LAKE-DREDGED MATERIALS FOR BEEF CATTLE PASTURE ESTABLISHMENT IN SUBTROPICS

*USDA-ARS, Subtropical Agric. Res. Stn., Brooksville, FL; **Southwest Florida Water Mgt. District, Tampa, FL; ***Pinellas County Public Works Engineering
WHY DREDGING?

TO DREDGE... OR NOT TO DREDGE?

PROS? AND CONS?
...to dredge... or... not to dredge...

PROS > CONS DECISION (YES or NO)

PROS < CONS DECISION (YES or NO)
The continued need to dredge lakes, rivers, and canals in Florida, both for maintenance and environmental improvement, will produce millions of cubic meters of dredged materials.
Typical Lake in Florida – Receiving Runoff from all locations around the lake
BUILD-UP OF ORGANIC/INORGANIC SEDIMENTS... WHY?

- Easily resuspended and thereby increases water turbidity.
- Increased turbidity leads to decreased growth of biological community.
- Depletes oxygen due to massive bacterial activity.
BUILD-UP OF ORGANIC/INORGANIC SEDIMENTS... WHY?

- Serves as a depository for many nutrients and pollutants such as heavy metals.
- In some areas, nutrients stored may be released back into the overlying water to favor eutrophication.
“To Dredge... or... Not to Dredge...”

CONS

• Dredged materials are often viewed by society and regulators as pollutants.

• Expensive

• Disposal Problem
“To Dredge... or... Not to Dredge...”

PROS...

... many have used these materials in coastal nourishment, land or wetland creation, construction materials, navigation, and for soil improvement as a soil amendment...
Dredged materials can be mixed with soil for landfill, road right-of-ways, and other related uses.
PROS... (Cont’d.)

There appears to be beneficial uses of dredged sediments in the horticultural industry, such as a soil composite additive, or nursery soil amendment for landscaping and golf courses turf.
Productive disposal options of lake-dredged materials (DM) may provide substantial and intangible benefits that will enhance the environment, community, and society.
A plan was developed to restore Lake Panasoffkee by removing natural sediments from the lake bottom to improve the fishery and navigation in the lake.

- **Southwest Florida Water Management District (SWFWMD)**
- **Florida Fish and Wildlife Conservation Commission**
- **Florida Department of Environmental Protection**
- **Lake Panasoffkee Restoration Council in Sumter County, FL**
About 7.0 million cubic meters (8.6 million cu. yd.) of predominantly calcium carbonate rich materials will be dredged.

Options are being explored as to the beneficial uses of these sediments.
DISPOSAL OPTIONS

One option would be using the dredged material as a soil amendment for the establishment of Bahiagrass.
➢ Bahiagrass - general-use pasture grass, tolerate a wide range of soil conditions, and withstands low fertilizer input.

➢ Ability to produce moderate yields on soils of very low fertility, easier to manage than other improved pasture grasses.
The goal of this study was to explore the use of the Lake Panasoffkee dredged sediments to improve the physico-chemical properties of existing sandy soils in subtropical beef cattle pastures with calcium carbonate- and organic-enriched dredged materials.
Objective

The objective of this study was to assess lake-dredged materials from Lake Panasoffkee as soil amendment for early establishment of bahiagrass (*Paspalum notatum* Flügge) in subtropical beef cattle pasture at Sumter County, Florida.
Coleman Landing (28.798°N; 82.103°W), Sumter County, Central Florida.

