Eelgrass Preservation and Restoration in Ship Traffic Areas

Ronald M. Thom
Battelle Marine Sciences Laboratory
Pacific Northwest National Laboratory
Sequim, WA

Presented at U.S. Section, PIANC Annual Meeting and Technical Workshop
Portland, Oregon
30 October 2003
Purpose

- Review potential vessel impacts to eelgrass
- Present some examples of ways to avoid, minimize and compensate for damage
Potential Impacts from Vessels

- Direct vessel prop and hull scour
 - Jet skis, small and large vessels in Florida
- Propeller wash
 - Ferry boats in Puget Sound
- Vessel wakes
 - Fast ferries in Puget Sound
 - Large container vessels
Eelgrass (Zostera marina) Biology and Ecology

- One of about 60 species of seagrass (rooted angiosperms that grow in the sea)
- Z. marina is most widespread species
- Grows in dense meadows in shallow water in protected marine and estuarine areas

Functions:
- Primary productivity
- Directly eaten
- Detritus export
- Refuge from predation
- Reproduction habitat
- Prey production
- Shoreline stabilization
Mechanisms of Impacts

- Fragmentation of plants
- Erosion on surface fine material (organic and inorganic material on plants and on sediment)
- Erosion of sediments, and exposure of rhizomes and roots
- Erosion of plants
- Deposition and burial
- Reduction in light
Eelgrass Conceptual Model

Controlling Factors → Structure → Functions

- Light
 (3M PAR/day)
- Temperature
 (7-13 deg C)
- Salinity
 (10-30 ppt)
- Substrata
 (sand-mud)
- Nutrients
 (mod. soil; low water col.)
- Water Motion
 (3m/sec tidal; 80 cm/sec. burst)

Eelgrass Biomass and Associated Community

- Carbon Export
- Fisheries Resources
- Shoreline Stabilization
Erosion/Deposition Zone
Large Vessel Wake

Scalloped edge

Exposed Rhizomes
Role of Light

- **Controls growth**
- **Controls distribution**
- **Frequent reduction can affect eelgrass**
Eelgrass Flume Studies

(A) Plants Lost or Exposed (%)

(B) Velocity (cm s⁻¹)

y = 131.890\log(x) - 247.693

r = 0.974
18m from propellers

41m from propellers
Field Studies of Propeller Wash

Mean Bottom Current Velocity (cm/s) vs Distance (m) from Tyee

Propeller speed:
- 0 rpm
- 550 rpm
- 750 rpm
- 1000 rpm

Distance (m) from Tyee

Mean Bottom Current Velocity (cm/s)
Bottom Velocity, Turbidity and PAR
Mechanisms for Minimization and Recovery

- Remove or reduce source of disturbance below a threshold expected to cause problem
 - Set back zone
 - Reorient slips
 - Reroute ships
 - Establish and enforce best management practices

- Natural Recovery Processes
 - Flowering and seed deposition
 - Rhizome spread
 - Drift fragments

- Restoration
 - Adult plantings
 - Seed plantings
Oakland Middle Harbor Mudflat/Eelgrass Restoration

Adaptive Measures

• Incremental fill-settlement cycle

• Test planting of eelgrass

• Adjustable openings to maintain water quality

~185 acres
Eelgrass Restoration

- Mean shoot density over all plots close to performance criterion by 2002.
- Highly variable reference density tracked generally by planting plot density.
- Large increase over time in reference density an issue.

Performance Criterion (PC)

(77.0% of Ref.; 94.4% of PC)
Contact Information

Ron Thom
360-681-3657
ron.thom@pnl.gov