (3) composite of both aquifers of the intermediate aquifer system, 2,170 mg/L; (4) Suwannee permeable zone, 3,210 mg/L; and (5) injection zone, 32,800 mg/L. Water generally grades from a calcium sulfate type in the north to a sodium chloride type in the south, with chloride increasing from about 30 to 19,000 mg/L where there is probably residual seawater in the system. Little Salt and Warm Mineral Springs, just east of the study area, discharge waters similar in quality to those in the Suwannee permeable zone and the injection zone, respectively. Approximately 100 deep uncontrolled flowing artesian wells that discharge continuously at land surface or leak internally from one aquifer to another have been identified in the study area. As of 1986, about half the wells that allowed upward flow of saline water from deep zones into shallow aquifers have been plugged as part of the Southwest Florida Water Management District's Quality of Water Improvement Frogram. Flowmeter surveys in 14 wells measured internal flow rates in the well bore between 0 and 350 gal/min; the median flow rate was about 10 gal/min. The highest rates of internal flow were measured in the Venice area and were not limited to a specific depth interval.

The Usefulness of a Solute-Transport Model.--The study area encompasses seven wastewater injection sites having a projected capacity for injecting 28.8 Mgal/d of treated sewage and reverse-osmosis wastewater into the zone 1,100 to 2,050 ft below land surface. A numerical model of ground-water flow and solute transport (HST3D) was used to evaluate injection-well design and potential for movement of injected wastewater within the hydrogeologic framework. Various well design scenarios were simulated with the model for a hypothetical prototype well injecting 1 Mgal/d of treated sewage for 10 yr.

The model simulated development of a convection cell around the injection well with the relatively bouyant fresh injectant rising to form a lens within the injection zone below the lower Suwannee-Ocala semiconfining unit. Around an ideal, fully penetrating well cased 50 ft into the injection zone and open from a depth of 1,150 to 2,050 ft, simulations show that the injectant moves upward to a depth of 940 ft, forms a lens about 600 ft thick, and spreads radially outward to a distance of 2,300 ft after 10 yr. The rate of upward movement through the overlying lower Suwannee-Ocala semiconfining unit was estimated to be 9 ft/yr and has the potential to vary over an order of magnitude range in the study area. Comparison simulations of injection through wells with open-depth intervals of 1,150 to 1,400 ft and 1,450 to 2,050 ft demonstrated that well construction has little effect on the areal spread of the injectant lens or the rate and extent of upward movement, probably because the injection zone is very permeable. Simulations also indicated that wastewater injected beneath the lower Suwannee-Ocala semiconfining unit at a reverse-osmosis supply well field, where water levels above the semiconfining unit are lowered 20 ft by pumpage, would move upward into the semiconfining unit to a depth of 860 ft, or about 80 ft higher over the same time period than at a site with no withdrawals above the injection zone. Areal extrapolation of various injection rates indicated that about 7 percent of the study area would be underlain by injected wastewater after 10 yr of injection at the maximum projected capacity. Observation wells in the injection zone would need to be open to the upper part of the zone and located within 2,000 ft of the injection well if movement of the injectant within the first 10 yr of operation is to be monitored. Conclusions drawn from the modeling are that, in general, the lower Suwannee-Ocala semiconfining unit retards but does not prevent the upward movement of injected fluid into the overlying freshwater aquifers.

The model analysis has demonstrated how, by using numerical methods, various hydrologic conditions can affect movement of wastewater injected into a deep saline aquifer. Modeling is also a useful tool for design of injection and monitor well systems. To obtain these results through operational tests would have been costly. The validity of computer modeling results is somewhat less certain than site-specific testing, but because results are general, they are transferable. Despite this reservation, the study is a practical example of the application of a transport model in ground-water investigations.

SELECTED REFERENCES

- GH2M Hill, Inc., 1978, Investigation of water availability for proposed well field no. 3, the Englewood Water District: Consultant's report in the files of the Englewood Water District.