Soils - formed in sandy marine or eolian deposits and have water table at a depth of 102 to 203 cm for more than 6 months during most years. Hyperthermic, uncoated Typic Quartzipsamments

Climate: long, warm, and relatively humid summers and mild, dry winters. Average total annual ppt was about 1,191 mm with approx. half (56%) this amount occurring during the mid-June through mid-Sept. period.
Hydraulic suction dredging typically involves excavating the deeper, largely uninhabited sediments and depositing them on top of the ecologically productive surface substrates. One such dredging project of the CL boat ramp and adjacent Lake Panasoffkee was completed in July 2000.
Sediment Sampling Sites

Flowers Chemical Lab. Inc. – performed the physical and chemical analyses of dredged sediments from Lake Panasoffkee.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Natural Soil</th>
<th>Lake-Dredged Soil Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>5.9 ± 0.01</td>
<td>7.8 ± 0.2</td>
</tr>
<tr>
<td>Soil Organic Matter</td>
<td>%</td>
<td>4.5 ± 2.2</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>mg kg⁻¹</td>
<td>33.9 ± 11.6</td>
<td>4.3 ± 1.8</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>mg kg⁻¹</td>
<td>20.6 ± 38.9</td>
<td>1.6 ± 1.2</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>mg kg⁻¹</td>
<td>2.9 ± 1.5</td>
<td>6.9 ± 0.3</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg kg⁻¹</td>
<td>66.2 ± 29.2</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>mg kg⁻¹</td>
<td>0.2 ± 0.4</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>mg kg⁻¹</td>
<td>4.9 ± 10.0</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>mg kg⁻¹</td>
<td>83.4 ± 70.1</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>mg kg⁻¹</td>
<td>25.1 ± 18.7</td>
<td></td>
</tr>
<tr>
<td>Ca (as CaCO₃)</td>
<td>%</td>
<td></td>
<td>82.8</td>
</tr>
<tr>
<td>Mg (as MgCO₃)</td>
<td>%</td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Mean</td>
<td>Threshold Effect Levels</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>----------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Iron</td>
<td>mg kg<sup>-1</sup></td>
<td>710.0 ± 1.3</td>
<td>710.0 ± 1.3</td>
</tr>
<tr>
<td>Silicon</td>
<td>mg kg<sup>-1</sup></td>
<td>490.0 ± 1.2</td>
<td>490.0 ± 1.2</td>
</tr>
<tr>
<td>Copper</td>
<td>mg kg<sup>-1</sup></td>
<td>8.7 ± 1.2</td>
<td>18.7</td>
</tr>
<tr>
<td>Zinc</td>
<td>mg kg<sup>-1</sup></td>
<td>7.0 ± 0.6</td>
<td>124</td>
</tr>
<tr>
<td>Cadmium</td>
<td>mg kg<sup>-1</sup></td>
<td>2.5 ± 0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Lead</td>
<td>mg kg<sup>-1</sup></td>
<td>5.2 ± 1.3</td>
<td>30.2</td>
</tr>
<tr>
<td>Nickel</td>
<td>mg kg<sup>-1</sup></td>
<td>14.6 ± 6.4</td>
<td>15.9</td>
</tr>
<tr>
<td>Chromium</td>
<td>mg kg<sup>-1</sup></td>
<td>40.5 ± 2.1</td>
<td>52.3</td>
</tr>
<tr>
<td>Arsenic</td>
<td>mg kg<sup>-1</sup></td>
<td>4.4 ± 0.1</td>
<td>7.2</td>
</tr>
<tr>
<td>Mercury</td>
<td>mg kg<sup>-1</sup></td>
<td>0.01 ± 0.02</td>
<td>0.1</td>
</tr>
<tr>
<td>Selenium</td>
<td>mg kg<sup>-1</sup></td>
<td>0.02 ± 0.02</td>
<td>0.02 ± 0.02</td>
</tr>
<tr>
<td>Molybdenium</td>
<td>mg kg<sup>-1</sup></td>
<td>1.3 ± 0.2</td>
<td>1.3 ± 0.2</td>
</tr>
</tbody>
</table>
Threshold Effect Level represents the concentrations of sediment-associated contaminants that are not considered to represent significant hazards to aquatic organism.

Probable Effect Level defines the lower limit of the range of contaminant concentrations that are usually or always associated with adverse biological effects.

