TOTAL MAXIMUM DAILY LOAD (TMDL)

For

Nutrients, Dissolved Oxygen and Biochemical Oxygen Demand

In

Springs Coast Basin (WBIDs 1668A, 1668B and 1508)

Prepared by:

US EPA Region 4
61 Forsyth Street SW
Atlanta, Georgia 30303

March 2008
In compliance with the provisions of the Federal Clean Water Act, 33 U.S.C §1251 et. seq., as amended by the Water Quality Act of 1987, P.L. 400-4, the U.S. Environmental Protection Agency is hereby establishing these Total Maximum Daily Loads (TMDLs) for dissolved oxygen, nutrients and biochemical oxygen demand in the Springs Coast Basin (WBIDs 1668A, 1668B and 1508). Subsequent actions must be consistent with this TMDL.

James D. Giattina
Director
Water Management Division

Concurrences:
J. Eason
M. Davis
A. Godfrey
C. Kelly
J. Benante
G. Mitchell
J. Giattina
TABLE OF CONTENTS

1. **INTRODUCTION** .. 8

2. **PROBLEM DEFINITION** .. 8

3. **WATERSHED DESCRIPTION** ... 9

4. **WATER QUALITY STANDARDS** .. 12
 - 4.1 Nutrients .. 12
 - 4.2 Dissolved Oxygen .. 12
 - 4.3 Biochemical Oxygen Demand .. 13

5. **WATER QUALITY TARGET IDENTIFICATION** .. 13
 - 5.1 Basis and Rationale For Nutrient Targets ... 13
 - 5.2 Approches for Developing Nutrient Target ... 14

6. **WATER QUALITY ASSESSMENT** ... 16

7. **SOURCE ASSESSMENT** .. 25
 - 7.1 Point Sources .. 26
 - 7.1.1 Wastewater Treatment Facilities .. 26
 - 7.1.2 Municipal Separate Storm Sewer Systems (MS4s) ... 26
 - 7.2 Nonpoint Sources .. 26

8. **ANALYTICAL APPROACH** .. 27

9. **DEVELOPMENT OF THE TMDL** ... 28
 - 9.1 Critical Conditions ... 29
 - 9.2 Margin of Safety ... 29
 - 9.3 Determination of TMDL Components ... 29
 - 9.4 Seasonal Variation .. 30
 - 9.5 Recommendations ... 30

10. **References** .. 31
LIST OF TABLES

Table 1. Impaired Waterbodies addressed in this TMDL Report ... 8
Table 2. Land Use Distribution .. 11
Table 3 Florida Peninsula Bioregion Percentile Distribution .. 15
Table 4 Candidate WBIDs for Determining Nutrient Targets (source: FDEP, 2007) 16
Table 5 Monitoring Stations in Springs Coast Basin .. 18
Table 6 Summary of Monitoring Data in St. Joe Creek (WBID 1668A) ... 18
Table 7 Summary of Monitoring Data in Pinellas Ditch #5 (WBID 1668B) .. 21
Table 8 Summary of Monitoring Data in Klosterman Bayou (WBID 1508) .. 23
Table 9 Summary of TMDL Components .. 30

LIST OF FIGURES

Figure 1. Location of St. Joe Creek, Pinellas Ditch #5 and Klosterman Bayou in the Springs Coast Basin ... 10
Figure 2. Summary of DO Monitoring Data in St. Joe Creek .. 19
Figure 3. Summary of TN Monitoring Data in St. Joe Creek ... 19
Figure 4. Summary of TP Monitoring Data in St. Joe Creek ... 20
Figure 5 Summary of BOD Monitoring Data in St. Joe Creek ... 20
Figure 6 Summary of DO Monitoring Data in Pinellas Ditch #5 ... 21
Figure 7 Summary of TN Monitoring Data in Pinellas Ditch #5 ... 22
Figure 8 Summary of TP Monitoring Data in Pinellas Ditch #5 ... 22
Figure 9 Summary of BOD Monitoring Data in Pinellas Ditch #5 ... 23
Figure 10 Summary of DO Monitoring Data in Klosterman Bayou .. 24
Figure 11 Summary of TP Monitoring Data in Klosterman Bayou ... 24
Figure 12 Summary of TN Monitoring Data in Klosterman Bayou .. 25
Figure 13 Predicted DO Versus Observed DO for St. Joe Creek ... 27
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMAP</td>
<td>Basin Management Action Plan</td>
</tr>
<tr>
<td>BMP</td>
<td>Best Management Practices</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical Oxygen Demand</td>
</tr>
<tr>
<td>BPJ</td>
<td>Best Professional Judgment</td>
</tr>
<tr>
<td>CFS</td>
<td>Cubic Feet per Second</td>
</tr>
<tr>
<td>CWA</td>
<td>Clean Water Act</td>
</tr>
<tr>
<td>DEM</td>
<td>Digital Elevation Model</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved Oxygen</td>
</tr>
<tr>
<td>EMC</td>
<td>Event Mean Concentration</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>FAC</td>
<td>Florida Administrative Code</td>
</tr>
<tr>
<td>FDEP</td>
<td>Florida Department of Environmental Protection</td>
</tr>
<tr>
<td>FLUCC</td>
<td>Florida Land Use and Cover Classification System</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>HUC</td>
<td>Hydrologic Unit Code</td>
</tr>
<tr>
<td>LA</td>
<td>Load Allocation</td>
</tr>
<tr>
<td>MGD</td>
<td>Million Gallons per Day</td>
</tr>
<tr>
<td>MOS</td>
<td>Margin of Safety</td>
</tr>
<tr>
<td>MS4</td>
<td>Municipal Separate Storm Sewer Systems</td>
</tr>
<tr>
<td>NLCD</td>
<td>National Land Cover Data</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>OSTD</td>
<td>Onsite Sewer Treatment and Disposal Systems</td>
</tr>
<tr>
<td>SOD</td>
<td>Sediment Oxygen Demand</td>
</tr>
<tr>
<td>STORET</td>
<td>STORage RETrieval database</td>
</tr>
<tr>
<td>TMDL</td>
<td>Total Maximum Daily Load</td>
</tr>
<tr>
<td>TN</td>
<td>Total Nitrogen</td>
</tr>
<tr>
<td>TP</td>
<td>Total Phosphorus</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>WASD</td>
<td>Water and Sewer Department</td>
</tr>
<tr>
<td>WBID</td>
<td>Water Body Identification</td>
</tr>
<tr>
<td>WLA</td>
<td>Waste Load Allocation</td>
</tr>
<tr>
<td>WMP</td>
<td>Water Management Plan</td>
</tr>
<tr>
<td>WQS</td>
<td>Water Quality Standards</td>
</tr>
</tbody>
</table>
SUMMARY SHEET
Total Maximum Daily Load (TMDL)

1. 303(d) Listed Waterbody Information

State: Florida
Major River Basin: Springs Coast

Impaired Waterbodies for TMDLs (1998 303(d) List):

<table>
<thead>
<tr>
<th>WBID</th>
<th>Name</th>
<th>Classification</th>
<th>River Basin</th>
<th>County</th>
<th>Constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1668A</td>
<td>St. Joe Creek</td>
<td>3F (Fresh)</td>
<td>Springs Coast</td>
<td>Pinellas</td>
<td>Dissolved Oxygen, Nutrients, Biochemical Oxygen Demand</td>
</tr>
<tr>
<td>1668B</td>
<td>Pinellas Ditch #5</td>
<td>3F (Fresh)</td>
<td>Springs Coast</td>
<td>Pinellas</td>
<td>Dissolved Oxygen, Biochemical Oxygen Demand, Nutrients</td>
</tr>
<tr>
<td>1508</td>
<td>Klosterman Bayou Run</td>
<td>3M (Marine)</td>
<td>Springs Coast</td>
<td>Pinellas</td>
<td>Dissolved Oxygen, Nutrients</td>
</tr>
</tbody>
</table>

2. WATER QUALITY STANDARDS AND TMDL TARGETS

The targets for the TMDLs are set to the State of Florida’s water quality criteria. The State of Florida has a narrative criterion for nutrients stating that in no case shall nutrient concentrations of a body of water be altered so as to cause an imbalance in natural populations of aquatic flora and fauna and also not to produce or contribute to conditions that violate the dissolved oxygen criterion, including natural conditions. The narrative criterion for biochemical oxygen demand (BOD) states that it shall not be increased to exceed values which would cause dissolved oxygen (DO) to be depressed below the limit established for each class and, in no case, shall it be great enough to produce nuisance conditions. The criterion for DO requires that in no case shall the concentration of dissolved oxygen average less than 5.0 in a 24-hour period and shall never be less than 4.0 mg/L for marine waters or shall not be less than 5 mg/L for fresh waters.