- ---- 1980, Drilling and testing of wells for reverse osmosis water supply: Englewood Water District: Consultant's report in the files of the Englewood Water District.
- ---- 1986, Results of the reverse osmosis injection well investigation for the Englewood Water District: Consultant's report to the Florida Department of Environmental Regulation, file no. UD58-097806.
- ---- 1987, 24-hour pump test on the North Port deep injection well; Consultant's report to the Florida Department of Environmental Regulation, Technical Memorandum no. 3, file no. FG 15920.C2.
- ---- 1988, Drilling and testing of the deep injection well system at North Port, Florida: Consultant's report to the Florida Department of Environmental Regulation, file no. FC15920.G2.
- Clark, W.E., 1964, Possibility of saltwater leakage from proposed intracoastal waterway near Venice, Florida, well field: Florida Geological Survey Report of Investigations 38, 33 p.
- Duerr, A.D., and Wolansky, R.M., 1986, Hydrogeology of the surficial and intermediate aquifers of central Sarasota County, Florida: U.S. Geological Survey Water-Resources Investigations Report 86-4068, 48 p.
- Florida Department of Environmental Regulation, 1982a, Public drinking water systems: Chapter 17-22 in Florida Administrative Code, p. 89-109.
- ----, 1982b, Underground injection control program: Chapter 17-28, in Florida Administrative Code, 44 p.
- Freeze, R.A., and Cherry, J.A., 1979, Ground water: New Jersey, Prentice Hall, 604 p.
- GeoTrans, Inc., 1985, Numerical modeling of ground-water flow and saltwater transport in northern Pinellas County, Florida: Consultant's report in the files of the Southwest Florida Water Management District, 190 p.
- Geraghty and Miller, Inc., 1980, Hydrogeologic investigation of the upper aquifer systems in the Venice Gardens area, Phase I and Phase II: Consultant's report to the Florida Department of Environmental Regulation, file no. U058-116725.
- ---- 1981, MacArthur tract hydrologic and water-supply investigation, Phase I: Consultant's report in the files of Sarasota County.
- ---- 1985, Construction and testing of the injection well at Venice Gardens: Consultant's report to the Florida Department of Environmental Regulation, file no. UD58-90595, 25 p.

- Geraghty and Miller, Inc., 1986, Construction and testing of the injection and monitoring wells at Gasparilla Island Water Association, Inc., wastewater treatment plant, Boca Grande, Florida: Consultant's report to the Florida Department of Environmental Regulation, file no. DO36-121561, 40 p.
- Gilboy, A.E., 1985, Hydrogeology of the Southwest Florida Water Management District: Southwest Florida Water Management District Regional Analysis Section Technical Report 85-01, 18 p.
- Healy, H.G., 1978, Appraisal of uncontrolled flowing artesian wells in Florida: U.S. Geological Survey Water-Resources Investigations 78-95, 26 p.
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water (3d ed.): U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- Hickey, J.J., 1982, Hydrogeology and results of injection tests at wasteinjection test sites in Pinellas County, Florida. U.S. Geological Survey Water-Supply Paper 2183, 42 p.
- ---- 1989, Circular convection during subsurface injection of liquid waste, St. Pstersburg, Florida: Water Resources Research, v. 25, no. 7, p. 1481-1494.
- Hutchinson, C.B., and Trommer, J.T., in press, Model analysis of hydraulic properties of a leaky aquifer system, Sarasota County, Florida, in Subitzky, Seymour, ed., Selected papers in the hydrologic sciences: U.S. Geological Survey Water-Supply Paper 2340.
- INTERA Environmental Consultants, Inc., 1979, Revision of the documentation for a model for calculating effects of liquid waste disposal in deep saline aquifers: U.S. Geological Survey Water-Resources Investigations 79-96, 73 p.