MacDonald (1994)
Field Site Preparation

. . . consisted of 5 larger test plots (30.5 x 30.5 m) adjacent to the spoil disposal site . . .
Each plot was excavated to a depth of about 28 cm, existing natural soil and organic materials were completely removed.

Existing vegetation from each plot was totally removed prior to back filling with different ratios of lake dredged materials (DM) and natural soils (NS).
Plot/Treatment Combinations

(%DM + %NS)

Plot 1 (0% + 100%) – DM0
Plot 2 (25% + 75%) – DM25
Plot 3 (50% + 50%) – DM50
Plot 4 (75% + 25%) – DM75
Plot 5 (100% + 0%) – DM100

DM – Lake Dredged Materials; NS – Natural Soils
Natural soils that were excavated were backfilled to each plot along with DM that were hauled from the adjacent settling pond.

The total amount of DM and NS that was placed back on each test plot was in accordance with the different ratios of DM and NS.
Field Site Preparation (Cont’d.)

- After mixing the NS and DM, each of the test plots was disked to a uniform depth of 28 cm. Plots were disked in an alternate direction until DM and NS were uniformly mixed.
Plots were seeded on January 28, 2002.
Aboveground biomass of BG was measured at 16, 34, and 78 weeks after seeding, using a double-ring method (Williams and Hammond, 1999).
Freshly cut aboveground growth was oven-dried (60°C for 24 hr, USDA-ARS Lab. in Brooksville, FL.)
FORAGE YIELD

16, 34, and 78 WEEKS
<table>
<thead>
<tr>
<th>Treatment (%DM + %NS)</th>
<th>16 weeks (kg/ha)</th>
<th>34 weeks (kg/ha)</th>
<th>78 weeks (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 + 100</td>
<td>89 ± 65d*</td>
<td>1513 ± 166c</td>
<td>1262 ± 116d</td>
</tr>
<tr>
<td>25 + 75</td>
<td>378 ± 185c</td>
<td>2409 ± 423b</td>
<td>2780 ± 678c</td>
</tr>
<tr>
<td>50 + 50</td>
<td>673 ± 233a</td>
<td>2466 ± 320b</td>
<td>3076 ± 322bc</td>
</tr>
<tr>
<td>75 + 25</td>
<td>654 ± 106ab</td>
<td>2764 ± 320b</td>
<td>4109 ± 220c</td>
</tr>
<tr>
<td>100 + 0</td>
<td>470 ± 93bc</td>
<td>3349 ± 174a</td>
<td>3804 ± 112ab</td>
</tr>
</tbody>
</table>

Means on each column followed by same letter(s) are not significantly different from each other at p ≤ 0.05.
SOIL PHYSICAL AND CHEMICAL PROPERTIES

JANUARY 16, 2003
(52 weeks)
<table>
<thead>
<tr>
<th>Treatment (%DM+NS)</th>
<th>pH</th>
<th>K</th>
<th>Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 + 100</td>
<td>5.98±0.1c*</td>
<td>3.6±0.6ab</td>
<td>20.2±1.2a</td>
</tr>
<tr>
<td>25 + 75</td>
<td>8.39±0.3ab</td>
<td>0.9±0.3b</td>
<td>23.5±6.2a</td>
</tr>
<tr>
<td>50 + 50</td>
<td>8.35±0.1ab</td>
<td>2.8±1.4b</td>
<td>21.3±0.9a</td>
</tr>
<tr>
<td>75 + 25</td>
<td>8.17±0.1b</td>
<td>1.8±1.0b</td>
<td>22.5±3.2a</td>
</tr>
<tr>
<td>100 + 0</td>
<td>8.54±0.1a</td>
<td>2.5±0.7a</td>
<td>22.1±2.4a</td>
</tr>
</tbody>
</table>