3. TMDL ANALYTICAL APPROACH

The nutrient targets for the TMDLs were developed by applying a tiered approach, which uses independent approaches that have varying strengths and weaknesses. The first tier applies the regression approach, which attempts to develop a multivariate regression model to analyze the relationship between low instream DO and nutrients. If a regression correlation does not exist, then the second tier is applied. The second tier applies the 25th percentile of an all stream dataset for fresh waters located within the Peninsula Bioregion of Florida. For marine waters, the second tier applies FDEP’s list of similar non-impaired marine waters that sustain a healthy balance of flora and fauna to use as candidate WBIDs for determining the nutrient targets. The third tier, EPA’s Pollutant Loading (PLOAD) spreadsheet, was not used in developing the TMDL targets as the first two tiers were successful. PLOAD was applied to each waterbody for additional information that may be helpful during TMDL implementation and is discussed in Appendix A. The targets produced by applying the first two tiers can be viewed in the following table.
4. TMDL Targets:

<table>
<thead>
<tr>
<th>WBID</th>
<th>Parameter</th>
<th>Regression Approach</th>
<th>Bioregion Approach-Fresh</th>
<th>Candidate WBIDS Approach-Estuarine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1668A</td>
<td>TN</td>
<td>49% reduction</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>TP</td>
<td>49% reduction</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>1668B</td>
<td>TN</td>
<td>n/a</td>
<td>27% reduction, 0.94 mg/L</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>TP</td>
<td>n/a</td>
<td>64% reduction, 0.064 mg/L</td>
<td>n/a</td>
</tr>
<tr>
<td>1508</td>
<td>TN</td>
<td>n/a</td>
<td>n/a</td>
<td>69% reduction, 0.53 mg/L</td>
</tr>
<tr>
<td></td>
<td>TP</td>
<td>n/a</td>
<td>n/a</td>
<td>92% reduction, 0.05 mg/L</td>
</tr>
</tbody>
</table>

^1 not applicable because the approach was not applied to the WBID

5. TMDL Allocations:

<table>
<thead>
<tr>
<th>WBID</th>
<th>Parameter</th>
<th>WLA</th>
<th>LA</th>
<th>TMDL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MS4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1668A</td>
<td>TN</td>
<td>49% reduction</td>
<td>49% reduction</td>
<td>49% reduction</td>
</tr>
<tr>
<td></td>
<td>TP</td>
<td>49% reduction</td>
<td>49% reduction</td>
<td>49% reduction</td>
</tr>
<tr>
<td>1668B</td>
<td>TN</td>
<td>27% reduction, 0.94 mg/L</td>
<td>27% reduction, 0.94 mg/L</td>
<td>27% reduction, 0.94 mg/L</td>
</tr>
<tr>
<td></td>
<td>TP</td>
<td>64% reduction, 0.064 mg/L</td>
<td>64% reduction, 0.064 mg/L</td>
<td>64% reduction, 0.064 mg/L</td>
</tr>
<tr>
<td>1508</td>
<td>TN</td>
<td>69% reduction, 0.53 mg/L</td>
<td>69% reduction, 0.53 mg/L</td>
<td>69% reduction, 0.53 mg/L</td>
</tr>
<tr>
<td></td>
<td>TP</td>
<td>92% reduction, 0.05 mg/L</td>
<td>92% reduction, 0.05 mg/L</td>
<td>92% reduction, 0.05 mg/L</td>
</tr>
</tbody>
</table>

Note: For these TMDLs, it is not possible to estimate the daily loads due the lack of flow data. However, in order to calculate a daily load, multiple the TMDL concentration by the daily flow and appropriate conversion factors.

5. Endangered Species (yes or blank): Yes
6. EPA Lead on TMDL (EPA or blank): EPA
7. TMDL Considers Point Source, Nonpoint Source, or Both: Both
TOTAL MAXIMUM DAILY LOADS FOR NUTRIENTS, LOW DISSOLVED OXYGEN AND BIOCHEMICAL OXYGEN DEMAND IN THE SPRINGS COAST BASIN (WBIDS 1668A, 1668B AND 1508)

1. INTRODUCTION

Section 303(d) of the Clean Water Act (CWA) requires each state to list those waters within its boundaries for which technology based effluent limitations are not stringent enough to protect any water quality standard applicable to such waters. Listed waters are prioritized with respect to designated use classifications and the severity of pollution. In accordance with this prioritization, states are required to develop Total Maximum Daily Loads (TMDLs) for those water bodies that are not meeting water quality standards (WQS). The TMDL process establishes the allowable loadings of pollutants or other quantifiable parameters for a waterbody based on the relationship between pollution sources and in-stream water quality conditions, so that states can establish water quality based controls to reduce pollution from both point and nonpoint sources and restore and maintain the quality of their water resources (USEPA, 1991).

For assessment purposes, the Florida Department of Environmental Protection (FDEP) has divided the Springs Coast Basin into water assessment polygons with a unique waterbody identification (WBID) number for each watershed or stream reach. This TMDL report addresses three WBIDs, 1668A, 1668B and 1508. The WBIDs are part of the Coastal Pinellas County Planning Unit. Planning units are groups of smaller watersheds (i.e., WBIDs) that are part of a larger basin, in this case the Springs Coast Basin.

2. PROBLEM DEFINITION

Florida’s final 1998 Section 303(d) list identified WBIDs 1668A, 1668B and 1508 as not supporting water quality standards (WQS). This report addresses the nutrient, biochemical oxygen demand (BOD) and dissolved oxygen (DO) listings for these WBIDs (Table 1). The geographic locations of these WBIDs are shown in Figure 1. These TMDLs are developed pursuant to EPA commitments in the 1998 Consent Decree in the Florida TMDL lawsuit (Florida Wildlife Federation, et al. v. Carol Browner, et al., Civil Action No. 4: 98CV356-WS, 1998).

Table 1. Impaired Waterbodies addressed in this TMDL Report

<table>
<thead>
<tr>
<th>WBID</th>
<th>Name</th>
<th>Classification</th>
<th>River Basin</th>
<th>County</th>
<th>Constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1668A</td>
<td>St. Joe Creek</td>
<td>3F (Fresh)</td>
<td>Springs Coast</td>
<td>Pinellas</td>
<td>Dissolved Oxygen, Nutrients, Biochemical Oxygen Demand</td>
</tr>
<tr>
<td>1668B</td>
<td>Pinellas Ditch #5</td>
<td>3F (Fresh)</td>
<td>Springs Coast</td>
<td>Pinellas</td>
<td>Dissolved Oxygen, Biochemical Oxygen Demand, Nutrients</td>
</tr>
<tr>
<td>1508</td>
<td>Klosterman Bayou Run</td>
<td>3M (Marine)</td>
<td>Springs Coast</td>
<td>Pinellas</td>
<td>Dissolved Oxygen, Nutrients</td>
</tr>
</tbody>
</table>
3. WATERSHED DESCRIPTION

Information about the watershed is summarized from the Springs Coast Water Quality Status Report (FDEP, 2006). The Springs Coast Basin covers approximately 800 square miles and a complex hydrologic system. The southern part of the Springs Coast Basin encompasses western Pinellas County. Pinellas County, which extends from the Anclote River southward to Gulfport and eastward to S.R. 19, is mostly developed and has the highest population density in the State. St. Joe Creek (WBID 1668A), Pinellas Ditch#5 (WBID 1668B) and Klosterman Bayou (WBID 1508) are all located entirely in Pinellas County.