- INTERCOMF Resource Development and Engineering, Inc., 1976, A model for calculating effects of liquid waste disposal in deep saline aquifers, Part 1-Development, Part 2--Documentation: U.S. Geological Survey Water Resources Investigations 76-61, 253 p.
- Joyner, B.F., and Sutcliffe, H., Jr., 1976, Water resources of Myakka River basin area, southwest Florida: U.S. Geological Survey Water-Resources Investigations 76-58, 87 p.
- Kimbler, O.K., Kazman, R.G., and Whitehead, W.R., 1975, Cyclic storage of freshwater in saline aquifers: Louisiana Water Resources Institute Bulletin 10, 78 p., with appendices.
- Kipp, K.L., 1986a, HST3D, a computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems: U.S. Geological Survey Water-Resources Investigations Report 86-4095, 517 p.
- ---- 1986b, Adaptation of the Carter-Tracy water influx calculation to ground-water flow simulation: Water Resources Research, v. 22, no. 3, p. 423-428.

- Lantz, R.B., 1970, Quantitative evaluation of numerical diffusion (truncation error): Transactions of the Society of Petroleum Engineers of the American Institute of Mining, Metallurgical, and Petroleum Engineers, v. 251, p. 315-320.
- Law Environmental, Inc., 1989, Results of exploratory/monitor well construction and testing, Knight Trail Park: Consultant's report to the Florida Department of Environmental Regulation, file no. UC58-125241.
- Lewelling, B.R., 1987a, Potentiometric surface of the intermediate aquifer system, west-central Florida, May 1987: U.S. Geological Survey Open-File Report 87-705, 1 sheet.
- ---- 1987b, Fotentiometric surface of the Upper Floridan aquifer, west-central Florida, May 1987: U.S. Geological Survey Open-File Report 87-451, 1 sheet.
- Miller, J.A., 1979, Potential subsurface zones for liquid-waste storage in Florida: Florida Bureau of Geology Map Series 94.
- ---- 1986, Hydrogeologic framework of the Floridan aquifer system in Florida and in parts of Georgia, Alabama, and South Carolina: U.S. Geological Survey Professional Paper 1403-B, 91 p.
- Post, Buckley, Schuh, and Jernigan, Inc., 1981, Aquifer test engineering report, the Plantation, Sarasota County, Florida: Consultant's report to the Florida Department of Environmental Regulation, file no. U058-109386.
- ---- 1982a, Floridan aquifer test engineering report, the Plantation, Sarasota County, Florida: Consultant's report in the files of the Plantation Utilities.
- ---- 1982b, Test of second artesian and Floridan aquifers, City of Venice, Sarasota County, Florida: Consultant's report in the files of the city of Venice.
- ---- 1984, Deep-injection test well, the Plantation, Sarasota County, Florida: Consultant's report to the Florida Department of Environmental Regulation, file no. U058-109386.
- ---- 1986, Deep-injection exploratory/monitor well, Atlantic Utilities of Sarasota, Inc.: Consultant's report to the Florida Department of Environmental Regulation, file no. UC58-126969.
- ---- 1989, Deep test/injection well, Atlantic Utilities of Sarasota, Inc.: Consultant's report to the Florida Department of Environmental Regulation, file no. UC58-161458.
- Preedom, K.A., 1984, Artesian well plugging work plan: Southwest Florida Water Management District Report, 12 p.
- Puri, H.S., and Winston, G.O., 1974, Geologic framework of the high transmissivity zones in south Florida: Florida Bureau of Geology Special Publication 20, 101 p.

- Robingrove, C.J., Langford, R.H., and Brookhart, J.W., 1958, Saline-Water Resources of North Dakota: U.S. Geological Survey Water-Supply Paper 1428, 72 p.
- Rosenau, J.C., Faulkmer, G.L., Hendry, C.W., Jr., and Hull, R.W., 1977, Springs of Florida (2d ed.): Florida Bureau of Geology Bulletin 31, 461 p.