*Means on each column followed by same letter(s) are not significantly different from each other at p ≤ 0.05.
<table>
<thead>
<tr>
<th>Treatment (%DM+NS)</th>
<th>Ca</th>
<th>Mg</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 + 100</td>
<td>105±5.1b*</td>
<td>4.4±2.6b</td>
<td>0.690±0.13a</td>
</tr>
<tr>
<td>25 + 75</td>
<td>1963±26a</td>
<td>11.9±0.7a</td>
<td>0.010±0.01b</td>
</tr>
<tr>
<td>50 + 50</td>
<td>2040±29a</td>
<td>13.6±1.1a</td>
<td>0.006±0.01b</td>
</tr>
<tr>
<td>75 + 25</td>
<td>2009±87a</td>
<td>14.6±1.7a</td>
<td>0.007±0.12b</td>
</tr>
<tr>
<td>100 + 0</td>
<td>2030±9a</td>
<td>14.7±0.6a</td>
<td>0.005±0.00b</td>
</tr>
</tbody>
</table>

*Means on each column followed by same letter(s) are not significantly different from each other at p ≤ 0.05.
<table>
<thead>
<tr>
<th>Treatment (%DM+NS)</th>
<th>Mn</th>
<th>Cu</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 + 100</td>
<td>2.86±0.39a*</td>
<td>0.456±0.6a</td>
<td>15.6±0.05a</td>
</tr>
<tr>
<td>25 + 75</td>
<td>0.35±0.05b</td>
<td>0.001±0.1b</td>
<td>0.03±0.05b</td>
</tr>
<tr>
<td>50 + 50</td>
<td>0.31±0.01b</td>
<td>0.002±0.0b</td>
<td>0.006±0.0b</td>
</tr>
<tr>
<td>75 + 25</td>
<td>0.25±0.01b</td>
<td>0.002±0.0b</td>
<td>0.007±0.0b</td>
</tr>
<tr>
<td>100 + 0</td>
<td>0.34±0.04b</td>
<td>0.003±0.0b</td>
<td>0.005±0.0b</td>
</tr>
</tbody>
</table>

*Means on each column followed by same letter(s) are not significantly different from each other at p ≤ 0.05.
<table>
<thead>
<tr>
<th>Treatment (%DM+NS)</th>
<th>Al</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 + 100</td>
<td>187.23±13.3a*</td>
<td>20.5±2.1b</td>
</tr>
<tr>
<td>25 + 75</td>
<td>0.19±0.25b</td>
<td>30.8±8.8a</td>
</tr>
<tr>
<td>50 + 50</td>
<td>0.03±0.02b</td>
<td>37.1±1.1a</td>
</tr>
<tr>
<td>75 + 25</td>
<td>0.01±0.01b</td>
<td>37.9±2.2a</td>
</tr>
<tr>
<td>100 + 0</td>
<td>0.04±0.07b</td>
<td>36.4±1.1a</td>
</tr>
</tbody>
</table>

*Means on each column followed by same letter(s) are not significantly different from each other at p ≤ 0.05.
SUMMARY

- Results demonstrated favorable/beneficial effects of added DM on BG establishment;

- Initial improvement on the physical and chemical conditions of subtropical sandy pastures;
DM dredged from Lake Panasoffkee contained neither materials that would not classify them as a human risk nor would require expensive waste handling and disposal; and
DM should be regarded as a beneficial resource, as a part of the ecological system.
Looking Ahead....

To continue the study..., to explore and assess the long term efficacy of DM on productivity and quality of BG beyond its early establishment stage in subtropical beef pastures.
ACKNOWLEDGEMENT

- Southwest Florida Water Management District – Financial Support
- Lesley Touchton and Joel Deangelis (SWFWMD) – Field Assistance and Field Site Maintenance
- Kirstin Foulks (USDA-ARS, STARS) – Field and Technical Support
thank you!!!!

USDA-ARS, SUBTROPICAL RESEARCH STATION
BROOKSVILLE, FL