St. Joe Creek
The main stem of St. Joe Creek is divided into a tidal and a freshwater segment identified as 1668E and 1668A, respectively. The fresh water segment of St. Joe Creek (WBID 1668A) is the segment that is addressed in this TMDL report. St. Joe Creek is free flowing for about 4.9 miles until it reaches the upper most portion of its tidal area. The tidal portion begins where the creek crosses under 46th Avenue in the City of St. Petersburg. The tidal portion of the Creek is not addressed in this TMDL report. St. Petersburg is the largest city in Pinellas County and the fourth largest in the state of Florida. The population of St. Petersburg is 247,610. Based on the population density in St. Petersburg (4163 persons/square mile), the estimated existing population in the fresh water portion of St. Joe Creek is 124,890 individuals.

Pinellas Ditch #5
Pinellas Ditch #5 is a free flowing freshwater system, which flows into the estuarine segment of St. Joe Creek. The channel length is approximately 1.3 miles and has concrete lined banks along most of its length. The watershed is part of the Pinellas Park Water Management District, which manages the basins within its jurisdiction for stormwater drainage pursuant to Florida Statute. In 2003, the population of the City of Pinellas Park was 46,449, according to the U.S. Census Bureau. Based on the population density of the City of Pinellas Park (3095.8 persons/square mile) the estimated existing population in the Pinellas Park Ditch #5 WBID area is 7,863 individuals.

Klosterman Bayou
The Klosterman Bayou watershed is located in a densely populated region of northern Pinellas County, Florida, south of the city of Tarpon Springs. The tidal segment receives drainage from the freshwater segment of Klosterman Creek originating to the southeast. The total channel length from the headwaters to the bayou’s mouth is about 2.4 miles with approximately the last 1.1 miles being influenced by tides. Klosterman Bayou originates as a small creek draining residential and golf course areas and becomes tidally influenced upstream of alternate U.S. Highway 19. The marine portion of the Bayou is heavily modified and channelized and located in a residential area. Ultimately Klosterman Bayou flows into St. Joseph Sound. The tidal segment of Klosterman Bayou (WBID 1508) has an area of approximately 757 acres.
Location of St. Joe Creek, Pinellas Ditch #5, and Klosterman Bayou in the Springs Coast Basin

Figure 1. Location of St. Joe Creek, Pinellas Ditch #5 and Klosterman Bayou in the Springs Coast Basin
In the Springs Coast Basin, the Coastal Pinellas Planning Unit covers about 252 square miles and contains the WBIDs addressed in this report. As would be expected from such a highly urbanized landscape, one of the most abundant land uses in each of the three WBIDs is high density residential. High density residential is categorized by having more than 6 dwelling units per acre. St. Joe Creek (WBID 1668A) is 73 percent high density residential, Pinellas Ditch #5 (WBID 1668B) is 44 percent high density residential and Klosterman Bayou (WBID 1508) is 29 percent high density residential (Table 2). It has been noted that there are several horse farms located in the City of Pinellas Park. Recreational land use is the most predominant land use in Klosterman Bayou. The least abundant land uses in the three WBIDs are agriculture, rangeland, extractive and barrenland.

Table 2. Land Use Distribution

<table>
<thead>
<tr>
<th>Land Use Description</th>
<th>WBID 1668A</th>
<th></th>
<th>WBID 1668B</th>
<th></th>
<th>WBID 1508</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area (acres)</td>
<td>Percent (%)</td>
<td>Area (acres)</td>
<td>Percent (%)</td>
<td>Area (acres)</td>
<td>Percent (%)</td>
</tr>
<tr>
<td>Residential, Low Density</td>
<td>0.00</td>
<td>0.00</td>
<td>59.0</td>
<td>3.00</td>
<td>46.0</td>
<td>3.50</td>
</tr>
<tr>
<td>Residential, Medium Density</td>
<td>0.00</td>
<td>0.00</td>
<td>175</td>
<td>9.00</td>
<td>50.0</td>
<td>4.00</td>
</tr>
<tr>
<td>Residential, High Density</td>
<td>535</td>
<td>73.0</td>
<td>860</td>
<td>44.0</td>
<td>384</td>
<td>29.0</td>
</tr>
<tr>
<td>Commercial and Services</td>
<td>75.0</td>
<td>10.0</td>
<td>376</td>
<td>19.0</td>
<td>46.0</td>
<td>3.50</td>
</tr>
<tr>
<td>Industrial</td>
<td>0.00</td>
<td>0.00</td>
<td>138</td>
<td>7.00</td>
<td>4.17</td>
<td>0.00</td>
</tr>
<tr>
<td>Extractive</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Institutional</td>
<td>104</td>
<td>14.0</td>
<td>104</td>
<td>5.00</td>
<td>4.17</td>
<td>0.00</td>
</tr>
<tr>
<td>Recreational</td>
<td>0.00</td>
<td>0.00</td>
<td>29.0</td>
<td>2.00</td>
<td>430</td>
<td>33.0</td>
</tr>
<tr>
<td>Open Land</td>
<td>0.00</td>
<td>0.00</td>
<td>4.20</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Agriculture</td>
<td>0.00</td>
<td>0.00</td>
<td>29.0</td>
<td>2.00</td>
<td>104</td>
<td>8.00</td>
</tr>
<tr>
<td>Rangeland</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Forest</td>
<td>0.00</td>
<td>0.00</td>
<td>29.0</td>
<td>2.00</td>
<td>104</td>
<td>8.00</td>
</tr>
<tr>
<td>Water</td>
<td>8.40</td>
<td>1.00</td>
<td>33.0</td>
<td>2.00</td>
<td>50.0</td>
<td>4.00</td>
</tr>
<tr>
<td>Wetlands</td>
<td>0.00</td>
<td>0.00</td>
<td>63.0</td>
<td>3.00</td>
<td>104</td>
<td>8.00</td>
</tr>
<tr>
<td>Barrenland</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Transportation, Communication, Utilities</td>
<td>13.0</td>
<td>2.00</td>
<td>54.0</td>
<td>2.00</td>
<td>92.0</td>
<td>7.00</td>
</tr>
<tr>
<td>Total</td>
<td>735</td>
<td>100</td>
<td>1954</td>
<td>100</td>
<td>1319</td>
<td>100</td>
</tr>
</tbody>
</table>
4. WATER QUALITY STANDARDS

Florida’s surface waters are protected for five designated use classifications, as follows:

Class I Potable water supplies
Class II Shellfish propagation or harvesting
Class III Recreation, propagation, and maintenance of a healthy, well-balanced population of fish and wildlife
Class IV Agricultural water supplies
Class V Navigation, utility, and industrial use

The WBIDs addressed in this report are designated as Class III waters. The designated use of Class III waters is recreation, propagation and maintenance of a healthy, well-balanced population of fish and wildlife. The water quality criteria for protection of Class III waters are established by the State of Florida in the Florida Administrative Code (FAC), Section 62-302.530. The individual criteria should be considered in conjunction with other provisions in WQS, including Section 62-302.500 FAC [Surface Waters: Minimum Criteria, General Criteria] that apply to all waters unless alternative criteria are specified in FAC Section 62-302.530. In addition, unless otherwise stated, all criteria express the maximum not to be exceeded at any time. The specific criteria that apply to the individual WBIDs are described in the following sections.