- Royal, W.R., 1978, The man who rode sharks: New York, Dodd, Meade and Company, 254 p.
- Ryder, P.D., 1985, Hydrology of the Floridan aquifer system in west-central Florida: U.S. Geological Survey Professional Paper 1403-F, 63 p.
- Smally, Wellford, and Nalven, Inc., 1963, Water supplies of Sarasota County: Consultant's report in the files of Sarasota County, 122 p.
- Southeastern Geological Society, 1986, Hydrogeological units of Florida: Florida Bureau of Geology Special Publication 28, 9 p.
- Sproul, C.R., Boggess, D.H., and Woodard, D.H., 1972, Saline-water intrusion from deep artesian sources in the McGregor Isles area of Lee County, Florida: Florida Bureau of Geology Information Circular 75, 30 p.
- Stringfield, V.T., 1933a, Exploration of artesian wells in Sarasota County, Florida: Florida Geological Survey Twenty-Third and Twenty-Fourth Annual Report, p. 199-227.
- ---- 1933b, Ground water resources of Sarasota County, Florida: Florida Geological Survey Twenty-Third and Twenty-Fourth Annual Report, p. 125-194.
- Sutcliffe, H., Jr., 1975, Appraisal of the water resources of Charlotte County, Florida: Florida Bureau of Geology Report of Investigations 78, 53 p.
- ---- 1979, Hydrologic data from a deep test well, City of Sarasota, Florida: U.S. Geological Survey Open-File Report 79-1275, 23 p.
- Sutcliffe, H., Jr., and Joyner, B.F., 1968, Test well exploration in the Myakka River basin area, Florida: Florida Division of Geology Information Circular 56, 61 p.
- Sutcliffe, H., Jr., and Thompson, T.H., 1983, Occurrence and use of ground water in the Venice-Englewood area, Sarasota and Charlotte Counties, Florida: U.S. Geological Survey Open-File Report 82-700, 59 p.
- U.S. Geological Survey, 1973, Map of flood-prone areas, El Jobean, Florida: U.S. Geological Survey 7.5 Minute Series Quadrangle.
- U.S. Geological Survey, 1984, Aquifer test at Manatee Junior College, Venice, Florida: U.S. Geological Survey Open-File Release, in files of the U.S. Geological Survey, Tampa, Fla.

- U.S. Geological Survey, 1986, Aquifer test at ROMP TR5-2, Sarasota County, Florida: U.S. Geological Survey Open-File Release, in files of the U.S. Geological Survey, Tampa, Fla.
- Voss, C.I., 1984, A finite-element simulation model for saturated-unsaturated fluid-density-dependent ground-water flow with energy transport or chemically-reactive single-species solute transport: U.S. Geological Survey Water-Resources Investigations Report 84-4369, 409 p.
- White, W.A., 1970, The geomorphology of the Florida peninsula: Florida Bureau of Geology Bulletin 51, 164 p.
- Wolansky, R.M., 1983, Hydrogeology of the Sarasota-Port Charlotte area, Florida: U.S. Geological Survey Water-Resources Investigations 82-4089, 48 p.
- Wolansky, R.M., Barr, G.L., and Spechler, R.M., 1979, Generalized configuration of the bottom of the Floridan aquifer, Southwest Florida Water Management District: U.S. Geological Survey Water-Resources Investigations Open-File Report 79-1490, 1 sheet.
- ---- 1980, Configuration of the top of the highly permeable dolomite zone of the Floridan aquifer, Southwest Florida Water Management District: U.S. Geological Survey Water-Resources Investigations Open-File Report 80-433, 1 sheet.
- Wolansky, R.M., and Corral, M.A., Jr., 1985, Aquifer tests in west-central Florida, 1952-76: U.S. Geological Survey Water-Resources Investigations Report 84-4044, 127 p.

APPENDIX A: LISTING OF MODEL-INPUT FILE

A sample input-data listing is provided for the predictive run where 10 Mgal/d of treated sewage is injected for 10 yr. The listing contains 351 lines, of which 245 lines are comments that aid construction of the data file. Critical comments are keyed to input record descriptions of Kipp (1986a, p. 189). The following order generally is observed for data input: (1) fundamental and dimensioning information, (2) spatial geometry and mesh information, (3) fluid properties, (4) porous medium properties, (5) source information, (6) boundary condition information, (7) initial condition information, (8) calculation parameters, and (9) output specifications.

```
SAMPLE INPUT FILE: INJECT 1 MGAL/DAY FOR 10 YEARS TERCOGN AB IDEAL, FULLY PENETRATING WELL
IRRUSH AB IDEAL, FULLY PERSTRATI

C....START OF THE DATA FILE

C....DIMENSIONING DATA - READ1

C.1.1 FITLE LINE 1

INJECT 1 MGAL/D SEMAGE INTO OCALA-AVON PARK

C.1.2 . TITLE LINE 2

FOR 10 YEARS

C.1.3 . RESTRICT/F), TIMEST

F 0

C.1.4 . REAT, SOLUTE, EQUNIT, CYLIND, SCALPF; ALL (T/F)

F T T T

G.1.5 . MK, NY, NZ, NECN

98, 27, 0

C.1.6 . NETCEC, NFEC, NAIFC, NLBC, NECEG, NHEL

98 0 25 0 0 7

C.1.7 . NEMEZ
   C.1.8 .. SLMETH(I),LCROSD(T/F)
          1.9 .. IBC BY I, J,K RANGE {0,1-0.3} , WITE NO IMOD PARAMETER, FOR EXCLUDED CELLS
  C.1.9 .. IBC BY I,J,K
0 /
C.1.10 .. RDECBO(T/F)
  C....STATIC DATA - READ2
C....CUTFUT INFORMATION
C.2.1 . PRIME(T/F)
T
C.2.2B.3A .. Z(1), Z(8Z); (0) ~ URIGRZ [2.2B.3A], CILIND [1.4]
-2039 -750
C.2.2B.3B .. Z(K); (0) - BOT URIGRZ [2.2B.3A], CILIND [1.4]
C.2.3B.3C. IILLIT(FF); (0) - BOT CILIND [1.4]
C.2.3.1 .. IILLIT(FF); (0) - BOT CILIND [1.4]
C.2.3.2 .. IELIXZ, IRETYZ, THETZZ; (0) - TILI [2.3.1] AND BOT CYLIND [1.4]
C.2.1.1 .. BP
3.03E-8
C.2.4.2 .. PO, TO, WO, DERFO
0 77 0 84.0
C.2.4.3 .. WI, DERF1; (0) - SOLUTE [1.4]
.005 82.4
C.2.3.1 .. BOTVO, TVF0(1), VISIFO(1), I=1 TO BOTVO; (0) - HEAT [1.4] OR HEAT [1.4] AND SOLUTE [1.4] CR. BOTV, EVENT [1.4]
CALD. HOT. SOLUTE [1.4]
C.2.5.2 .. BOTVI, TVF1(1), VISIFI(1), I=1 TO BOTVI; (0) - SOLUTE [1.4] AND SEAT [1.4]
C.2.5.3 .. HOCV, TRYIS, GVIS(1), VISCIR(I), I=1 TO BOCV; (0) - SOLUTE [1.4]