4.1 Nutrients

The discharge of nutrients shall continue to be limited as needed to prevent violations of other standards contained in this chapter [Section 62.302 FAC]. In no case shall nutrient concentrations of a body of water be altered so as to cause an imbalance in natural populations of aquatic flora and fauna [Section 62.302.530 FAC]. Because the State of Florida does not have numeric criteria for nutrients, total nitrogen, total phosphorus, chlorophyll and DO concentrations are used to indicate whether nutrients are present in excessive amounts.

4.2 Dissolved Oxygen

Fresh: DO shall not be less than 5.0 mg/L. Normal and daily seasonal fluctuations above these levels shall be maintained.

Marine: DO shall not be less than 5.0 mg/L in a 24-hour period and shall never be less than 4.0 mg/L. Normal daily and seasonal fluctuations above these levels shall be maintained.

The narrative nutrient criterion is also controlling as it related to dissolved oxygen [62-302.530(48)(a)]. The discharge of nutrients shall continue to be limited as needed to prevent violations of other standards contained in this chapter.

The water quality standard for DO also considers the definition of natural background and the directive not to abate natural conditions. Florida standards (62-302.200(15) FAC) states that, “Natural Background” shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The
establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody or on historical pre-alteration data.” Florida standards also state at 62-302.300(15) FAC, “Pollution which causes or contributes to new violations of water quality standards or to continuation of existing violations is harmful to the waters of this State and shall not be allowed. Waters having water quality below the criteria established for them shall be protected and enhanced. However, the Department shall not strive to abate natural conditions.”

In the TMDL context, without a Site Specific Alternative Criteria, calculating allocations would be targeted to achieve the natural background loading and instream concentrations in the waterbody. Any allowance of increased pollutant loadings beyond natural background would likely cause other than natural dissolved oxygen levels, which would not be a proper application of the Florida definition. Because the standard prevents abatement of natural conditions, the TMDL can provide an allocation, where necessary, that results in natural conditions.

4.3 Biochemical Oxygen Demand

Biochemical Oxygen Demand (BOD) shall not be increased to exceed values which would cause dissolved oxygen to be depressed below the limit established for each class and, in no case, shall it be great enough to produce nuisance conditions.

5. WATER QUALITY TARGET IDENTIFICATION

5.1 Basis and Rationale For Nutrient Targets

Aquatic life becomes impaired by nutrients when excess amounts of nutrients are expressed in excess primary productivity. Primary productivity refers to the collective actions of plants (autotrophs) to utilize the energy of sunlight through the process of photosynthesis to fix carbon and available nutrients into biomass of living organisms. This is, of course, an essential process on which all plants and animals depend, and it serves as an intersection of the global cycles of critical elements carbon, hydrogen, oxygen, nitrogen, and phosphorus (C, H, O, N, & P). In aquatic systems, the normal cycles of C, H, O, N, and P can be distorted by anthropogenic activities in the watershed which generate extra N & P that can enter adjacent waterbodies by surface runoff and ground water inflow. These excess nutrients then drive excess primary productivity, and the extra accumulated biomass is seen as an over-abundance of aquatic plants, i.e., algal blooms and/or increased macrophyte vegetation. This produces nuisance conditions which affect aesthetic values and recreation. When certain algal species are involved which are able to produce toxins, as in Harmful Algal Blooms (HABs), human health can be affected by exposure through drinking water, direct contact, or inhalation.

Aquatic life use can be impacted directly by excess algal blooms and/or macrophyte abundance through loss of habitat or other competitive disadvantages. But even more widespread impact occurs indirectly through depression or depletion of dissolved oxygen that occurs when excess primary production eventually decomposes and creates a great demand for dissolved oxygen.
This lowers the available oxygen for other aquatic life. Most aquatic life becomes stressed by chronic low oxygen conditions and is virtually eliminated when oxygen depletion persists for a significant period of time. Impairment of aquatic life use is the common result of excess eutrophication of a waterbody. Since excess primary production is what creates the problem in the waterbody, and that results directly from excess available nutrients, protection of aquatic life requires control of available nutrients, in order to restrict primary productivity. But it should be kept in mind that resultant productivity may lag introduction of nutrients in space and time, and that fact must be considered when correlating nutrient levels and response. Proximal production may be temporarily suppressed by limitation of light, the amount of one nutrient, high velocity/turbulence, or lack of substrate, but transported bio-available nutrients will be utilized at some point. When these excess nutrients are expressed, they will drive excess productivity and adversely affect aquatic life in that location. The frequency and extent of these low oxygen events affect organisms differently, with non-motile and long-lived organisms among the most sensitive.

While controlling one nutrient can prevent productivity, control of both nutrients, N and P, in upstream waters can also provide additional assurance that excess productivity will remain in control. Under conditions of phosphorus limitation, even if local excess primary productivity is controlled to a large extent by phosphorus reduction alone, there will be consequent export of the excess nutrient, nitrogen, because the excess of that nutrient would not have the opportunity for uptake into biomass. The larger the excess of nitrogen, the greater the contribution to nitrogen sensitive downstream systems; therefore, concurrent reduction of nitrogen in the basin is often warranted in order to protect downstream use. But there may also be an additional near-field justification for nitrogen reduction, arising from the fact that at those times when local primary productivity is being effectively suppressed by phosphorous limitation, biological uptake of N is restricted, which may leave the chemically reduced constituents of the nitrogen series, i.e., ammonia and organic N, to directly exert their oxygen demand in a setting that is already under oxygen stress. For these nutrient, DO and BOD TMDLs, control of both TP and TN as nutrient inputs to prevent adverse effects is considered to be necessary.

5.2 Approaches for Developing Nutrient Target

The nutrient targets for the TMDLs were developed by applying a tiered approach, which uses independent approaches that have varying strengths and weaknesses. The first tier applies the regression approach, which attempts to develop a multivariate regression model to analyze the relationship between the low instream DO and nutrients. If a regression correlation does not exist, then the second tier is applied. For fresh waters, the second tier applies the 25th percentile of an all stream dataset for the fresh waters that are located within the peninsula bioregion of Florida. For marine waters, the second tier applies FDEP’s list of similar non-impaired marine waters that sustain a healthy balance of flora and fauna to use as candidate WBIDs for determining the nutrient targets. The third tier, EPA’s Pollutant Loading (PLOAD) spreadsheet, was not used in developing the TMDL targets as the first two tiers were successful. PLOAD was applied to each waterbody for additional information that may be helpful during TMDL implementation and is discussed in Appendix A. A summary of the two approaches that were applied is discussed below.
Tier 1: Regression Approach: The regression approach attempts to develop a multivariate regression model to analyze the relationships between the low instream DO and nutrients. The regression approach combines the known kinetic relationships for the sources and sinks of DO with correlation and regression statistics. If the regression model is successful (i.e., inverse relationship between DO and pollutant concentrations), then the variation in the observed DO can be explained by variables such as temperature, BOD, chlorophyll, nutrients, organic carbon, and/or flow. If correlation exists between DO and nutrients, the regression approach can be used to develop the TMDL. The DO criterion can be targeted in the regression equation to determine the nutrient percent reduction.