C.2.5.3 .. BOTVI, TRYIS, GVIS(1), VISCIR(I), I=1 TO BOCV; (0) - SOLUTE [1.4]
C.2.5.3 .. BOTVI SOLUTE [1.5]
C.2.5.3 .. BOTVI SOLUTE [1.5]
C.2.5.4 .. RATH
   C.2.8.2 ... POH, TOH
C.2.8.2 ... POH, TOH
C.77
C.....FLUID THERMAL PROPERTY INFORMATION
C.2.7 .....FORT, NET, NI; (0) - BEAT (1.4)
C......SOLUIE INFORMATION
C.2.8 ... DM, DECLAM; (0) - SOLUIE [1.4]
8.75E-7 0
C......PORCUS MEDIA ZOME INFORMATION
C.2.9.1 ... IFMZ, IIZ(IFMZ), IZZ(IFMZ), JIZ(IFMZ), JZZ(IFMZ), KIZ(IFMZ), KZZ(IFMZ)
1 1 98 1 1 14
2 1 98 1 1 14 20
3 1 98 1 1 20 27
```

```
0 /
C....USE AS MARY 2.9.1 LINES AS NECESSARY
C.2.9.2 . END WITE 0 /
C....FOROUS MEDIA PROPERTY INFORMATION
C.2.10.1 . KXK(IMEZ),XYY(IPMZ),KZZ(IPMZ),IPMZ-1 TO NEMZ [1.7]
3.5E-10,,3.5E-10
3.75E-11,6.75E-11
3.37ZE-13,,3.37ZE-13
C.2.10.2 . POROUS (IPMZ),IPMZ-1 TO NEMZ [1.7]
15.15 .25
C.2.10.3 . ABEM(IPMZ),IPMZ-1 TO NEMZ [1.7]
5.5E-7 6.2E-6 1.5E-5
C.2.10.3 . ABEM(IPMZ),IPMZ-1 TO NEMZ [1.7]
5.5E-7 6.2E-6 1.5E-5
C.2.11.1 . RCFFM(IPMZ),IPMZ-1 TO NEMZ [1.7];(0) - EEAT [1.4]
C.2.11.2 . KXXFM(IPMZ),IPMZ-1 TO NEMZ [1.7];(0) - EFAT [1.4]
C.2.11.2 . KXXFM(IPMZ),ETYPM(IPMZ),IZM(IPMZ),IPMZ-1 TO NEMZ [1.7];(0) - SOLUTE [1.4] OR HEAT [1.4]
C.2.12 . ALPHL(IPMZ),ALPHT(IPMZ),IPMZ-1 TO NEMZ [1.7];(0) - SOLUTE [1.4] OR HEAT [1.4]
C.3. POROUS MEDIA SOLUTE PROPERTY THEORY.
        C.....POROUS MEDIA SOLUTE PROPERTY INFORMATION
C.2.13 .. DBKD(IPM2), IPM2-1 TO NFMZ (1.7];(0) - SOLUTE [1.4]
3*0.0
  0 ... WRISL, WRID, MERUF, HRANGL; (0) - ROMDEF [2.14.1] AND WRCALC (MCMETH [2.14.3] >30)
C.2.14.5 .. BITCHR, DIRAMR, KIRMR, KIRMR, LARMR, TATHR; (0) - ROMDEF [2.14.1] WRCALC (MCMETH [2.14.3] >30) AND HEAT [1.4]
C.... USE AS MANY 2.14.3-6 LINES AS NECESSAY
C.2.14.7 . END WITTO ()
C.2.14.8 .. MRITOM(14), TOLDPH(6.E-3), TOLPPH(.001), TOLCH(.001), DAMMRC(Z.), DZMIN(.01), EPSHR(.001); (0) - ROMDEF [2.14.1]
C.... SOUNDARY CONDITION INFORMATION
C.... SPECIFIED VALUE B.C.
C.... SPECIFIED VALUE B.C.
1 88 1 1 27 27
101 1
8 /
C.... SPECIFIED FLUX B.C.
    0 /
C.... SPECIFIED FLUX B.C.
C.2.16. IBC BY I,J K RANGE (0.1-0.3) WITH NO IMOD PARAMETER; (G) - NTBC (1.6) > 0
C.... AQUITER AND RIVER LEAKAGE B.C.
C.2.17.1 IBC BY I,JK RANGE (0.1-0.3) WITH NO IMOD PARAMETER; (O) - NTBC (1.6) > 0
C.2.17.2 ELBC, BELBC, ZELBC BY I,JK RANGE (0.1-0.3); (O) - HLBC (1.6) > 0
EXTER LEAKAGE B.C.
C.2.17.3 I1,12,1,13, KREC, BERBC, ZERBC; (O) - NLBC [1.8] > 0
C.2.17.4 END WITH 0 /
C.2.17.4 END WITH 0 /
C.2.17.4 IBC BY I,JK RANGE (0.1-0.3) WITH NO IMOD PARAMETER; (O) - NAIFC [1.6] > 0
C.2.18.1 IBC BY I,JK RANGE (0.1-0.3) WITH NO IMOD PARAMETER; (O) - NAIFC [1.6] > 0
C. (O) /
NO. 98 1 1 1 25

103405
0 /
0 /
0 / 2.2.18.2 .. UVALFC BY I,J,K RANGE {0.1-0.3};(0) - MAIFC {1.6} > 0

98 98 1 1 1 26

1 1
0 /
0 /
0 / 2.2.18.3 .. TAIF;(0) - NAIFC [1.8) > 0

2 .....TRANSIENT, CARTER-TRACY A.I.F.
C.2.18.4 .. KDAM, ANGAM, VISGAR, FORGAR, BOAR, RIGAR, ANGGAR;(0) - IAIF [2.18.3] = 2

3.5E-10 5.5K-7 2500 | 13 1300 3000 360

C.2.18.4 .. KDAM, CONDUCTION B.C.
C.2.18.1 .. IBC BY I,J,K RANGE {0.1-0.3}, WITH NO INCO PARAMETER ,FOR NCBC MODES;(0) - REAT {1.4} AND NECEC [1.6] > 0

C.2.19.1 .. IBC BY I,J,K RANGE {0.1-0.3} FOR BCBC MODES;(0) - REAT [1.4] AND NECEC [1.6] > 0

C.2.19.3 .. UNRING BY I,J,K RANGE {0.1-0.3} FOR BCBC MODES;(0) - REAT [1.4] AND NECEC [1.6] > 0

C.2.19.4 .. UNRING BY I,J,K RANGE {0.1-0.3} FOR BCBC MODES;(0) - REAT [1.4] AND NECEC [1.6] > 0

C.2.19.4 .. UNRING BY I,J,K RANGE {0.1-0.3} FOR BCBC MODES;(0) - REAT [1.4] AND NECEC [1.6] > 0

C.2.19.5 .. UNRING BY I,J,K RANGE {0.1-0.3} FOR BCBC MODES;(0) - REAT [1.4] AND NECEC [1.6] > 0

C.2.19.5 .. UNRING BY I,J,K RANGE {0.1-0.3} FOR BCBC MODES;(0) - REAT [1.4] AND NECEC [1.6] > 0

C.2.20.1 .. UNRING BY I,J,K RANGE {0.1-0.3} FOR BCBC MODES;(0) - REAT [1.4] AND NECEC [1.6] > 0

C.2.20.1 .. UNRING BY I,J,K RANGE {0.1-0.3} FOR BCBC MODES;(0) - REAT [1.4] AND NECEC [1.6] > 0
```

```
C.3.6.3 .. TAIR BY I.J.K RANGE (0.1-0.3):(0) - MDAIF [3.8.1] AND SOLUTE [1.4]
                                                                                                                                                                                                                                                                                                                DEMONA BY I,J,K RANGE (0.1-0.3);(O) - MDALF (3.8.1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       3.611 ... ADAIR(1/2); (0) - MAIRC [1,8] > 0
                                                                                                                                                                                                                           11.2.(11.22,11.22,12.23) AND CASHANG, DRING, CODC. (0) - SDLAG (1.2.11) . 2.0. (0) - SDLAG (1.2.12) . 2.0. (0) - SDLAG (1.2.23) . 3.0. (0) - S
                                                                                                      THE B.C. BY I.L.K RANGE (0.1-0.3);(0) - ROSTEC (3.3.1) AND SEAT [1.4]

STREILFED RIGHT AND (0.1-0.3);(0) - ROSTEC (3.3.1) AND SCLUTZ [1.4]

CLEC BY I.L.K RANGE (0.1-0.3);(0) - ROSTEC (3.3.1) AND SCLUTZ [1.4]

RELIES CHYLLY RANGE (0.1-0.3);(0) - ROSTEC (3.3.1) AND SCLUTZ [1.4]

RELIES CHYLLY RANGE (0.1-0.3);(0) - ROSTEC (3.3.1) AND SCLUTZ [1.4]

RELIES CHYLLY RANGE (0.1-0.3);(0) - ROSTEC (3.3.1)

RELIES CHYLLY RANGE (0.1-0.3);(0) - ROSTEC (3.4.1)

RELIES CHYLLY RANGE (0.1-0.3);(0) -