Tier 2 - Fresh Water: For fresh waters, a reference condition approach consistent with EPA’s peer-reviewed nutrient criteria guidance was used to develop the targets for the TMDLs. The 25th percentile of the TP and TN data that were extracted from an all fresh water stream dataset using the IWR Run 28 database was selected as the targets for the TMDLs. Only WBIDs within the Peninsula Bioregion of Florida classified as freshwater streams were used in this analysis. This consists of 349 WBIDs containing 2,392 water quality monitoring stations. This robust dataset of 53,688 TP measurements and 47,444 TN measurements were collapsed to WBID median values and statistically ranked. EPA’s guidance suggests that the 25th percentile of the data is inherently protective of water quality. The 25th percentile annual average concentrations for TN and TP are 0.94 mg/L and 0.064 mg/L, respectively and are used to represent annual average conditions. Table 3 provides the percentile distribution of TP and TN for the Peninsula Bioregion of Florida. These percentiles were calculated by determining WBID median values for all TN and TP data within each individual WBID. The percentiles were calculated using all WBID median values.

<table>
<thead>
<tr>
<th>Percentile</th>
<th>TP</th>
<th>TN</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.037</td>
<td>0.59</td>
</tr>
<tr>
<td>10</td>
<td>0.045</td>
<td>0.74</td>
</tr>
<tr>
<td>15</td>
<td>0.050</td>
<td>0.81</td>
</tr>
<tr>
<td>20</td>
<td>0.059</td>
<td>0.89</td>
</tr>
<tr>
<td>25</td>
<td>0.064</td>
<td>0.94</td>
</tr>
<tr>
<td>30</td>
<td>0.073</td>
<td>0.98</td>
</tr>
<tr>
<td>35</td>
<td>0.080</td>
<td>1.01</td>
</tr>
<tr>
<td>40</td>
<td>0.088</td>
<td>1.07</td>
</tr>
<tr>
<td>45</td>
<td>0.098</td>
<td>1.11</td>
</tr>
<tr>
<td>50</td>
<td>0.107</td>
<td>1.14</td>
</tr>
<tr>
<td>55</td>
<td>0.120</td>
<td>1.20</td>
</tr>
<tr>
<td>60</td>
<td>0.141</td>
<td>1.25</td>
</tr>
<tr>
<td>65</td>
<td>0.160</td>
<td>1.32</td>
</tr>
<tr>
<td>70</td>
<td>0.190</td>
<td>1.38</td>
</tr>
<tr>
<td>75</td>
<td>0.228</td>
<td>1.45</td>
</tr>
<tr>
<td>80</td>
<td>0.260</td>
<td>1.56</td>
</tr>
<tr>
<td>85</td>
<td>0.376</td>
<td>1.72</td>
</tr>
<tr>
<td>90</td>
<td>0.570</td>
<td>1.86</td>
</tr>
<tr>
<td>95</td>
<td>0.963</td>
<td>2.23</td>
</tr>
</tbody>
</table>
Tier 2-Marine Water: For the marine waterbody, Klosterman Bayou, FDEP provided EPA a list of marine waters that sustain a healthy balance of flora and fauna for use as candidate WBIDs for determining nutrient targets. A list of these waters is provided in Table 4. An assumption of this TMDL is that if nutrient levels are reduced to concentrations measured in these unimpaired streams, Klosterman Bayou should support a healthy estuary.

Table 4 Candidate WBIDs for Determining Nutrient Targets (source: FDEP, 2007)

<table>
<thead>
<tr>
<th>Waterbody</th>
<th>TP (mg/L)</th>
<th>TN (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEARWATER HARBOR SOUTH - WBID 1528</td>
<td>0.04</td>
<td>0.51</td>
</tr>
<tr>
<td>THE NARROWS - WBID 1528A</td>
<td>0.06</td>
<td>0.58</td>
</tr>
<tr>
<td>DIRECT RUNOFF TO INTERCOASTAL WATERWAY - WBID 1528B</td>
<td>0.09</td>
<td>N/A</td>
</tr>
<tr>
<td>CLEARWATER HARBOR NORTH - WBID 1528C</td>
<td>0.04</td>
<td>0.52</td>
</tr>
<tr>
<td>BOCA CIEGA BAY CENTRAL - WBID 1694A</td>
<td>0.05</td>
<td>0.44</td>
</tr>
<tr>
<td>BOCA CIEGA BAY NORTH - WBID 1694B</td>
<td>0.04</td>
<td>0.48</td>
</tr>
<tr>
<td>BOCA CIEGA BAY - WBID 1694C</td>
<td>0.06</td>
<td>0.55</td>
</tr>
<tr>
<td>ST. JOSEPH SOUND - WBID 8045D</td>
<td>0.02</td>
<td>0.51</td>
</tr>
<tr>
<td>Anclote River - WBID 1440</td>
<td>0.07</td>
<td>0.66</td>
</tr>
<tr>
<td>Average Value:</td>
<td>0.05</td>
<td>0.53</td>
</tr>
</tbody>
</table>

6. WATER QUALITY ASSESSMENT

To determine the status of surface water quality in Florida, three categories of data – chemistry data, biological data, and fish consumption advisories – were evaluated to determine potential impairments. The level of impairment is defined in the Identification of Impaired Surface Waters Rule (IWR), Section 62-303 of the Florida Administrative Code (FAC). The IWR defines FDEP’s threshold for identifying water quality limited WBIDs to be included on the State’s 303 (d) list. The water quality data used to develop these TMDLs are from the IWR database, Run 28. St. Joe Creek and Pinellas Ditch #5 are on FDEP’s verified list for DO and nutrients and on FDEP’s planning list for BOD. Klosterman Bayou is on FDEP’s verified list for DO and nutrients. EPA assessed the data
and concluded the WBIDs are impaired for these parameters and a TMDL must be developed.

A list of the monitoring stations located in the impaired WBIDs can be found in Table 5. A summary of the observed monitoring data for DO, TN and TP can be found in Tables 6, 7 and 8. Figures 2 through 12 show the observed monitoring data for DO, TN and TP at all stations in the WBID. The observed monitoring data is superimposed with rainfall data to provide an indication of when water quality violations occur in response to storm events. The rainfall data were collected in the impaired watersheds by the Southwest Florida Management District.

For St. Joe Creek, there is a 31 percent exceedance rate with 92 WQS violations out of 295 observations for DO. The average TN and TP concentrations are 0.91 mg/L and 0.08 mg/L, respectfully. The average TN and TP concentrations are slightly lower than what is considered to be typical average concentrations for Florida’s streams. The typical average TN and TP concentrations for Florida’s streams are 1.2 mg/L and 0.11 mg/L, respectfully (Freidemann and Hand, 1989). The typical values do not represent natural conditions, but rather an overview of the data distribution found in Florida waters. For Pinellas Park Ditch #5, there is a 61 percent exceedance rate with 99 WQS violations out of 161 observations for DO. The average TN and TP concentrations are 1.25 mg/L and 0.18 mg/L, respectfully. The average TN and TP concentrations are only slightly higher than what is considered to be typical concentrations for Florida’s streams. For Klosterman Bayou, there is a 35 percent exceedance rate with 142 WQS violations out of 400 observations. The average TN and TP concentrations are 1.63 mg/L and 0.66 mg/L, respectively. The average TN and TP concentrations are significantly higher that what is considered typical concentrations for Florida’s estuaries. The typical average TN and TP concentrations for Florida’s estuaries are 0.8 mg/L and 0.10 mg/L (Freidemann and Hand, 1989). The TN, TP and BOD values for all three waterbodies are often times elevated during periods of rainfall.
Table 5 Monitoring Stations in Springs Coast Basin

<table>
<thead>
<tr>
<th>Waterbody</th>
<th>Station ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Joe Creek</td>
<td>112WRD02308935</td>
</tr>
<tr>
<td></td>
<td>21FLPDEM35-03</td>
</tr>
<tr>
<td></td>
<td>21FLPDEM35-06</td>
</tr>
<tr>
<td></td>
<td>21FLPDEM35-10</td>
</tr>
<tr>
<td></td>
<td>21FLPDEM35-11</td>
</tr>
<tr>
<td></td>
<td>21FLPDEM35-12</td>
</tr>
<tr>
<td></td>
<td>21FLPDEMAMB35-3</td>
</tr>
<tr>
<td></td>
<td>21FLPDEMAMB35-6</td>
</tr>
<tr>
<td></td>
<td>21FLTPA27483438243412</td>
</tr>
<tr>
<td></td>
<td>21FLTPA27483668242429</td>
</tr>
<tr>
<td></td>
<td>21FLTPA27484788240469</td>
</tr>
<tr>
<td></td>
<td>21FLTPA27485048241453</td>
</tr>
<tr>
<td></td>
<td>21FLTPA27485898241143</td>
</tr>
<tr>
<td>Pinellas Ditch #5</td>
<td>21FLPDEM35-01</td>
</tr>
<tr>
<td></td>
<td>21FLPDEMAMB35-8</td>
</tr>
<tr>
<td></td>
<td>21FLTPA27501148244127</td>
</tr>
<tr>
<td></td>
<td>21FLTPA27502758243422</td>
</tr>
<tr>
<td>Klosterman Bayou</td>
<td>21FLPDEM02-01</td>
</tr>
<tr>
<td></td>
<td>21FLPDEM02-02</td>
</tr>
<tr>
<td></td>
<td>21FLPDEM02-07</td>
</tr>
<tr>
<td></td>
<td>21FLPDEMAMB02-1</td>
</tr>
<tr>
<td></td>
<td>21FLPDEMAMB02-2</td>
</tr>
<tr>
<td></td>
<td>21FLPDEMAMB02-5</td>
</tr>
<tr>
<td></td>
<td>21FLPDEMAMB02-6</td>
</tr>
<tr>
<td></td>
<td>21FLPDEMAMB02-7</td>
</tr>
<tr>
<td></td>
<td>21FLTPA28065728245513</td>
</tr>
<tr>
<td></td>
<td>21FLTPA28070228245521</td>
</tr>
<tr>
<td></td>
<td>21FLTPA28070708246127</td>
</tr>
<tr>
<td></td>
<td>21FLTPA28071158246059</td>
</tr>
</tbody>
</table>

Table 6 Summary of Monitoring Data in St. Joe Creek (WBID 1668A)

<table>
<thead>
<tr>
<th>Waterbody</th>
<th>Parameter</th>
<th>Observations</th>
<th>Minimum (mg/l)</th>
<th>Median (mg/l)</th>
<th>Maximum (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Joe Creek</td>
<td>DO</td>
<td>295</td>
<td>0.22</td>
<td>5.97</td>
<td>12.3</td>
</tr>
<tr>
<td>St. Joe Creek</td>
<td>TP</td>
<td>223</td>
<td>0.01</td>
<td>0.07</td>
<td>0.38</td>
</tr>
<tr>
<td>St. Joe Creek</td>
<td>TN</td>
<td>228</td>
<td>0.21</td>
<td>0.91</td>
<td>2.76</td>
</tr>
<tr>
<td>St. Joe Creek</td>
<td>BOD</td>
<td>151</td>
<td>0.26</td>
<td>2.10</td>
<td>8.00</td>
</tr>
</tbody>
</table>
Figure 2. Summary of DO Monitoring Data in St. Joe Creek

Figure 3. Summary of TN Monitoring Data in St. Joe Creek
Figure 4. Summary of TP Monitoring Data in St. Joe Creek

Figure 5. Summary of BOD Monitoring Data in St. Joe Creek
Table 7 Summary of Monitoring Data in Pinellas Ditch #5 (WBID 1668B)

<table>
<thead>
<tr>
<th>Waterbody</th>
<th>Parameter</th>
<th>Observations</th>
<th>Minimum (mg/l)</th>
<th>Median (mg/l)</th>
<th>Maximum (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinellas Ditch #5</td>
<td>DO</td>
<td>161</td>
<td>0.12</td>
<td>4.26</td>
<td>14.3</td>
</tr>
<tr>
<td>Pinellas Ditch #5</td>
<td>TP</td>
<td>133</td>
<td>0.02</td>
<td>0.12</td>
<td>2.76</td>
</tr>
<tr>
<td>Pinellas Ditch #5</td>
<td>TN</td>
<td>131</td>
<td>0.31</td>
<td>1.09</td>
<td>18.05</td>
</tr>
<tr>
<td>Pinellas Ditch #5</td>
<td>BOD</td>
<td>123</td>
<td>0.05</td>
<td>2.00</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Figure 6 Summary of DO Monitoring Data in Pinellas Ditch #5
Figure 8: Summary of TP Monitoring Data in Pineleaf Ditch #5

Figure 7: Summary of TN Monitoring Data in Pineleaf Ditch #5

March 2008
Nutrient Dissolved Oxygen and Biochemical Oxygen Demand TMDLs for St Johns Coast Basin
Figure 9 Summary of BOD Monitoring Data in Pinellas Ditch #5

Table 8 Summary of Monitoring Data in Klosterman Bayou (WBID 1508)

<table>
<thead>
<tr>
<th>Waterbody</th>
<th>Parameter</th>
<th>Observations</th>
<th>Minimum (mg/l)</th>
<th>Median (mg/l)</th>
<th>Maximum (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klosterman</td>
<td>DO</td>
<td>400</td>
<td>0.04</td>
<td>5.03</td>
<td>22.2</td>
</tr>
<tr>
<td>Bayou</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klosterman</td>
<td>TP</td>
<td>243</td>
<td>0.02</td>
<td>0.48</td>
<td>3.58</td>
</tr>
<tr>
<td>Bayou</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klosterman</td>
<td>TN</td>
<td>227</td>
<td>0.49</td>
<td>1.53</td>
<td>5.26</td>
</tr>
<tr>
<td>Bayou</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 10 Summary of DO Monitoring Data in Klosterman Bayou

Figure 11 Summary of TP Monitoring Data in Klosterman Bayou
Figure 12 Summary of TN Monitoring Data in Klosterman Bayou

7. SOURCE ASSESSMENT

An important part of the TMDL analysis is the identification of source categories, source subcategories, or individual sources of pollutants in the watershed and the amount of loading contributed by each of these sources. Sources are broadly classified as either point or nonpoint sources. Nutrients enter surface waters from both point and nonpoint sources.

A point source is defined as a discernable, confined, and discrete conveyance from which pollutants are or may be discharged to surface waters. Point source discharges of industrial wastewater and treated sanitary wastewater must be authorized by National Pollutant Discharge Elimination System (NPDES) permits. NPDES permitted facilities, including certain urban stormwater discharges such as municipal separate stormwater systems (MS4 areas), certain industrial facilities, and construction sites over one acre, are storm-water driven sources considered “point sources” in this report.

Nonpoint sources of pollution are diffuse sources that cannot be identified as entering a waterbody through a discrete conveyance at a single location. These include animal waste, septic tanks and
application of fertilizers to golf courses and lawns. Runoff from agricultural sites is not considered to be a source of nutrients in these WBIDs since the land use is currently zero percent agriculture. The sources generally, but not always, involve accumulation of nutrients on land surfaces and wash off as a result of storm events.

7.1 Point Sources

A wasteload allocation (WLA) is provided to industrial and domestic wastewater NPDES facilities and to permitted Municipal Separate Storm Sewer Systems (MS4s) discharging to surface waters.