                                                                                                                                              T 23.12. . PMP B.C. BY I,J,K RANGE (0.1-0.3);(0) - EDSPBC (3.3.1)
                                                                                               C.....USE AS MANY 3.2.2 LINES AS WECKSEARY
C.3.2.3.1. MOSPOC,ROSTBC,ROSGBC,ALL(I/F);(0) - NOT CYLIND [1.4] AND MPTGBC [1.6] > 0
C..... BOUNDER CONDITION INFORMATION
C.... SUCCESSED, ROSGBC, ROSGBC, ADGRESSER AND TO THE STATE OF THE STATE O
                                                                                                                                    .3.2.2 .. INTL, GHY, FHSUR, FMKT, THSRMI, CHKI; (O) - EDHFLO [3.2.1] OR NDHED [3.2.1] LISTADE (3.2.1)
                                                                                                                                                                                                                                                                                                                                                                                       CO... TRANSIENT DATA - READS
C.3.1 .. TERU(I/F)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (T/I)IOIEDO .. E.ES.S.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2.23.5 .. ORENPR[1]:(0) - NOI CYLIND [1.4]
2.23.4 .. FLIZGN(I/F);(0) - PRIPRF [2.23.1]
                                                                                                                                                                                                                                                                                                                                                                                                                           6-7
C.2.23.2 .. IPRFIC,FRIDV(I/F);(O) - FRIIC [2.23.1]
201 .. ORENFR(I);(O) - NOT CTLIND [1.4]
C.2.23.3 .. ORENFR(I);(O) - PRIPAGE [2.23.1]
          C:S:23:7 : MICHENE EMIRE MAINCE FRIENCHMENH FRIMEL; NIT (I/E)
C:S:23:3 : MICHENE FRIENCHMENT FRIME FRI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2.22.1 . POSPITA, FORMATION
2.21.35 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BOT ICETDE (2.21.1) AND NOT ICETTE (2.21.2)
2.21.35 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - FREUR [2.20] AND ICET [2.21.2]
2.21.35 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.2]
2.21.45 .. T BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1], LIHIT OF 10
2.21.55 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAT BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAY BY 1,1,K RANGE (0.1-0.3);(0) - BAAY [1.4] AND ICE [2.21.1]
2.21.5 .. BAY BY 1,1,K RANGE (0.1-0.3);(
                                                                                                                                                                                                                                    .21.2 .. ICHWY(I/F);(O) - FRESUR [2.21.1] AND NOT ICHWY [2.21.2]
.21.36 .. ZPIMIT,FIMIT;(O) - ICHYDF [2.21.1] AND NOT ICHWY [2.21.2]
                                                                                                                   ... INITIAL CONDITION INFORMATION ... INTERTY, ICT = 7, IF NOT. SOLUTE, ICC = 7 \frac{7}{7}
```