7.1.1 Wastewater Treatment Facilities

There is one domestic wastewater treatment facility (WWTF) located in one of the impaired WBIDs. This facility is the William E. Dunn Water Reclamation Facility (FL0128775), which is located in Palm Harbor at 4111 Dunn Drive in Pinellas County, WBID 1508. An existing annual average daily flow of 9.0 million gallons per day (MGD) of reclaimed water is permitted to irrigate golf courses, common areas, residential subdivisions, parks, schools, athletic facilities and various other public and private areas. Klosterman Bayou runs through the Innisbrook Golf Course, which receives 1.77 MGD of reclaimed water from the Dunn Facility in order to serve its 506 acres. Since this facility does not discharge directly to Klosterman Bayou (WBID 1508), it is not included in the WLA. However, the surface water runoff from the Innisbrook Golf Course could be a potential nonpoint source and is included in the load allocation portion of the TMDL for Klosterman Bayou.

7.1.2 Municipal Separate Storm Sewer Systems (MS4s)

Municipal Separate Storm Sewer Systems (MS4s) may also discharge nutrients to waterbodies in response to storm events. Large and medium MS4s serving populations greater than 100,000 people are required to obtain a NPDES storm water permit under the Phase I storm water regulations. After March 2003, small MS4s serving urbanized areas are required to obtain a permit under the Phase II storm water regulations. An urbanized area is defined as an entity with a residential population of at least 50,000 people and an overall population density of 1,000 people per square mile.

The waterbodies located in the Springs Coast Basin that are within Pinellas County are all within MS4 jurisdictions. St. Joe Creek and Klosterman Bayou are under the jurisdiction of the Pinellas County Phase I MS4 Permit (FLS0000005) that was issued in March 2004 and covers all areas located within the political boundary of Pinellas County. Each permittee covered in the permit is ultimately responsible for the MS4 dischargers resulting from their jurisdiction, including TMDLs and WLAs. The Pinellas Park Ditch #5 is within the City of Pinellas Park jurisdictional boundary, but is owned and operated by the Pinellas Park Water Management District (PPWMD). The PPWMD has not been issued an MS4 Permit.

7.2 Nonpoint Sources

Nonpoint sources that ultimately contribute to depletion of in-stream DO include sources of nutrients
such as animal waste, fertilizer application to open areas that drain directly into the creek, and malfunctioning onsite sewage treatment and disposal systems, or septic tank systems. In the TMDL analysis, nonpoint sources are represented by the load allocation (LA). Nonpoint source loads from fertilizer application to open areas, such as lawns and golf courses that enters the creek directly, and not from storm drains, is outside the MS4 jurisdiction and is considered a source of nutrients.

8. ANALYTICAL APPROACH

St. Joe Creek (WBID 1668A)
A statistical regression model was used to analyze the relationship between the low instream DO and nutrients. This approach combines the known kinetic relationships for the sources and sinks of DO with correlation and regression statistics. Data collected in St. Joe Creek indicates that DO can be reasonably predicted with TN, TP and temperature. The regression equation indicates that a 49 percent reduction in TN and TP will result in a DO concentration of 5.0 mg/L. The predicted DO can be determined by the following regression equation:

\[
\text{Predicted DO} = (-4.743 \times \text{[TP]}) 0.51 + (-0.570 \times \text{[TN]}) 0.51 + (-0.109 \times \text{Temperature}) + 9.502
\]

Where,
TP Slope = -4.743
TN Slope = -0.570
Temperature Slope = -0.109
Intercept = 9.502
Percent Reduction Multiplier = 0.51 (1-0.51=0.49; 0.49*100= 49 percent reduction)
[TP] = Concentration of total phosphorus
[TN] = Concentration of total nitrogen

![Predicted DO versus Observed DO](image)

Figure 13 Predicted DO Versus Observed DO for St. Joe Creek
DEVELOPMENT OF THE TMDL

Percent Reduction = (existing concentration – TMDL concentration)/existing concentration × 100

To calculate the following equation:

In order to meet the requirements of the TMDL, the effluent must be reduced to the percentage of the concentration observed in the watershed. In order to achieve this, the concentration in TN and TP is reduced to the percentage of the concentration observed in the watershed. This percentage is then adjusted for the concentration at the point of discharge. The adjustment is made to account for the concentration at the point of discharge.

Healthy condition.

To determine the percentage of the concentration observed in the watershed, the existing concentration is used. The existing concentration is the concentration observed in the watershed at the point of discharge. The concentration observed in the watershed is then adjusted for the concentration at the point of discharge. The adjustment is made to account for the concentration at the point of discharge.

Klosterman Bayou

TMDL concentration = existing concentration

Equation:

Percent Reduction = (existing concentration – TMDL concentration)/existing concentration × 100

The TMDL concentration is calculated using the following equation:

In order to meet the requirements of the TMDL, the effluent must be reduced to the percentage of the concentration observed in the watershed. In order to achieve this, the concentration in TN and TP is reduced to the percentage of the concentration observed in the watershed. This percentage is then adjusted for the concentration at the point of discharge. The adjustment is made to account for the concentration at the point of discharge.

EPAs definitive guideline suggests that the 25% percent of the discharge contain a specific nutrient concentration.

The existing concentration model could not be applied to Klosterman Bayou because the relationship between flow and nutrient was not considered.
achieve compliance with applicable WQS based on the relationship between pollution sources and in-stream water quality conditions. A TMDL can be expressed as the sum of all point source loads (WLA), nonpoint source loads (LA), and an appropriate margin of safety (MOS), which takes into account any uncertainty concerning the relationship between effluent limitations and water quality:

$$\text{TMDL} = \Sigma \text{WLAs} + \Sigma \text{LAs} + \text{MOS}$$

The objective of a TMDL is to allocate among all of the known pollutant sources throughout a watershed so that appropriate control measures can be implemented and WQS achieved. 40 CFR §130.2 (i) states that TMDLs can be expressed in terms of mass per time (e.g. pounds per day), toxicity, or other appropriate measures. TMDLs for St. Joe Creek, Pinellas Ditch#5 and Klosterman Bayou are expressed as percent reductions and instream nutrient concentrations.

9.1 Critical Conditions

Critical conditions can be defined as the environmental conditions requiring the largest reduction to meet standards. By achieving the reduction for critical conditions, WQS should be achieved during all other times. The critical condition in St. Joe Creek, Pinellas Ditch #5 and Klosterman Bayou is a result of a stormwater event. Prior to a rainfall event, pollutants build up on the land surface, and are washed off by rainfall.

9.2 Margin of Safety

TMDLs shall include a margin of safety (MOS) that takes into account any lack of knowledge about the pollutant loading and in-stream water quality. There are two methods for incorporating a MOS in the analysis: 1) implicitly incorporate the MOS using conservative model assumptions to develop allocations; or 2) explicitly specify a portion of the TMDL as the MOS and use the remainder for allocations. An implicit MOS was used in these TMDLs because the measured water quality was used directly to determine the reduction to meet the water quality standard.

9.3 Determination of TMDL Components

The TMDL components are expressed as percent reductions in concentrations of TN and TP to attain the necessary WQS. The Best Management Practices (BMPs) used to implement the percent reductions should result in meeting WQS on a daily basis. The percent reductions are applied equally to both point and nonpoint sources, as the WLA is comprised completely of the MS4. The TMDL components are summarized in Table 9.
Table 9 Summary of TMDL Components

<table>
<thead>
<tr>
<th>WBID</th>
<th>Parameter</th>
<th>WLA</th>
<th>LA</th>
<th>TMDL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MS4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1668A</td>
<td>TN</td>
<td>49% reduction</td>
<td>49% reduction</td>
<td>49% reduction</td>
</tr>
<tr>
<td></td>
<td>TP</td>
<td>49% reduction</td>
<td>49% reduction</td>
<td>49% reduction</td>
</tr>
<tr>
<td>1668B</td>
<td>TN</td>
<td>27 % reduction, 0.94 mg/L</td>
<td>27 % reduction, 0.94 mg/L</td>
<td>27 % reduction, 0.94 mg/L</td>
</tr>
<tr>
<td></td>
<td>TP</td>
<td>64 % reduction, 0.064 mg/L</td>
<td>64 % reduction, 0.064 mg/L</td>
<td>64 % reduction, 0.064 mg/L</td>
</tr>
<tr>
<td>1508</td>
<td>TN</td>
<td>69 % reduction, 0.53 mg/L</td>
<td>69 % reduction, 0.53 mg/L</td>
<td>69 % reduction, 0.53 mg/L</td>
</tr>
<tr>
<td></td>
<td>TP</td>
<td>92 % reduction, 0.05 mg/L</td>
<td>92 % reduction, 0.05 mg/L</td>
<td>92 % reduction, 0.05 mg/L</td>
</tr>
</tbody>
</table>

9.4 Seasonal Variation

Seasonal variation is considered in the TMDL to ensure that WQS will be met during all seasons. Seasonal variation was addressed in the selection of the nutrient target concentrations by considering all data collected during all seasons.

9.5 Recommendations

Following the adoption of this TMDL by rule, the next step in the TMDL process is to develop an implementation plan, referred to as a Basin Management Action Plan (BMAP). This document should be developed over the next year in cooperation with local stakeholders and will attempt to reach consensus on more detailed allocations and on how load reductions will be accomplished. The BMAP will include the following:

- Appropriate allocations among the affected parties,
- A description of the load reduction activities to be undertaken,
- Timetables for project implementation and completion,
- Funding mechanisms that may be utilized,
- Any applicable signed agreement,
- Local ordinances defining actions to be taken or prohibited,
- Local WQS, permits, or load limitation agreements, and
- Monitoring and follow-up measures.
10. References

FDEP, 2007. IWR Run 28 Database.

Southwest Florida Water Management District, 2007. SFWMD_Hydro Rainfall Data

Appendix A EPA’s Pollutant Loading (PLOAD) Spreadsheet

TMDLs can be addressed by estimating pollutant loadings from an undisturbed land use condition using EPA’s Pollutant Loading (PLOAD) spreadsheet. PLOAD was not used in the development of the TMDLs for St. Joe Creek, Pinellas Ditch #5 or Klosterman Bayou. However, the information provided by PLOAD may be useful during TMDL implementation in understanding how landuse affects the pollutant loading for implementation purposes.

The PLOAD model can be used to estimate nutrient and BOD non-point source loadings to the stream based on existing land use conditions and undisturbed land use conditions. This approach estimates the effect of anthropogenic sources on runoff loadings of nutrients and oxygen demanding substances in the watershed. The model uses average annual rainfall and event mean concentrations (EMCs) to estimate pollutant loading transported off a particular land use. The model assumes all lands are connected to the stream, resulting in a conservative estimate of average annual loads. An assumed annual average rainfall of 53.8 inches was used for Pinellas County (SWFWMD, 2007). The default ratio of 0.9 for storms producing runoff was used. Land use data entered into the spreadsheet were based on the SouthWest Florida Water Management District (SWFWMD) 2004 land use/cover features categorized according to the Florida Land Use and Cover Classification System (FLUCCS). EMC values assumed for the various land uses are from Harper and Baker (2003).

Table 3. EMCs for Storm Events

<table>
<thead>
<tr>
<th>Land Use</th>
<th>BOD (mg/L)</th>
<th>Total N (mg/L)</th>
<th>Total P (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Open</td>
<td>7.4</td>
<td>1.12</td>
<td>0.18</td>
</tr>
<tr>
<td>Low Density Residential</td>
<td>4.3</td>
<td>1.64</td>
<td>0.191</td>
</tr>
<tr>
<td>Medium Density Residential</td>
<td>7.4</td>
<td>2.18</td>
<td>0.335</td>
</tr>
<tr>
<td>High Density Residential</td>
<td>11.0</td>
<td>2.42</td>
<td>0.49</td>
</tr>
<tr>
<td>Agriculture</td>
<td>3.8</td>
<td>2.32</td>
<td>0.344</td>
</tr>
<tr>
<td>Rangeland</td>
<td>3.8</td>
<td>2.03</td>
<td>0.344</td>
</tr>
<tr>
<td>Forest/Rural Open</td>
<td>1.23</td>
<td>1.09</td>
<td>0.046</td>
</tr>
<tr>
<td>Open Water</td>
<td>1.60</td>
<td>1.60</td>
<td>0.07</td>
</tr>
<tr>
<td>Water/ Wetlands</td>
<td>2.63</td>
<td>1.01</td>
<td>0.09</td>
</tr>
<tr>
<td>Barrenland/Transition</td>
<td>3.8</td>
<td>2.32</td>
<td>0.344</td>
</tr>
<tr>
<td>Communication and</td>
<td>6.7</td>
<td>2.23</td>
<td>0.27</td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For this analysis, the existing disturbed land use was changed to forest and wetlands for purposes of representing undisturbed land use conditions. In the analysis, disturbed lands were assumed to be all land use categories with the exception of forest, water, and wetlands. The assumption made is that BOD and nutrients have the major controllable impacts on DO. To return DO to an undisturbed condition, not impacted by pollutants, the BOD and nutrient loadings will also need to be returned to an undisturbed condition.

PLOAD can be used to estimate the pollutant loadings for undisturbed land uses by returning the disturbed land uses to forest and wetlands by using the following equation:
LP = Σu (P * PJ * RVu * Cu * Au * 2.72 / 12)

Where: LP = Pollutant load, lbs
P = Precipitation, inches/year
PJ = Ratio of storms producing runoff (default = 0.9)
RVu = Runoff Coefficient for land use type u, inches of runoff/inches of rain
RVu = 0.05 + (0.009 * Iu); Iu = percent imperviousness
Cu = Event Mean Concentration for land use type u, milligrams/liter
Au = Area of land use type u, acres

Model results for existing conditions are shown in Tables 1, 2 and 3. The percent reductions in pollutant loadings necessary to achieve “undisturbed” conditions were calculated using the following equation:

Percent Reduction = (existing load – TMDL load)/existing load * 100

Table 1. St. Joe Creek: Estimated Existing and Natural TN, TP and BOD Loads

<table>
<thead>
<tr>
<th>WBID</th>
<th>Total Annual Load (lbs/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TN</td>
</tr>
<tr>
<td>1668A</td>
<td>6831</td>
</tr>
<tr>
<td>1668A Natural</td>
<td>731</td>
</tr>
<tr>
<td>Percent Reduction</td>
<td>89</td>
</tr>
</tbody>
</table>

Table 2. Pinellas Ditch #5: Estimated Existing and Natural TN, TP and BOD Loads

<table>
<thead>
<tr>
<th>WBID</th>
<th>Total Annual Load (lbs/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TN</td>
</tr>
<tr>
<td>1668B</td>
<td>16120</td>
</tr>
<tr>
<td>1668B Natural</td>
<td>2063</td>
</tr>
<tr>
<td>Percent Reduction</td>
<td>87</td>
</tr>
</tbody>
</table>
Table 3. Klosterman Bayou: Estimated Existing and Natural TN, TP and BOD Loads

<table>
<thead>
<tr>
<th>WBID</th>
<th>Total Annual Load (lbs/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TN</td>
</tr>
<tr>
<td>1508</td>
<td>10243</td>
</tr>
<tr>
<td>1508 Natural</td>
<td>1832</td>
</tr>
<tr>
<td>Percent Reduction</td>
<td>82</td>
</tr>
</tbody>
</table>